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ABSTRACT 

 
The years between 1997 and 2007 saw significant advances in remote sensing technology for mineral exploration.  The successful 
launch of the ASTER instrument in 1999 brought with it the ability to map mineral zoning and quartz occurrences within alteration 
systems.  This took remote sensing from the age of the ambiguous “TM anomaly” into the age of mineral mapping from space.  While 
ASTER has rapidly become the workhorse of geologic remote sensing, high spatial resolution satellite image and high spectral 
resolution airborne imaging have also advanced.  Sub-meter multispectral satellite systems allow near airphoto quality imagery to be 
acquired anywhere in the world.  The “open skies” policy of the satellite operators permits high resolution image acquisitions to be 
undertaken in locations where it was not possible before.  Although slower to be embraced by the exploration community, airborne 
hyperspectral data that is capable of mapping individual mineral species and chemical substitutions within individual minerals has 
progressed to the point of being an operational commercial technology.  With the improvements in spectral resolution have come 
advances in the processing of the remote sensing data.  The results of remote sensing data analysis have progressed from highly 
qualitative anomaly identification to quantitative mineral species mapping. 
 
 
 
 
 
 

INTRODUCTION 

 
Remote sensing is often the first technology applied to 
exploration projects – few geologists would now visit a prospect 
without first “Google-Earthing” (Wikipedia 2007) it.  In early 
stage exploration, ASTER (Advanced Spaceborne Thermal 
Emission and Reflection Radiometer) imagery provides a 
synoptic view of potential alteration and alteration zoning in 
exposed terrains at very low cost.  Remote sensing technology is 
the only remote exploration method that directly maps the broad 
range of alteration minerals associated with many ore deposits.  
In many ways, remote sensing is the modern equivalent of an 
experienced prospector with a good sense of field indicator 
minerals of alteration and mineralization.  More importantly, 
modern remote sensing methods allow us to quantify the 
alteration mineralogy and identify key pathfinder minerals and 
chemical variations within minerals that are invisible to even the 
most seasoned exploration geologist.  

The last decade has seen significant advances in remote 
sensing technology.  Satellite systems have evolved to provide 
higher spatial and spectral resolutions critical for mineral 
exploration.  Sub-meter pixel satellite imagery allows near aerial 
photographic quality color images to be acquired anywhere on 
the planet.  Web based compilation of imagery through services 
such as Google Earth permit desktop access to imagery that was 

inconceivable in the 90’s.  Analog aerial photographic 
acquisition and compilation itself has almost completely been 
supplanted by digital photography.  The ASTER earth resources 
satellite instrument and airborne hyperspectral imagery permit 
the mapping of mineral families, mineral species, and even 
chemical substitutions within individual minerals.  The 
processing of remote sensing data has advanced from the 
generation of qualitative anomaly maps to quantitative inversion 
to mineral maps.  Manual interpretation of the remote sensing 
results on printed maps is rapidly giving way to full digital 
integration of the data and the use of GIS and statistical based 
analysis and interpretation. 

This paper provides an overview of the current state of 
remote sensing in mineral exploration.  The state of the art in 
1997 is reviewed and the advances in data acquisition and 
processing over the last decade are discussed.  The focus of this 
discussion is on the use of remote sensing for the identification 
of surface mineralogy.  Thus, sensors in the visible to thermal 
infrared and processing applicable to this region receive 
emphasis. 

Remote sensing is generally described as the measurement 
of reflected or emitted electromagnetic radiation (EMR) in the 
range of about 300 nanometers (nm) to 1 meter (m) in 
wavelength.  Earth remote sensing scientists categorize this into 
several ranges based on the physical interaction phenomena.  
The visible to near infrared (VNIR) range is reflected EMR 
dominated by electronic processes that produce broad 
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absorptions.  The shortwave infrared (SWIR) is reflected EMR 
dominated by molecular vibration processes that produce sharp 
absorptions.  The thermal infrared (TIR) is emitted and some 
reflected EMR that is also dominated by molecular vibration 
processes that produce both sharp and broad absorptions.  All of 
these measurements have the sun as an energy source (although 
the TIR actually has a component that is the Earth’s heat).  The 
Sun is an incoherent source of energy; we cannot measure the 
phase of the response, only the amplitude.  Radaris in the range 
of about 1 mm to 1m and utilizes an active source from which 
both phase and amplitude may be measured.  Radar methods are 
a transition between optical remote sensing and electromagnetic 
methods.  The primary phenomenon that impacts Radar 
measurements is the molecular rotation (polarization) effect.  

In all remote sensing measurements, we are concerned about 
the amount of energy that is reflected from the surface material.  
A so-called Lambertian reflector has a reflection that does not 
depend on wavelength and is spectrally flat.  Fortunately, many 
materials absorb energy at specific wavelengths and possess 
distinctive spectral signatures that uniquely identify them 

(Figure 1).  These regions of selective absorption are called 
absorption features.  In the case of high spectral resolution 
instruments such as hyperspectral imagers (HSI) we can very 
accurately identify surface minerals.  With lower spectral 
resolution multispectral imagers (MSI) we can identify general 
classes of minerals or materials.  The spectroscopic signature of 
a material is analogous to color but extends into invisible parts 
of the electromagnetic spectrum.  Just as a geologist may use 
color to help identify a mineral, we use very precise 
measurements of “color” to identify minerals remotely. 

In the remote sensing study of mineralized systems we have 
a very fortunate situation: many of the minerals associated with 
hydrothermal alteration posses highly distinctive spectral 
signatures.  Remote sensing may, therefore, be used to directly 
detect and map the mineralogy of exposed hydrothermal 
alteration.  The primary limitation of remote sensing is that the 
surface penetration is only on the order of a few microns.  This 
restricts remote sensing to the arid and semi-arid regions of the 
Earth where rocks and soils are directly exposed on the surface.

 

 
Figure 1: Comparisons of the spectral signatures of alunite, kaolinite, and illite as measured by the TM, ASTER, and SpecTIR sensors.
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Background – State of the Art in 1997 

 
After a decade that saw the development of airborne multi-
spectral sensors such as Geoscan MKII and the Geophysical and 
Environmental Research Corporation (GER) DAIS69, only the 
latter and the short lived multispectral Japanese Earth Resources 
Satellite (JERS) and hyperspectral Airborne Visible/Infrared 
Imaging Spectrometer (AVIRIS) were available for data 
collection in 1997.  With costs of airborne data capture relatively 
high and availability low, the exploration community relied 
almost exclusively on Thematic Mapper (TM) data for mapping 
geology and alteration on regional scales. 

The typical approaches to the analysis of remote sensing 
data for exploration in the 90’s were the calculation of color 
ratio composite images (CRC), the use of principal component 
analysis (PCA) or directed principal component analysis 
(DPCA), and to a lesser extent, supervised classification (Lipton, 
1997).  The method of calculating ratios between image bands 
was first used for earth remote sensing by Rowan et al. (1974) 
on ERTS-1 (Landsat 1) imagery for mapping lithology and 
alteration.  The method enhances the differences in band 
responses that are indicative of absorption features (Figure 1).  
Band ratios are fairly robust for high albedo (brightness) 
materials commonly seen in alteration systems but are often 
ambiguous in multispectral data due to the fact that broad band 
widths may encompass multiple mineral absorptions.  Ratio 
images are highly impacted by atmospheric scattering and a path 
radiance correction (PRC) must be carefully undertaken to 
remove scattering effects.  Scattering effects may also be 
minimized by calculation of the difference of logarithms rather 
than simple division (Pratt, 2001).  Principal component analysis 
of images had its roots in the desire for data compression.  The 
method is a linear projection of the image vector space to a new 
set of orthogonal vectors that are ranked in decreasing variance.  
For 4-band Multispectral Scanner (MSS) data, the first three PC 
images contain the majority of the image information and the 
forth PC image is discarded.  Unfortunately, subtle geologic 
information may have a low variance signature and be discarded 
with the theoretical “noise”.  This phenomenon of “throwing out 
the baby with the bath water” became much more critical with 7-
band TM data.  In addition, the PCA method is data directed and 
therefore scene dependent.  Thus, it does not produce consistent 
results scene to scene.  In order to deal with the limitation of 
PCA, and the problem of separating mineral signatures from 
vegetation in Landsat imagery, a method of Directed Principal 
Components (DPCA) was developed by Crosta and Moore 
(1989) and further refined by Loughlin (1991).   

This method utilizes band and spatial subsets to optimize the 
separation of materials of interest by “directing” the statistics of 
the PC calculation. In the case of mapping clay for example, a 
simple band ratio of band 5 divided by band 7 would enhance 
not only clays but also vegetation.  By using a PCA of bands 3, 
4, 5 and 7, the statistics would show which of the 4 principal 
component bands mapped vegetation and which mapped clay.  
The PC in which the eigen values for bands 3 and 4 were of 
opposite sign and large would be mapping vegetation whereas 
the clay would be mapped in the PC in which the eigen values 
for bands 5 and 7 were opposite sign and large (Loughlin, 1991).  

Iron minerals could also be mapped and “filtered” from 
vegetation in a similar manner using bands 1, 3, 4 and 5.  By the 
late 90’s the “Crosta Method” was the most commonly used 
approach to enhancing TM data for exploration applications. 

An alternative approach for mapping and separating clays 
from vegetation also uses the covariance statistics of the data 
and is based upon the close correlation between all bands so that 
any one band can be modeled from the statistics of the others.  
Thus, when the clay absorption band (band 7) is modeled using 
the Least Squares Fit method and the modeled result, is 
subtracted from the original band 7, the vegetation or predictable 
component is removed and the residual maps the clay (Fraser & 
Green, 1987).  

As an interesting aside, some of the concepts behind the 
Crosta method re-immerged as orthogonal sub-space projection 
methods in the 2000’s (Ientilucci, 2001).  Classification 
methods, while effective for categorizing material with high 
spectral contrasts, were generally found to be ineffective on 
multispectral data sets for geologic discriminations.   

Although not used extensively by the exploration 
community at the time, airborne hyperspectral imagery (HSI) 
was beginning to break out of the research arena and into the 
commercial use sector.  HyMap and the similar Probe-1 began 
acquiring hyperspectral data on a commercial scale in the late 
90’s.  Since HSI was rooted in spectroscopy, spectroscopic 
analysis tools were already in development for the analysis of 
HSI data.  The Tricorder (now Tetracorder) package from the 
USGS (Clark et al., 1999) was one of the first spectral analysis 
tools to be utilized for HSI data.  Boardman (1989) also 
developed methods of inversion based on geophysical signal 
processing concepts and Kruse et al. (1993) had developed a 
software package called SIPS (later to become ENVI) that 
focused on HSI data. The ENVI software package was being 
used in the commercial arena on airborne multispectral data 
(Agar & Villanueva., 1997), but its use and that of the airborne 
data was limited and suffered from the lack of accurate and 
reliable atmospheric and geometric correction methods.   
Although the roots for the application of spectral processing of 
multi- and hyperspectral data were in place, the almost exclusive 
reliance on TM data for exploration limited its use.  The 
standard processing methods for multispectral data were all 
qualitative in nature.  Ultimately, a skilled interpreter was 
needed to make sense of the analysis results and qualitatively 
(and with much bias) select “real” targets from false anomalies.  
The term “TM Anomaly” was well entrenched in regional 
exploration dialog.  But things were changing; the next decade 
saw the growth of quantitative remote sensing.  
 

Data Capture in the 21st Century – Developments in Sensor 
Technology 

Satellite and Airborne Sensors 

Although airborne multi- and hyperspectral data were available 
in 1997 from the Geoscan AMSS MKI and MKII sensors (Agar, 
1994), these instruments were no longer operational.  The 
Airborne Visible/InfraRed Imaging Spectrometer (AVIRIS) 
(JPL, 1987; Vane et al., 1993) was available only on a research 
campaign basis leaving the GER DAIS-63 sensor (Collins, & 
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Chang, 1990) as the only one operating commercially.   Remote 
sensing in mineral exploration was still largely focused on 
Landsat TM data with the application of the higher spatial and 
spectral resolution data restricted due to a number of factors 
including the limited number of sensors available; the cost of 
surveys and mobilization; the difficulty of calibrating and 
atmospherically correcting the data; and the lack of reliable 3-
dimensional spatial location information collected with the data. 

AVIRIS required a dedicated aircraft (Sarture et al, 1998) 
and the GER DAIS63 sensor required installation into an aircraft 
in the GER hanger in New York State.  For both sensors, this 
meant that surveys outside of the USA or Canada required 
mobilization of both sensor and aircraft, adding significant 
importation and logistical costs to the already heavy cost of 
mobilization.  Only in the late 1990’s, with instruments such as 
the De Beers AMS (Hussey, 2004) and subsequent Probe and 
Hy-Map sensors (Cocks et al., 1998) did the first, truly 
commercial hyperspectral sensors appear and the 
instrumentation become sufficiently compact, lightweight. And 
robust enough to be shipped as freight and then installed onsite 
in a local aircraft. 

The De Beers Airborne Multispectral Scanner was 
commissioned in 1996 having been designed and built by the 
Hy-Vista Corporation to specifications determined by De Beers.  
Hy-Vista subsequently developed additional sensors such as the 
Probe-1 and 2 and their own Hy-Map sensors (Cocks et al., 
1998).  Each of these sensors was a “Kennedy” or whisk-broom 
design, following on from earlier sensor designs used in the 
Geoscan and the GER-DAIS63. 

With the exception of AVIRIS, the new sensors had 
increased spectral resolution over their predecessors (Figure 2).  
Where the Geoscan and GER DAIS sensors collected data in 24 
and 63 channels respectively, the Hy-Vista sensors recorded 
information in 128 spectral bands across the same wavelength 
range.  This increased spectral resolution gave the newer 
instruments far greater capacity to discriminate individual 
alteration minerals and their variants compared with their 
airborne and satellite borne predecessors (Figure 3).  For 
example, not only could individual minerals such as illite be 
mapped, but varieties of illite could now also be discriminated 
(Figure 4) (Cudahy et al., 2000). Another important and major 
advantage these new sensors had over their multi-spectral 
predecessors was that they captured data at wavelengths where 
absorption due to atmospheric water and other gases could be 
measured (Figure 2).  With the exception of AVIRIS, earlier 
sensors lacked the ability to collect data at these wavelengths 
and concentrated on placing their spectral bands in the 
atmospheric windows.  However, by collecting information in 
the atmospheric water absorption wavelength bands, data from 
AVIRIS and other new sensors could be used to measure 
atmospheric moisture on a pixel by pixel basis and so accurately 
convert the data from radiance to reflectance using newly 
derived atmospheric models that were at the time being 
incorporated into commercial remote sensing software packages 
(Figure 5) (Borel & Schlapfe, 1996; Adler-Golden et al; 1998, 
Kruse, 1998). 

Prior to this, sensors such as Geoscan and the GER DAIS 
used an internal data normalization process to convert the data to 
pseudo-reflectance or used input from field spectra collected 
from large homogeneous targets, easily identifiable in the 

imagery to calibrate and convert the data to reflectance using the 
empirical line method.   

The Geoscan AMSS MKII sensor had a stabilized 
gyroscopic platform that helped to dampen the effects of air 
turbulence during data collection.  In addition, GPS data were 
recorded during the flight in order to assist in geocoding the 
imagery.  However, the precise orientation of the aircraft in 
three dimensions could not be recorded for each pixel and as a 
result the data required manual geo-referencing to pre-existing 
images or maps.  As accurate as any spectral data products such 
as alteration mineral maps might have been in a spectral context, 
they lacked spatial accuracy, especially where the geometric 
distortions inherent in the airborne data were multiplied by high 
totographic relief. 

The appearance of more accurate civilian GPS and Intertial 
Navagation System (IMS) technologies coupled to more 
sophisticated stabilization platforms that accurately record the 
instantaneous 3-D orientation of the sensor relative to the 
aircraft and hence ground, it became possible to accurately 
remove geometric distortions in airborne imagery data of all 
types.  Accurate information about the position and orientation 
of the instrument combined with accurate, high-resolution 
digital terrain models, makes it possible to accurately 
orthorectify airborne remotely sensed imagery.   Products 
derived from these data may be easily integrated with other 
diverse types of data in Geographic Information Systems, 
greatly increasing the value and applications of the data 
themselves. 

The need to integrate remote sensing data with other 
information was greatly appreciated by Texaco who, in 1997, 
contracted Geophysical and Environmental Research 
Corporation to develop the Texaco Energy and Environmental 
Multispectral Imaging Spectrometer (TEEMS) hyperspectral 
sensor (Prelat & Chang, 1997).  The TEEMS system was a 
significant advance in airborne remote sensing technology in 
that it collected hyperspectral spectral data in the ultraviolet, 
visible, near, shortwave and thermal infrared parts of the 
electromagnetic spectrum as well as synthetic aperture radar 
(SAR) data simultaneously from the same platform.  The SAR 
data were used to provide digital terrain models for structural 
geological mapping and to which the image data could be ortho-
rectified. 

While the Visible-Near Infrared (VNIR) and Short Wave 
Infrared (SWIR) data provided the same capabilities as the other 
new sensors such as the Hy-Map series for example, the 
combined hyperspectral SWIR and multi-spectral Thermal 
Infrared (TIR) data sets in the TEEMS allowed mapping of 
silicate mineralogy, quartz and garnet, in particular along with 
the other hydrothermal alteration minerals.  Previously, although 
the GER DAIS and Geoscan AMSS sensors both had thermal 
infrared modules, only the Geoscan data had demonstrated a 
capacity to map silica and skarn mineralogy (Figure 6) (Agar, 
1999; Pavez & Agar, 2001).  Although the value of TIR data for 
skarn and silicate mapping has been further demonstrated by 
Cudahy et al. (2000) using the Spatially Enhanced Broadband 
Array Spectrograph System (SEBASS) (Hackwell et al., 1996) 
which collects information in 128 channels from 7.6–13.5 µm.  
Over the years, SEBASS was made commercially available, 
withdrawn, and most recently, made available again. 
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Figure 2: The spatial resolution and spectral band positions of selected sensors plotted relative to incoming solar irradiation, atmospheric absorption 
and windows. 
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Figure 4: (a) Percentage of trivalent cations within the white mica octahedral layers estimated from HyMap data and PIMA spectra of field samples 
(coloured circles), Panorama volcanogenic Cu-Zn project, Western Australia; (b) scattergram of electron microprobe white mica analyses of trivalent 
versus divalent cations; (c) scattergram of electron microprobe white mica analyses of % trivalent cations in the octahedral layer versus the wavelength 
of the 2200 nm absorption minimum; (d) scattergram of the wavelength of the 2200 nm absorptionminimum versus the electron microprobe white mica 
analyses of % K and Na (after Cudahy et al., 2000). 

 

 
Figure 5: AVIRIS Color Infrared Composite image, Bands 52, 33, and 19 (0.85, 0.67, and 0.55 µm) (RGB)(left) and corresponding color-coded water 
vapor image (right). The color scale goes from black to blue,to green, to yellow, to red, to white (low column water vapor to high column water vapor). 
Lower water vapor corresponds with higher elevation areas (after Kruse, 1998). 
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Figure 6: A) Geological map of the Chanarcillo district, N. Chile showing the location of skarn and associated silver (Ag), zinc (Zn), copper (Cu) and 
magnetite (Fe) mineralization. B) Geoscan MkII band 10, 11, 12 RGB image showing garnets in yellow and silica in blue. C) The same image as in B 
with the geology (A) superimposed. D) A simple grey-scale garnet or skarn index developed from the Geoscan MKII image data. E) The garnet or 
skarn index as a pseudocolur intensity index draped on a simple albedo image. F) The same image as in D with the geology superimposed. (After Pavez 
& Agar, 2001). 
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The ARGUSTM system (Hausknecht et al., 1999 & 2000) is 
an innovative combination of airborne hyperspectral remote 
sensing with airborne geophysical technologies operating 
simultaneously.  A gamma ray spectrometer and a cesium 
magnetometer are operated simultaneously with three separate 
spectrometers; the VNIR spans 0.37µm–1.05µm at 0.005 µm 
spectral resolution; the SWIR spans 0.90–2.5µm at 0.01 µm 
spectral resolution; and the TIR that spans 7.8 to 13 µm at 0.06 
µm spectral resolution (Hausknecht et al., 2000). Combined, the 
three spectrometers provide 400 discrete spectral channels from 
a contiguous line profile footprint of approximately 10 meters 
along each flight line.   

The system has demonstrated some technical successes such 
as the Panorama case study in Western Australia (Hausknecht et 
al., 2004), but has yet to become widely used.  This may be due 
to the different roles typically played by aeromagnetic and 
radiometric surveys that are traditionally flown over wide areas 
with significant surface cover and hyperspectral data that are 
best applied where there is minimal surface cover and good 
outcrop.  Furthermore, spectral profiling along widely spaced 
lines is not a cost-effective use of the technology and companies 
requiring geophysical data were not willing to pay a premium 
for the additional spectral data.  

Ten years ago, almost all of the sensors used in or developed 
for mineral exploration had been whisk-broom scanning 
systems.  Whisk-broom sensors operate using a rotating mirror 
to scan across a swath of ground, collecting data in a fixed 
angular instantaneous field of view, building up an image pixel 
by pixel across the flight path and line by line as the platform 
progresses forwards.  Another type of sensor, the push-broom, 
collects data on a line by line basis with each pixel across the 
line having its own detector array.   

Although the data quality of the whisk-broom systems had 
seen a marked improvement over time, they were still second to 
the push-broom type of sensor in terms of their signal:noise 
characteristics.  In 1997, push broom sensors were limited by the 
size of available optical arrays and also the difficulty of 
calibrating and leveling each detector within the array.  Bad 
pixels and image striping caused by inconsistencies in detector 
performance continue to be issues with these sensors and the 
data processing has required the development of new routines 
and software to reduce the impact of these problems. 

The Canadian Centre for Remote Sensing developed 
sensors, the Compact Airborne Spectrographic Imager (CASI), 
which collected data only in the visible and near-infrared, and its 
short-wave equivalent, the SWIR Full Spectrum Imager (SFSI) 
(Neville et al., 1995), were also innovative in that they had the 
capacity to vary the spectral bands collected across a set range.  
However, although both sensors have been applied successfully 
to mineral exploration (Staenz et al., 1999), their overall usage 
has been limited due largely to their narrow swath width (2km), 
which increases the amount of flying involved and hence adds to 
the survey cost.  Another limiting factor is the need to merge the 
two separate VNIR and SWIR sets of data and the geometric 
issues associated with airborne data collection. 

More recent push-broom sensors such as the Spectir 
HyperSpecTIR (HST) and Spectir ProSpecTIR (AISA dual 
VNIR/SWIR) instruments have a spectral range of 450nm to 
2450nm and consist of up to 499 spectral channels.  The HST 
instrument can be operated in a ground static-horizontal 

operation mode, as well as in airborne mode.   The spatial 
resolution ranges from 0.1 -3m in the static ground collections to 
0.25-5m from airborne collections. These capabilities take the 
application to very high spectral and spatial resolution data 
products in regional and district scale exploration as well as 
mine and pit-scale mapping applications.   SpecTir data applied 
to the Virginia City area of Nevada performed very well in 
comparison to other data (Hauff, 2005).  Only field spectroscopy 
with a 5nm spectral resolution is capable of discriminating the 
full suite of alteration mineral suite but SpecTir was 
demonstrably the best of the airborne and satellite data sets, 
mapping three distinct types of illite plus dickite, kaolinite and 
alunite (Hauff, 2005). 

The Hyperion hyperspectral sensor was also a push-broom 
type and was one of a number of instruments on the NASA EO-
1 satellite that was launched in 2000 as part of a one-year 
technology validation and/or demonstration mission. Hyperion 
provides high-resolution hyperspectral imagery across 220 
spectral bands in the range 0.4 to 2.5 m with a 30-meter 
resolution (Figure 2).  The 220 narrow spectral bands demanded 
that the pixel size be large in order to maintain a reasonably high 
signal-to-noise.  Although Hyperion data evaluated over the Mt. 
Fitton region of Australia proved successful even with the 
relatively noisy data (Cudahy et al., 2001), the signal-to-noise 
ratio of 50:1 (Kruse et al, 2002) for the Hyperion data was 
generally insufficient in anything other than ideal, hyper-arid 
settings to discriminate individual alteration minerals. 
Furthermore, a 30m pixel will usually produce a mixed mineral 
spectrum and so signal-to-noise needs to be very good (>100:1, 
Kruse et al, 2002) to resolve mineral mapping at sub-pixel 
scales.  This, coupled with the high relative cost (Table 1) plus 
the lack of archive data and the need to task data capture limited 
the use of Hyperion data in exploration.  Nevertheless, the data 
nevertheless demonstrated that space borne hyperspectral remote 
sensing was technologically feasible (Cudahy et. al., 2001, 
Kruse et al, 2002). 

On the same platform, NASA also included the Linear 
Etalon Imaging Spectrometer Array (LEISA) Atmospheric 
Corrector (LAC) (Reuter et al., 2001) which was designed to 
capture spectral data in the 0.85-1.5  m wavelength range 
specifically for use in the optimal atmospheric correction of high 
spatial resolution images by using the instrument measurements 
of actual rather than modeled atmospheric water vapour 
absorption values. 

From a mineral exploration perspective, the major leap 
forward in spaceborne remote sensing came with the launch of 
the Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) and the Moderate Resolution Imaging 
Spectroradiometer MODIS sensors on the Terra satellite 
launched by NASA in joint venture with the Japanese and 
Canadian aerospace agencies in November 1999 (Duda, 2004, 
Watanabe, 2002 & 2004). 

Whereas the ASTER sensor provides multispectral data in 
the VNIR, SWIR and TIR (Figure 2), MODIS provides lower 
spatial resolution data in the VNIR and TIR that can be used to 
provide atmospheric water vapour information for accurate 
correction of the ASTER product. It was originally intended to 
use this for generating reflectance data as a standard product but 
it was never fully implemented.  From a mineral exploration 
perspective, ASTER is important because it is the first 
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Table 1: Approximate data acquisition costs for selected satellite and airborne sensors. 

Sensor 
S c e n e  a r e a  
(sq.km.) Cost/sq. km. Notes 

Landsat TM 32,400 $0 to $0.02 
Geocover archive data is free but limited, other scenes cost up to 
$600/scene 

ASTER 3,600 $0.02 Archival data, tasking for new data is difficult 

Hyperion 315 $7.94 Capture has to be tasked, minimum charge = $2,500 

Geoscan  Variable $0.50 Archival data only, assuming pixel size of 10m 

Hymap Variable $40.00* Assuming pixel size of 5 m 

ProSpectir Variable $105.00* Assuming pixel size of 3 m 
* Airborne data costs vary significantly depending on the survey location and mobilization costs.  Costs here are for data 
acquisition without mobilization. 

 
spaceborne sensor to provide multi-spectral data in the SWIR 
and TIR parts of the spectrum, allowing discrimination of 
hydrothermal alteration mineralogy in the SWIR and silicate 
mineralogy, especially quartz, in the TIR.  Furthermore, by 
comparison with other data, ASTER is on a par with Landsat in 
terms of cost (Table 1) and data is archived making it readily 
available. 

Although ASTER data are not without problems in terms of 
quality, there being an issue of  “crosstalk” or energy spill-over 
across detectors (Figure 7) (Iwasaki et al., 2001), and a 
consistent flaw in data caused by a fault in the diffraction grating 
(Figure 8) (Coulter, 2002), the data have and continue to be used 
successfully in regional mineral exploration having 

demonstrated their capacity to map geology and accurately 
locate key hydrothermal alteration minerals and thus generate 
geologic exploration targets as opposed to spectral anomalies 
(Hewson et al., 2001; Rowan & Mars, 2003; Rowan et al. 2003). 
Another useful characteristic of ASTER data is the collection of 
a single backward-looking panchromatic band in the VNIR that 
enables the data to be used to generated digital elevation models 
and hence provide pseudo-stereo visualization and ortho-
correction of the imagery (Toutin, 2001).  This capability allows 
geologists to view hydrothermal alteration mineral maps derived 
from ASTER image data on 3-D models derived from the same 
data set and presented in stereo for on-screen visualization, 
analysis, interpretation and digitization (Figure 9). 

 
 
 

 
Figure 7: Schematic illustration of the “Crosstalk” problem in ASTER showing the spillover or leakage of energy from detector 4 into detectors 5 and 
9 relative to the forward motion of the sensor (left), the visual impact on the image demonstrated by the “ghosting” effects in bands 5 and 9 relative to 
the sensor motion (centre) and the spectral effects of eliminating real absorption in band 5 and creating false absorption in bands 6 and 8 (right).
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Figure 8: Simple SWIR RGB band display of ASTER image data (left) appears to be without flaws but a processed band ratio image (right) shows an 
orbit parallel array of noise features produced by a flaw in the ASTER diffraction grating. 
 

 
Figure 9:  ASTER derived DTM used to generate 3-D visulaisations of  phyllic alteration (light blue) relative to  mapped geology  (left) and  standard 
image algorithms (right). 

 
Digital elevation models (DEM) have become commonplace 

over the last 10 years.  Landsat TM-7, SPOT, ASTER, IKONOS 
and Quickbird imagery can all produce DEM’s at various 
resolutions from 30 m down to 1 m and the Shuttle Radar has 
provided a global digital terrain model (SRTM-90) with a 90m 
resolution that is freely available to all users (Farr & Kobrick, 
2000; Hensley et al., 2000).  For detailed terrain modeling and 
analysis, airborne Synthetic Aperture Radar (SAR) and laser 
Light Detection and Ranging (LIDAR) instruments or high 
spatial resolution spectral instruments such as SPOT-5, 
Quickbird and Ikonos have the capacity to produce high quality 
digital elevation models and stereo-vision at finer spatial 
resolutions.  The high spatial resolution spectral sensors SPOT-
5, Quickbird and Ikonos are limited to just 4 spectral bands and 
are of limited use in mineral exploration other than in provision 
of high-resolution base image-maps for topographic and 
mapping work.  However, with SRTM and ASTER data, the 
geologist now has the capacity to work with digital satellite 
image products in 3-D at all scales from the broad regional down 
to detailed prospect, project and even operational levels and to 
integrate the terrain data with all other digital exploration data. 

Ground and field portable spectrometers 

The last 10 years has not only seen major advances in sensor 
technology for airborne and satellite borne instruments but there 
have also been significant advances in ground and field portable 
spectroscopy that support and provide the basis for the remote 
sensing developments.  In 1997, the Portable Infrared Mineral 
Analyzer (PIMA) was seeing increasing popularity as a field 
tool for hydrothermal alteration mapping (Thompson et al., 
1999).  Cabale of collecting spectral data from hand specimens, 
soil and rock chip samples, drill cuttings and core, the 
instrument was adding significant information to the 
understanding of alteration mineral assemblages and to the 
chemical variations of key alteration minerals as manifested by 
subtle changes in their infrared spectra (Thompson et al., 1999; 
Pontual, 2004). 

The PIMA alone was a major factor in the development of 
infra-red spectroscopy as a field tool in mineral exploration and 
hyperspectral remote sensing as a regional alteration detection 
and mapping tool.  The instrument covers only the SWIR 
wavelength range from 1300nm to 2500nm with a spectral 
resolution of approximately 7nm.  Data capture is relatively 
slow, taking up to several minutes for each reading limiting the 
user to 200-300 readings per day (Hauff, 2004).   
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The Analytical Spectral Devices’ (ASD) FieldSpec Pro FR 
spectrometer by comparison, collects data across the 350-
2500nm range with a 10nm spectral resolution, integrating 
spectra collected every 100 milliseconds over a user determined 
interval to permit recording of more than 1000 readings in a day 
(Hauff, 2004).  The FieldSpec Pro also has the capacity to be 
used  passively with a solar energy input and to take 
measurements across a distance using a different fore-optic and 
is particularly useful for remote sensing applications where real 
time ground measurements can be needed in support of airborne 
survey data for accurate calibration purposes.  The instrument 
was considered too expensive by most mineral industry users 
and the PIMA remained the most common field spectrometer 
until recently. 

The TerraSpec, also produced by ASD, came on the market 
in 2004 and was designed specifically for the mineral industry.  
It combined all of the FieldSpec Pro FR features apart from the 
passive, remote sensing capability but with an enhanced spectral 
resolution of 5nm and a more competitive price (Hauff, 2004).  
The enhanced spectral resolution enables the discrimination of 
subtle wavelength variations in key alteration minerals, such as 
chlorites for example, that can be used as vectors to 
mineralization (Figure 10).  This, coupled with the more 
efficient data capture has seen this instrument replace the PIMA 
as the preferred field spectroscopy tool and has also driven 
research into the development of pit-face and mine mapping 
instruments and core logging tools. 

 
 

 
Figure 10: ASD Terraspec analysis of drill core from the Jundee gold mine, Western Australia showing the increase in chlorite absorption wavelength 
and hence FeOH content relative to MgOH towards mineralization in both the hanging wall and footwall.  Colour scale relates to gold grade. 
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The Australian CSIRO has developed both pit-mapping and 
core logging tools based upon ASD spectrometers with the Hy-
Logger and Hy-Chips programs being offered on a semi-
commercial basis (Quigley et. al., 2004; Mauger et al., 2004).  
Both of these systems utilize ASD spectrometers coupled with 
2D translation tables and robotics and can be developed for any 
organization with an ASD or similar spectrometer. 

As mentioned above, the HyperSpecTIR suite of instruments 
can be operated in a ground static-horizontal operation mode and 
can serve the mine and pit-mapping application by producing 
high spatial and spectral resolution imagery rather than a series 
of average spectra collected at intervals as is the case with the 
CSIRO pit-mapping methodology (Cudahy & Ramaidou, 2004).  
Similarly, the SpecTerra Core Imaging system supercedes the 
Hy-Logger tool in that it collects hyperspectral imagery of the 
core at a spectral resolution of 3 nm and a spatial resolution of 
0.5 mm, taking infrared reflectance spectroscopy almost into the 
realm of petrography (Figure 11) (Linton et al., 2004; Harris et 
al., 2006). 

The last 10 years have therefore seen remote sensing 
instruments improve in terms of their spatial and spectral 
resolutions through the development of better sensor 
technologies.  Signal-to-noise characteristics have been 
improved so that subtle variations in mineral chemistry can now 
be mapped remotely.  The spatial accuracy of remotely sensed 
data has benefited from GPS technologies and the development 
of digital Terrain Models from radar, lidar and spectral 
instruments at all scales from the regional using SRTM and/or 
ASTER data to project levels using Quickbird, Ikonos or Lidar 
for example.  Developments in field spectroscopy have helped 
drive the improvements in remote sensing instruments which 
have in turn contributed to detailed spectroscopic analysis of pit 

and mine faces as well as drill core, so that spectral remote 
sensing now encompasses all scales from regional alteration 
mapping down to petrographic analysis of drill core 

Data Analysis in the 21st Century – the Spectroscopic 
Revolution 

 
The correction and analysis of remote sensing data are the 
critical steps that convert the data into useful information.  The 
ultimate goal is the generation of mineral maps – either as the 
dominant mineral or the mixture of minerals in each image 
pixel.  The recent advances in data analysis have focused on data 
inversion using spectroscopic processing.  This primarily 
involves the application of statistical and signal processing 
methods in a way that the entire spectrum is analyzed.  This 
section provides an overview of currently used, common 
processing methods.  No attempt is made to provide a 
comparison of software packages, instead algorithms are 
explained both qualitatively and mathematically.  

The analysis of remote sensing data has often been 
undertaken as a qualitative interpretation exercise.  Processing 
often consists of the generation of derivative processed imagery 
and directly visualized.  Part of the motivation for this is the 
acuity of human vision.  Our ability to see subtleties of colour 
and texture is highly developed but the ability to quantify these 
characteristics is not.  As higher spectral resolution data has 
become available, there has been a commensurate need need for 
more quantitative approaches to data analysis.  Spectral 
processing methods allow remote sensing data to be semi-
quantitatively or quantitatively inverted to physical mineral 
metrics that directly relate to ore forming processes. 

 

 
Figure 11: The use of hyperspectral core scanning to understand alteration paragenesis demonstrated in an example using the SpecTerra Core Imaging 
System operated by Anglo-American (after Harris et al., 2006).
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Calibration and Atmospheric Correction 

 
A critical limitation on remote sensing data in the past was the 
lack of reliable methods for data calibration.  Calibration is the 
removal of the effects of atmospheric interference on the 
reflected signal received at the sensor.  The calibration process 
results in measurements that appear as similar as possible to 
laboratory or field reflectance data.  This allows a direct 
comparison to be made between the image spectra and known 
mineral spectra.   The calibration step, although sometimes time 
consuming, makes the data analysis much easier and more 
reliable.  In many cases we need to match the results of analyses 
from images acquired on different dates (e.g., when mosaicing 
scenes) or compare results from different areas.  Careful 
calibration allows these actions to be carried out relatively 
easily.  

All  earth remote sensing data are collected through the 
earth’s atmosphere as radiance at sensor measurements.  
Multispectral images are typically collected in atmospheric 
windows where in little of the energy is absorbed by the 
atmosphere.  Scattered energy, however, is collected by the 

sensor and some atmospheric absorption is always present.  
Hyperspectral images are collected across all wavelengths and 
contain the atmospheric absorptions and scattering.  Scattering 
and absorption are wavelength (band) dependent (Figure 12).  
Scattering is primarily due to atmospheric gases (Rayleigh 
scattering) and particulates (Mie scattering) (Schowengerdt, 
1997).  Absorption is primarily due to carbon dioxide, water 
vapor, and ozone.  Of these variables, water vapor and 
particulates have the greatest spatial and temporal variability in 
concentration.  If a pure uniform atmosphere was assumed, the 
effects could easily be removed, in practice, a custom correction 
for each image based on local atmospheric conditions is 
required.  The atmospheric contributions need to be removed so 
that the image band responses match the reflectance response of 
the material on the earth’s surface.  It is important to note that 
there are other physical and optical parameters that are ignored 
here, thus we refer to the results of atmospheric correction as 
“apparent reflectance”.  

A number of approaches may be used to calibrate image data 
to apparent reflectance (Table 2).  Calibration methods may be 
based on an atmospheric model, data derived, or based on the 
known spectrum of the ground. 
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Figure 12: Atmospheric transmission and scattering. 

 
Table 2: Summary of calibration methods. 

Calibration Method Comments 

Internal Average Relative Reflectance Requires a large image (e.g., TM full scene) and minimal vegetation 

Log Residual Removes topographic shading 

Model Based Typically requires multiple iterations to get correct parameters 

Flat Field May require field work to identify an acceptable flat field 

Empirical Line Always requires field work and the availability of a field spectrometer 
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Atmospheric model based calibration methods include 
MODerate spectral resolution atmospheric TRANSmittance 
(MODTRAN), Fast Line-of-sight Atmospheric Analysis of 
Spectral Hypercubes  (FLAASH), ATmosphere REMoval 
program (ATREM), Atmospheric COrrection Now (ACORN), 
and High-accuracy Atmospheric Correction for Hyperspectral 
data (HATCH).  All of the model based corrections require 
knowledge of the location, altitude, date, and time of image 
acquisition.  When correcting hyperspectral data the local 
atmospheric conditions (primarily water vapor content of the 
atmosphere) may be estimated from the data as the atmospheric 
absorptions are measured.  For multispectral data, an estimate of 
the local atmospheric conditions must be made or derived from 
an external data set (a concurrent MODIS image for example in 
the case of ASTER data).  The use of model based calibration is 
almost always an iterative process that requires the “tweaking” 
of parameters to get an acceptable result. 

Data derived calibration is often the quickest and easiest 
method to achieve an acceptable result.  The Internal Average 
Relative Reflectance (IARR) method simply normalizes an 
image by the average spectrum of the entire scene which is 
assumed to be dominated by the atmospheric signature.  This 
method works well in un-vegetated areas (RSI, 2005).  Also, 
larger images tend to produce better results.  Thus IARR works 
better on a TM image than an ASTER image.  The Log Residual 
method was developed for airborne imagery (Green and Craig, 
1985) and involves normalization by an albedo image.  This is 
calculated as a geometric average rather than a mathematical 
average.  

The Flat Field calibration method requires that a “spectrally 
flat” area on the ground be identified.  This may be done in the 
field or on the basis of geologic knowledge.  Clean sandstones, 
quartzite, (quartz) dune sand, or (quartz) beach sand typically 
have spectrally flat responses.  A transformation is calculated 
that flattens the observed spectra of the flat field.  This 
transformation is applied to all pixels in the image.   

A related calibration is the Empirical Line method.  In this 
approach an area is identified on the ground and the spectral 
response is measure with a field spectrometer.  A transformation 
is then calculated that forces the image spectra to match the field 
spectra and is applied to the entire image. 

These methods are typically applied individually.  In some 
cases a model based calibration may be used to get a first 
approximation and then the empirical line method applied as a 
refinement (Clark et al., 2002). 

 

Spectral Processing Methods 

 
Once an image is calibrated, regardless of whether it is 
multispectral or hyperspectral, a wide variety of spectral 
processing tools may be applied to it.  The commonly used 
spectral analysis methods fall into two broad categories: 
classification methods and unmixing methods.  Classification 
methods attempt to assign each pixel in an image to a class that, 
in the case of geologic problems, are minerals or materials of 
interest.  Unmixing methods, on the other hand, attempt to 
assign a concentration for each mineral of interest to each pixel.  
In both types of analysis a confidence image may be calculated 

to provide an indication of the accuracy of the classification or 
unmixing.  In geophysical terms, all of these methods are 
inversions of the remote sensing data.  The data are inverted to a 
binary map (each pixel is all of a single mineral) or a scaled map 
(each pixel has a mixture of minerals).   

Preprocessing – Endmember Identification and Feature 
Selection 

The identification of mineral endmembers in multispectral or 
hyperspectral data is the starting point for data analysis.  An 
endmember may be a pure mineral spectrum or a mixture of 
spectra of materials of interest.  Endmembers may be identified 
through automated or manual data mining techniques, by direct 
measurements taken in the field, or a combination of these 
techniques.  Regardless of which approach to endmember 
selection is undertaken, it is generally considered best to use 
spectra extracted from the image data as endmembers for further 
data analysis.  Image derived endmembers are viewed as being 
superior to spectral library or laboratory endmembers because 
they contain any residual atmospheric and instrumental 
characteristics (van der Meer 2000). 

A common data mining method used for endmember 
identification is described in Boardman et al. (1995) and has 
been given the name Pixel Purity Index (PPI).  This is 
implemented in the ENVI software package.  The PPI method 
involves iterative identification of image pixels that are outliers 
within the multidimensional data vector space.  “The Pixel 
Purity Index is computed by repeatedly projecting n-dimensional 
scatterplots onto a random unit vector. The extreme pixels in 
each projection-those pixels that fall onto the ends of the unit 
vector-are recorded and the total number of times each pixel is 
marked as extreme is noted.” (RSI 2005)  Although the 
technique identifies “mathematically” good endmembers, it is 
unconstrained by any a priori knowledge of the field occurrences 
of minerals or minerals that are of interest in the study. 

A second school of thought on endmember selection is 
based on building a large body of a priori knowledge of the field 
mineral occurrences.  This approach involves the development 
and/or research of geologic models for the studied systems, 
manual data mining of the spectral response of image pixels, and 
collection and spectroscopic analysis of field samples.  The 
approach does not lend itself to a rote sequence of activities, but 
follows an iterative paradigm of building a knowledge base of 
endmember minerals through a number of activities.  The easiest 
(and cheapest) activity is a review of the literature to get a basic 
understanding of the geologic systems in the study area.  From 
this, general ideas may be developed about the types of minerals 
that will be found in the field.  If imagery data have already been 
acquired, it is often useful to manually inspect the spectra of 
image pixels.  This activity, a “virtual field trip”, helps to 
determine if the image spectroscopy makes sense in light of the 
geologic model and provides some guidance for field work.  
Direct field inspection of the ground is the most critical aspect of 
endmember selection.  Sample locations are visited based on the 
literature, the preliminary image analysis, and geologic 
experience.  The sampled materials are subjected to field or 
laboratory spectroscopic analysis to determine the suite of 
minerals that is present and important to the study.  These 
activities are repeated and may continue through-out the study as 
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the detailed geologic model evolves.  In most cases, however, 
the most abundant and important endmember minerals are 
quickly identified.  

Classification 

Classification methods assign each pixel in an image to a group 
or class based on similarity criteria.  Classifications may be hard 
or soft.  Hard classifications assign a single class to each pixel 
whereas soft classifications assign a similarity metric to each 
pixel for each class (Schowengerdt 1997).  A soft classification 
may also be called a “rule image”. 

A number of classification methods are commonly used for 
geologic remote sensing.  These are: Spectral Feature Fitting 
(SFF), Spectral Angle Mapper (SAM), and Spectral Correlation 
Mapper (SCM).  Each of these approaches has benefits and 
limitations and is briefly described below.   

Spectral Feature Fitting is used by the USGS and also 
implemented in the ENVI package.  The USGS calls their 
version of SFF “Tetracorder” which is described in Clark (1990) 
and Clark et al. (1999).  Tetracorder includes some expert-
system heuristics in addition to the basic SFF methodology.  The 
SFF method involves analysis of each spectral absorption 
feature and comparison of these against absorption features in 
endmember spectra.  Each feature is extracted from the image 
spectrum and endmember spectra (the endmember spectra are 
resampled to the image spectra resolution if needed).  The 
absorption features are subjected to a continuum removal (hull 
correction) and the depth and shape of the image and 
endmember features are compared.  The result of the analysis is 
a feature depth metric and a goodness-of-fit which are typically 
combined to produce a soft classification image (Farrand, 2001). 

Spectral Angle Mapper was first described in Kruse et al. 
(1993) and was implemented within the Spectral Image 
Processing System (SIPS) software package.  SAM is a simple 
vector space calculation that provides a similarity metric 
between each image pixel spectrum and endmember spectra.    
In geometric terms, SAM is the angle between the image 
spectrum vector and the endmember spectrum vector.  It is 
defined mathematically as follows (Modified from Carvalho and 
Meneses, 2000): 
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Where: 

S  is the spectral angle 

X  is the endmember spectrum 

U  is the unknown (image) spectrum 
 

The SAM calculation results in a value of zero for good 
matches between the image spectrum and the endmember 
spectrum.   

It was noted by Carvalho and Meneses (2000) that SAM is 
actually a variant of the more general Pearson Correlation 

Coefficient and that the SAM approach is actually a “folded” 
version of the correlation coefficient.  The result is that perfect 
mirror images between the image and endmember spectrum also 
produce a SAM angle of zero.  This is an unlikely situation in 
hyperspectral data but is common in multispectral data such as 
ASTER or TM.  They propose use of the correlation coefficient 
as a better classification than SAM and call the method the 
Spectral Correlation Mapper (SCM).  Landgrebe (2003) refers to 
this as simply the Correlation Classifier (CC). 
Classification using a correlation approach has a distinct 
advantage in that it provides a direct measurement of the 
similarity between the shapes of two spectra.  Furthermore, 
Carvalho and Meneses (2000) show that the SCM calculation is 
relatively immune to amplitude differences between the image 
and endmember spectra making the method relatively robust 
under different image shadow conditions.  The SCM method is 
defined mathematically as follows (Modified from Carvalho and 
Meneses 2000): 
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Where:  

R  is the correlation coefficient 

X  is the endmember spectrum 

X  is the mean of the endmember spectrum 

U  is the unknown (image) spectrum 

U  is the mean of the unknown (image) spectrum 
 

This results in a correlation coefficient image in which each 
pixel is assigned a value between -1.0 and 1.0 for each 
endmember mineral spectrum.  A value of 1.0 denotes an exact 
match between the endmember spectrum shape and the image 
spectrum shape whereas a value of -1.0 is an exact inverse 
match. 

Unmixing  

In most geologic settings, imaging remote sensing 
instruments measure a mixture of earth materials.  Unmixing of 
the component mineral spectral signatures is particularly 
valuable in that it allows the relative concentrations of minerals 
to be mapped.  Figure 13 illustrates the unmixing of iron 
minerals jarosite, goethite, and hematite in a developing leach 
cap over a porphyry system.  The jarosite/goethite ratio is also 
shown in Figure 13 which highlights the location of the most 
intense mineralization (Anderson, 1982) and sources of natural 
acid drainage (Coulter, 2006).  The nature of the mixture is 
critical for determining how the unmixing model is developed.  
Intimate mixtures occur at the grain size level while areal 
mixtures occur at a large scale and represent patches of differing 
material within a single pixel (Hapke 1993).  It has been shown 
by Clark (1983) and Hapke (1993) that the spectra of intimate 
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mixtures are nonlinear with respect to relative concentrations.  
Although the non-linear behavior may be modeled analytically, 
a number of optical and geometric parameters are needed, 
making the method very cumbersome (Hapke 1993).  Empirical 
models may also be developed but this requires some a priori 
knowledge of the materials in the mixtures and time consuming 
construction of many different mixtures in the laboratory.  
Because of the complexity of utilizing non-linear mixing 
models, remote sensing scientists rely almost exclusively on 
linear mixing models.  In the linear model we assume that the 
image spectrum is the concentration weighted sum of the 
component spectra.  That is:  
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Where: 

I  is the image spectrum 

iW
 is the ith weight 

iS
 is the ith component spectrum 

 
Full linear unmixing is often a difficult problem to solve 

particularly if pure mineral spectra are the desired endmembers.  
Full unmixing requires that all of the endmembers in an image 
be identified and that the total number of endmembers must be 
less than the total number of bands (RSI 2005; Farrand 2001).  
Full unmixing is normally implemented as an inversion of the 
mixing matrix problem.  The method described by Boardman 
(1989) that uses Singular Value Decomposition (SVD) is a 
common implementation.  Full unmixing is usually subject to 
“physical” mixing constraints: all weights must be between zero 
and one; and the weights must sum to one.  The assumption that 
all image endmembers are known makes the use of full 
unmixing unwieldy to apply when pure mineral endmembers are 
desired.  The inversion works well when mathematical 
endmembers are derived from the image data.  Unfortunately, 
these derived endmembers may actually represent mixtures 
themselves and not pure mineral spectra.  Partial unmixing 
methods are used when a selected but incomplete set of 
endmembers are used. 

Partial unmixing methods allow a subset of the image 
endmembers to be used to solve the unmixing problem.  The 
desired endmember spectra are unmixed from a “background” 
spectrum that can be modeled as noise (Farrand 2001).  Since 
the goal is to enhance the desired endmember spectra and 
suppress the background “noise” an approach that maximizes 
signal to noise (SNR) is typically used to solve the problem.   

The Match Filter (MF) used in signal processing is designed 
to solve this type of problem and is basis for most partial 
unmixing in remote sensing (Farrand 2001).  The Match Filter 
algorithm is almost identical to the Constrained Energy 
Minimization (CEM) algorithm discussed in Farrand and 
Harsanyi (1997), van der Meer (2000), and Farrand (2001).  The 
approach is to find a vector operator that suppresses the 
background spectrum and enhances the endmember spectrum.  

The operator is constrained to have minimum energy across all 
pixels and have an output of 1.0 for the endmember spectrum 
(Farrand 2001; van der Meer 2000).  Farrand (2001) defines a 
solution as:  
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Where: 

X is the operator 
r

 is the full image correlation matrix 

d  is the endmember spectrum 
The operator X is applied for each endmember producing an 

image of endmember weights or proportions.  It is important to 
note that the correlation matrix is nearly always singular for 
hyperspectral data.  This requires that an approximation be used 
(Farrand 2001).  Although the technique is simple and rapid, it 
may in some cases produce false positive results (RSI 2005). 

In order to deal with the ill-conditioned correlation matrix 
and false positive problems inherent in the CEM/MF method, a 
technique of partial unmixing was developed by Boardman et al. 
(1995).  This has come to be known as Mixture Tuned Match 
Filtering (MTMFtm).   

Mixture Tuned Match Filtering (MTMFtm) is a partial 
unmixing method that is used extensively for mineral 
exploration remote sensing (Farrand 2001).  It was developed by 
Boardman et al. (1995) and involves a number of processing 
steps.  Prior to processing, the image data are assumed to be 
calibrated to apparent reflectance.  The first step is a vector 
space rotation using the Minimum Noise Fraction (MNF) 
method.  This method, developed by Green et al. (1988), is a 
principal-component-like orthogonalization rotation that results 
in components ordered in increasing rank of random noise rather 
than decreasing rank of variance.  In practice, a subset of 
components is selected that contains most of the image 
information and minimum noise; the higher order (i.e., noisier) 
MNF components are pruned from the data.  It is important to 
note the method assumes a random noise model and does not 
work on images containing coherent or periodic noise.  The 
MNF rotation and pruning solves two critical problems with 
hyperspectral data: it reduces dimensionality and it results in 
well-conditioned (non-singular) covariance and correlation 
matrices.  After pruning, mineral endmembers may be found 
using the PPI method or predetermined endmembers may be 
used.  If predetermined endmembers are utilized from the 
original image data or a spectral library, their spectra must be 
subjected to the same MNF rotation and pruning as the image 
data.  The CEM/MF method is then applied to the image using 
the transformed endmembers in MNF space.  The MTMFtm 
calculation produces concentration and an “infeasibility” image 
for each endmember component image.  The infeasibility image 
is used to threshold out any false positive results produced by 
the CEM/MF technique. 
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Figure 13: Partial unmixing results for iron minerals from hyperspectral data in the Grizzly Peak Caldera. The image is of a developing leach cap over 
an unexploited Mo-Cu porphyry.  The top image maps hematite, goethite, and jarosite as RGB.  The bottom image is the jarosite/goethite ratio 
calculated from the partial unmixing image.  
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New methods 

It is appropriate to briefly discuss methods of analysis that are 
new and not yet widely used for remote sensing.  Two methods 
are highlighted: Support Vector Machine (SVM) classification 
and Optimized Cross Correlation Mixture (OCCM) analysis 
partial unmixing. 

Support Vector Machine Classification  

Support Vector Machine classification has received a lot of 
attention for remote sensing problems in the last several years.  
The method allows non-linear separation of complicated, often 
overlapping, distributions in the image vector space (Figure 14).  
The goal of SVM classification is to identify a mapping of the 
data, through a “kernel function”, that transforms a non-linear 
separator into a linear separator called a hyperplane.  In a simple 
case of a two band image, this hyperplane is a line (Figure 14) 
and in a three band image, a plane.  In higher dimension imagery 
we can only define the hyperplane mathematically.  An 
important concept of the SVM method is that it operates in the 
dot-product (inner product) space rather than the raw vector 
space.  This has an interesting relationship to the SAM 
classification method.  If we inspect the SAM equation, we see 
that the numerator is actually the dot product between an 
endmember and an image pixel. As we have seen, when 
normalized this provides a measure of the similarity between the 

multispectral or hyperspectral signatures.  Operating in dot 
product space ,has appeal as the values are a geometric measure 
of pixel similarities between image (unknown) pixels and some 
set of endmember training pixels (Chen et al., 2003).  The SVM 
method differs from SAM in that rather than generating 
classification or rule images we use the distribution of the 
differences between the endmember pixels (as measured by the 
dot product of the training pixels) to generate a kernel function 
that allows the linear separation (or partitioning) of the entire 
vector space.  This partitioning may then be applied to all the 
pixels in the image to produce a classification.  Furthermore, as 
we are working with simple hyperplane geometry, we can also 
easily calculate the distance to the partitioning hyperplanes and 
produce a measure of the quality of the classification (Figure 
15). 

The primary problematic aspect of applying the SVM 
method to geologic problems is the scarcity of training data that 
are necessary for generating the partitioning hyperplanes.  A 
reasonable sample of the population for each endmember is 
needed for the SVM method to produce reliable partitions of the 
feature space.  This is often an impossible (or at best a 
prohibitively expensive) task that requires the collection and 
analysis of large numbers of ground samples.  An alternative is 
to utilize existing spectral libraries such as the USGS library or 
Specmin to provide the training data. 

 

 
Figure 14:  The SVM concept.  The transformation (via a kernel function) of non-linearly separable data may allow linear separation (from 
Christianini, 2001).  

 
Figure 15: A quality measurement for SVM classification.  The simple geometry of the SVM hyperplane (in this case a line) allows the distance to the 
partition to be easily calculated.  In this example one might say that points that fall within distance g from the partition could belong to either class “x” 
or “o”.
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Optimized Cross Correlation Mixture Analysis 

A new partial unmixing method called Optimized Cross 
Correlation Mixture (OCCM) analysis is discussed in Coulter 
(2006).   The approach is relatively immune to illumination 
variations and does not require re-projection of the feature space 
(which is important when utilizing data containing coherent 
noise, e.g. data from pushbroom detectors).  OCCM is an 
extension of the Tetracorder (Clarke, et al., 1999) and SCM 
(Carvalho and Meneses, 2000) methods.  The basic philosophy 
is to match the entire shape of each image pixel spectra to a 
linear synthetic mixture of endmember spectra.  This extends 
feature fitting approaches in that emission maxima are modeled 
as well as absorption features.  The method is implemented as a 
constrained optimization problem. 

In the OCCM method the maximum cross-correlation is 
determined between the image spectrum and linearly mixed 
spectra of the endmembers of interest for each pixel.  The 
philosophy behind the approach is that, for an image pixel 
spectrum to be considered a “good fit” to a target mixture 
spectrum, the image spectrum must closely match the shape of 
the spectrum of the target mixture.  Thus, the cross-correlation 
between the image pixel spectrum and the target mixture 
spectrum must be close to one.  

The method is defined as follows: 
Find the vector of weights [W] that maximizes: 
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Where:  

R  is the correlation coefficient 

[ ]W
 is the weight vector 

[ ]E
 is the endmember spectra matrix 

[ ][ ]EW
 is the mean of the synthetic (mixed) spectra 

U  is the unknown (image) spectrum 

U  is the mean of the unknown (image) spectrum 
n  is the number of channels in the spectrum 

Subject to: 
ΣW   1 and  0   Wi   1 for all i 

 
This optimization finds the weighting factors for the 

endmember spectra that produce the highest cross correlation 
between the resulting mixture spectrum and the unknown image 
spectrum.  Each weighting factor is constrained to be between 
zero and one and the sum of all the weighting factors is 
constrained to be less than or equal to one.  The optimization 
identifies the mixture spectrum that most closely matches the 
shape of the image spectrum.  An example of the objective 
function for a single image pixel is shown in Figure 16.  Since 
the correlation coefficient between the best fit mixture spectrum 
and the image spectrum is calculated, it may be preserved and 
used as a threshold to reject poorly fitting results.  These 
rejected pixels are equivalent to the partial unmixing 
background pixels in other partial unmixing algorithms. 

 

 
Figure 16:  Objective function for partial unmixing of iron minerals.  The correlation maximum is at approximately 35% jarosite and 65% goethite.  
This illustrates that the function is smooth and well behaved producing a fast and reliable optimization. 
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Examples 

 
This section provides examples of remote sensing results 

from a variety of sensors and processing methods over the 
Goldfield and Cuprite hydrothermal systems in Nevada (Figure 
17).  These examples illustrate how improvements in spectral 
and spatial resolution and processing contribute to refinements 
in the alteration mapping.   

 

 
Figure 17: Overview of the Goldfield and Cuprite alteration systems.  
The inset box is the location of the “Buddingtonite Bump” 

The Goldfield system was mined for precious metals 
(primarily gold) in the early 1900’s and exploration in the 
district continues today.  The alteration is high sulfidation and is 
dominated by quartz-alunite ledges.  Illite, kaolinite, dickite, and 
pyrophyllite also occur in the district.  Cuprite is a largely barren 
hydrothermal system.  It is zoned and dominated by alunite and 
kaolinite with a well defined silica core in the eastern part of the 
system.  An outcrop of buddingtonite (ammoniated orthoclase) 
which was originally identified by remote sensing occurs in the 
system.  Both systems have been studied extensively with 
remote sensing techniques. 

Figure 18 shows Thematic Mapper color ratio composite and 
Figure 19 the TM Crosta analysis results for the study area.  In 
both images red is mapped as “clay” (more accurately the 
presence of OH- anions), green is mapped as iron oxides, and 
blue maps vegetation.  The TM imagery identifies the location 
of the alteration systems and clay and iron oxide zoning of the 
alteration.  With TM we can make a qualitative statement that 
there are very likely alteration systems present at Goldfield and 
Cuprite.   

Figures 20 and 21 show mineral family mapping from 
ASTER data undertaken with the SCM method.  Figure 20  
shows alunite, kaolinite, and illite mapped as RGB and Figure 
21 shows iron oxides, clays, and quartz mapped as RGB.  The 
ASTER imagery provides more highly refined mineral mapping 
than TM.  Zoning within the alteration systems is highlighted.  A 
unique aspect of ASTER is the multispectral thermal infrared 
channels.  This capability allows quartz to be mapped directly 
and targets the most highly prospective parts of the systems.  
The image shown in Figure 21 is particularly useful for 
prospecting as it integrates iron oxide, clays (kaolinite and illite), 
and silica. 

Figure 22 and 23 show mineral mapping from low spatial 
resolution AVIRIS data undertaken with partial unmixing.  
Figure 22 maps the dominant minerals alunite, kaolinite, and 
illite as RGB and Figure 23 maps the less common minerals 
pyrophyllite, dickite, and buddingtonite as RGB.  Although there 
are many similarities to ASTER (which speaks well of the 
capabilities of ASTER), the AVIRIS results are more accurate 
than ASTER.  AVIRIS has also mapped subtle clays in the 
alluvium that are not well characterized in ASTER.  More 
importantly, AVIRIS is mapping pyrophyllite, dickite, and 
buddingtonite which are ambiguous at ASTER spectral 
resolution.  These minerals indicate higher temperature parts of 
the system and are the locations of possible feeder structures.  
Unfortunately, AVIRIS does not have thermal infrared 
capability so quartz can not be mapped directly. 

The final example is high spatial resolution (1 meter) 
hyperspectral data from the Spectir/AISA “Dual” airborne 
system.  These images cover the “Buddingtonite Bump” area at 
Cuprite (Figure 17, inset box).  Figure 24 is partial unmixing 
results showing alunite, kaolinite, and illite.  Figure 25 is the 
partial unmixing results showing alunite, kaolinite, and 
buddingtonite.  These results illustrate the advantage of high 
spectral resolution hyperspectral imagery for mapping alteration 
minerals at the outcrop scale. 
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Figure 18: Color ratio composite of TM imagery over Goldfield and 
Cuprite areas in Nevada.  RGB are mapped as OH (clay), Iron Oxide, 
and vegetation/non-altered. 

 
Figure 19: Crosta analysis of TM imagery over Goldfield and Cuprite 
areas in Nevada.  RGB are mapped as OH (clay), Iron Oxide, and 
vegetation/non-altered. 
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Figure 20: Results of ASTER analysis for the Goldfield and Cuprite 
areas in Nevada.  The image maps alunite, kaolinite, and illite responses 
as RGB. 

 
Figure 21: Results of ASTER analysis for the Goldfield and Cuprite 
areas in Nevada.  The image maps iron oxide, clay, and quartz responses 
as RGB. 
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Figure 22:  AVIRIS unmixing results (OCCM)  for the Goldfield and 
Cuprite areas in Nevada.  The image shows alunite, kaolinite, and illite 
as RGB. 

 
Figure 23: AVIRIS unmixing results (OCCM) for the Goldfield and 
Cuprite areas in Nevada.  The image shows minor occurrences of 
pyrophyllite, dickite, and buddingtonite as RGB.
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Figure 24:  High spatial resolution (1 meter) hyperspectral results for 
the “Buddintonite Bump” area of Cuprite, Nevada.  The image maps 
alunite, kaolinite, and illite as RGB.  Data where acquired by Spectir 
LLC. Using a AISA Dual imaging spectrometer. 

 
Figure 25:  High spatial resolution (1 meter) hyperspectral results for 
the “Buddintonite Bump” area of Cuprite, Nevada.  The image maps 
alunite, kaolinite, and buddingtonite as RGB.  Data where acquired by 
Spectir LLC. using an AISA Dual imaging spectrometer.   
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