

SCALE-UP OF LABORATORY GRINDING AND FLOTATION TESTS FOR PLANT DESIGN AND OPTIMISATION

Brian Loveday

Laboratory tests provide a means for precise research and routine ore assessment.

How useful are these tests for prediction of plant performance and plant optimisation??

Scale-up of ball-milling

The Bond Lab. Test is well established, but labour intensive, performed dry, the screen recycles hard (not dense) minerals, and it produces a narrow size distribution

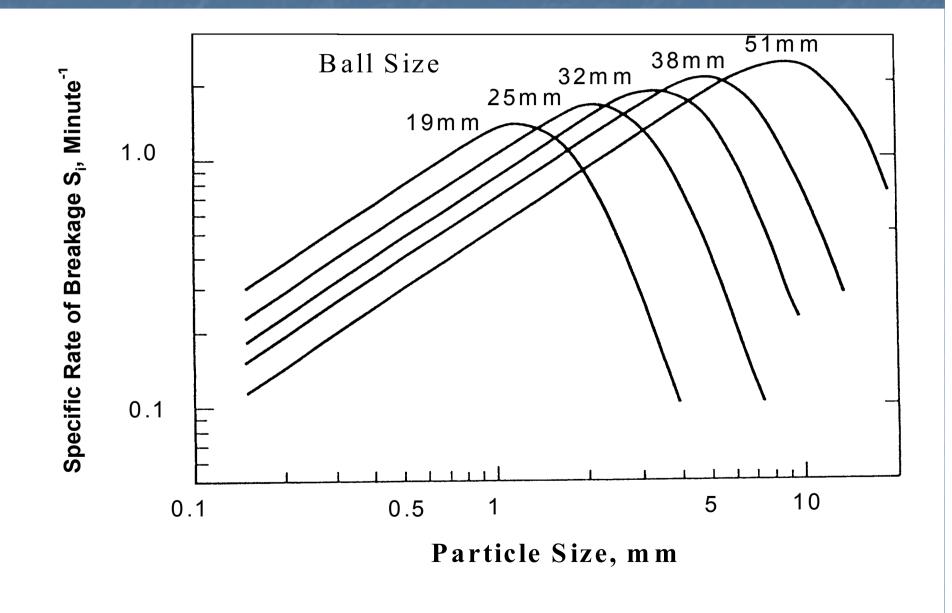
Scale-up of ball-milling

 The Bond Lab. Test is well established, but labour intensive, performed dry, the screen recycles hard (not dense) minerals, and it produces a narrow size distribution
 The concept of a Work Index is good, but simple (wet) batch tests can produce similar information.

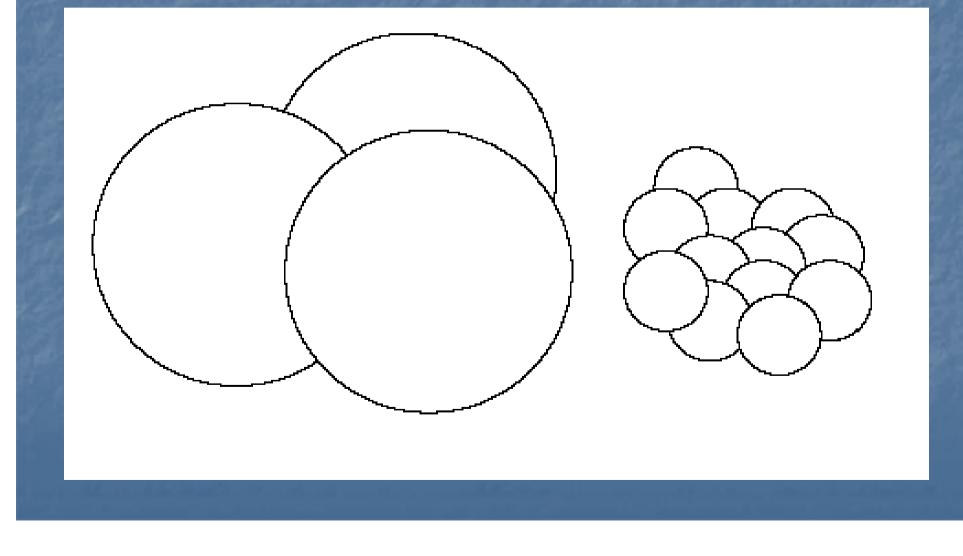
Scale-up of ball-milling

The Bond Lab. Test is well established, but labour intensive, performed dry, the screen recycles hard (not dense) minerals, and it produces a narrow size distribution The concept of a Work Index is good, but simple (wet) batch tests can produce similar information. The forces in the laboratory mill are small

Breakage Mechanisms


 Breakage occurs by impacts or compression between balls. Thin fragments and sharp edges are removed by local impacts (crumbling)

Breakage Mechanisms


 Breakage occurs by impacts or compression between balls. Thin fragments and sharp edges are removed by local impacts (crumbling)

The compression force required for complete breakage is α (mass)^{0.66}
 α (diameter)² α x-sectional area

Lab. Data on dry grinding (Austin)

Effect of ball size on number of contact points and forces

Observations on batch tests

Addition of water has no effect (the theory of ball coating is speculation)
Laboratory milling efficiency is adversely affected by high pulp viscosity
Hence, use a relatively low solids concentration and measure power (torque) on all routine tests.

Surface air flux (velocity) is kept constant (typically: 1-2 cm/sec or 0,6 -1,2 m/min)

Surface air flux (velocity) is kept constant (typically: 1-2 cm/sec or 0,6 -1,2 m/min)
 Air flow/unit vol. (and power/unit vol.)

 α vol.^{-0.33}
 α cell dimension⁻¹ (height⁻¹)

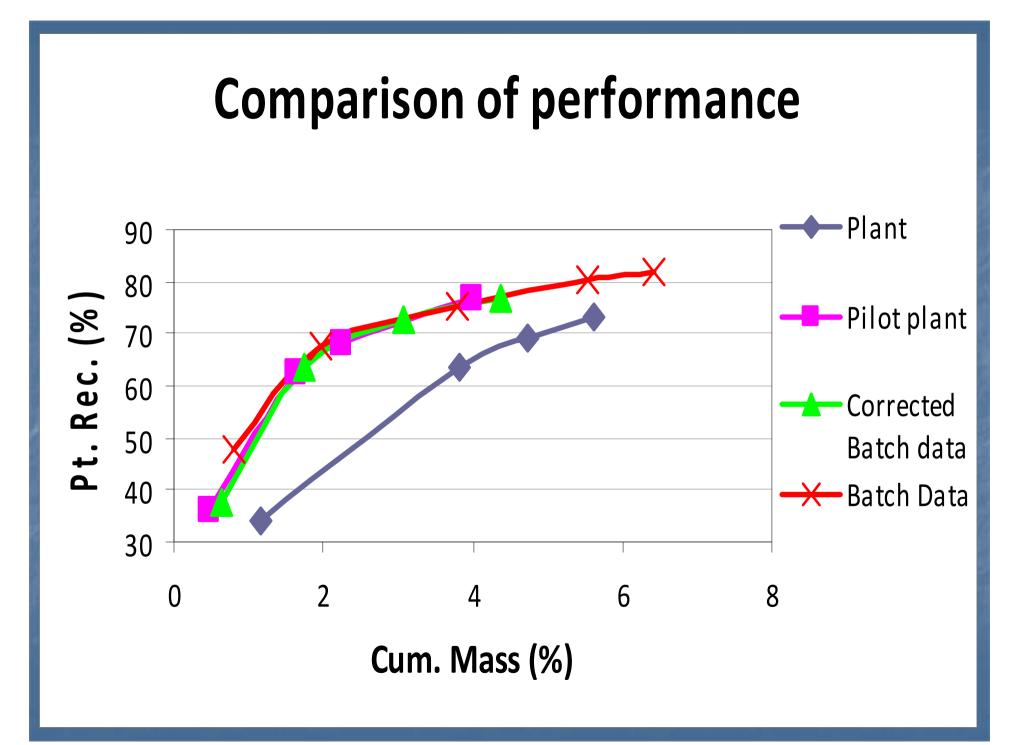
Surface air flux (velocity) is kept constant (typically: 1-2 cm/sec or 0,6 -1,2 m/min)
 Air flow/unit vol. (and power/unit vol.)

 α vol.^{-0.33} α cell dimension⁻¹ (height⁻¹)

 Bubble path length α cell height

Surface air flux (velocity) is kept constant (typically: 1-2 cm/sec or 0,6 -1,2 m/min)
 Air flow/unit vol. (and power/unit vol.)

 α vol.^{-0.33} α
 cell dimension⁻¹ (height⁻¹)


 Bubble path length α cell height
 Hence bubble loading α cell height

Surface air flux (velocity) is kept constant (typically: 1-2 cm/sec or 0,6 -1,2 m/min) Air flow/unit vol. (and power/unit vol.) α vol.^{-0.33} α cell dimension⁻¹ (height⁻¹) Bubble path length α cell height - Hence bubble loading α cell height Equivalent kinetics for lean ores?

Comparison of bubble loading

Batch cell (5L): Relative loading =1
Pilot-plant cell (50L) Rel. loading =2,2
Plant cell (50 m³) Rel. loading = 22

Rate of flotation in the plant is about half that in a lab cell (Correction factor = 0,5)

Application of Models

Kelsall Model (1961)

	Non- Floating	Slow- Floating	Fast- Floating
Mass Fraction	a	aı	a ₂
Rate Constant	0	k 1	K 2

Can we use batch data to model a plant, by applying corrections?

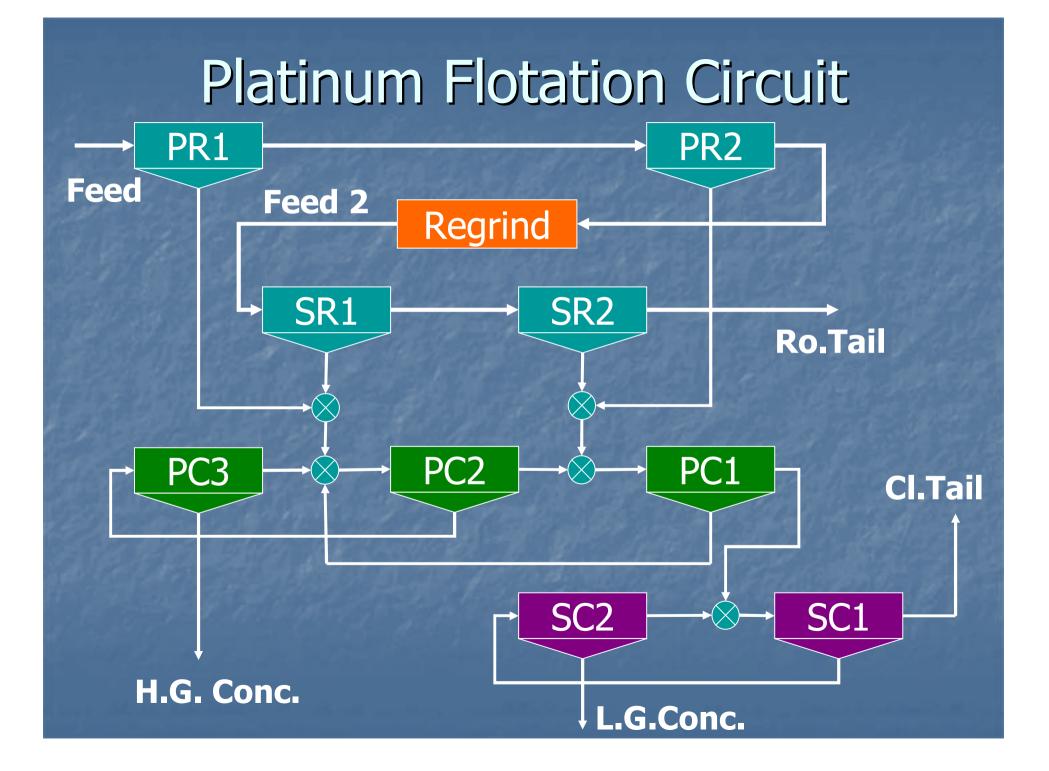
Batch tests can be done on samples of feed, concentrate, tails, etc. and Nodal Analysis can be applied
This demonstrates that batch flotation rates are maintained – However it does not prove that the plant behaves in the same way

Data from the Cominco Red Dog Lead Cleaning Circuit (Runge et al, 1997)

	Final Cleaner (Column)		Cl. Scav. (2 x OK38)	
	Scale-up	Rel. to Pb	Scale-up	Rel. to Pb
Galena	0.077	1	0.80	1
Sphalerite	0.053	0.68	0.68	0.85
Pyrite	0.039	0.51	0.68	0.85
N.S. Gangue	0.060	0.78	0.56	0.7

Observations on fitting batch data to a plant mass balance

The Red Dog data showed that the separations achieved in the batch tests were significantly worse than the plant


Observations on fitting batch data to a plant mass balance

The Red Dog data showed that separations achieved in the batch tests were significantly worse than the plant
The use of different scale-up factors for each mineral, allows the model to fit the base case mass balance (a force fit)

Observations on fitting batch data to a plant mass balance

The Red Dog data showed that separations achieved in the batch tests were significantly worse than the plant
The use of different scale-up factors for each mineral, allows the model to fit the base case (a force fit)
Prediction of the performance of a new circuit configuration would be difficult

Is there another option??

