#### Blast data

| Ampang Quarry       | Ма  |
|---------------------|-----|
| Rock type           | Gra |
| Bench height        | 18  |
| Drill-hole diameter | Ø8  |
| Drill pattern       | 3x3 |
| Explosives          |     |
| Emulite 150         | 5 k |
| ANFO                | 70  |
| Powder factor       | 0.4 |
|                     |     |

Malaysia Granite 18 m Ø89 mm 3x3 m<sup>2</sup> 5 kg/hole 70 kg/hole 0.46 kg/bm<sup>3</sup>





#### **Primary factors for blast design considerations**

**1.** Blast size, shape and edge effects

- Distribution of explosives in the bench:
   drill patterns versus drill-hole diameter and rock mass blastability
   explosive columns and stemming
- 3. Explosives properties
- 4. Sequential firing

Shotrock fragmentation and boulder count versus primary crusher performance and endproduct quality



Muckpile profiles versus selected loader type and size for maximum loading rates - or minimise ore loss and dilution in mining operations



#### Blast operational items and objectives

- blast design
  - blast size including selection of bench height
  - **drill pattern including selection of drill-hole diameter**
  - *E charge pattern including selection of explosives and stemming materials*
  - **firing pattern including selection of firing systems**
- blast production reports and work documentation for Quality Assurance
  - explosives and detonator consumption followup
  - **documentation of 1***st* row burden requires the use of both highwall scanners and drill-hole deviation measurement devices
- assessment of shotrock
  - **Fragmentation (control of boulders/oversize and fines production)**
  - swell, throw, local choking and loadability
- minimize blast edge effects such as back-break, side-break and toes and floor humps
- minimize environmental effects such as flyrock, dust, ground vibrations and airblast
- compliance to national and local quarry regulations



Split shot with no stemming and with stem plugs



# Blast design terminology









#### Adverse blast edge effects





# **Examples of adverse blast edge effects**





Back-break

#### Basic guidelines for geometric bench blast designs

| Reduced burden                             | $= \sqrt{\mathbf{S} \cdot \mathbf{B}}$ | ; or burden for square drill patterns                                                                           |
|--------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| • Spacing, S                               | = typically 1 to 1.5 times B           |                                                                                                                 |
| <ul> <li>Spacing / burden ratio</li> </ul> | = f                                    | ; keep f close to 1.0 in a jointed rock<br>mass so as to reduce the probability<br>of shothole venting in walls |
| • Burden, B                                | $= \sqrt{S \cdot B / f}$               |                                                                                                                 |
| • Bench height, H                          | = 1.5 to 7 times √S·B                  | ; bench heights typically 10 - 20 m                                                                             |
| • Sub-drilling, SUB                        | = 0.2 to 0.5 times $\sqrt{S \cdot B}$  | ; increase SUB with bench height and for very low bench heights                                                 |
| Uncharged length, UCL                      | = 0.5 to 1.2 times $\sqrt{S \cdot B}$  | ; typically lower values in ore                                                                                 |
| Bottom charge, CL <sub>bottom</sub>        | = 0.05 to 0.4 times CL                 | ; increase with bench height and wet holes                                                                      |
| Stemming between decks                     | = 6 to 12 times d                      | ; increase stem length in wet shotholes                                                                         |

- Typical shot layouts for:
  - wheel loader operations = long and shallow blasts / 3 5 rows
    front shovel operations = short and deep blasts / upto 15 rows or more



#### Drill pattern versus hole diameter

Scaled drill pattern parameters:

$$\sqrt{S \cdot B} = constant \cdot (Q_1 / \rho)^{2/5} \cdot (k_{50} / 270)^{2/5}$$





SANDVIK

#### Powder factor versus shothole charge

Scaled powder factor parameters:

$$PF_{\frac{4}{5} \cdot \gamma} = \text{ constant} \cdot Q^{\frac{1}{5}} \cdot \rho^{\frac{4}{5}} \cdot (\frac{270}{k_{50}})$$





#### Stemming for flyrock and airblast control

#### Stemming material and length

Lower values can be used with aggregate stemming; higher values with drill cuttings. For graded aggregates, use 10% of drill-hole diameter as mean fraction size.

#### Stemming plugs allow for additional stemming length reduction

- Vari-Stem™
- StemTite TM
- Foam Stem

| No Plug          | Vari-Stem ™                              |
|------------------|------------------------------------------|
| 3660 <i>m/</i> s | 3666 m/s                                 |
| 2.3 ms           | 5.3 ms                                   |
| 482 m/s          | 281 m/s                                  |
|                  | No Plug<br>3660 m/s<br>2.3 ms<br>482 m/s |





#### **Explosives performance**

**CD**<sup>1/5</sup> Scaled explosives parameters:-EE<sup>2/5</sup> •





| Explosive type | Velocity of<br>detonation, VOD *<br>(m/s) | Energy<br>EE<br>(MJ/kg) | Charge<br>density, CD<br>(g/cm³) | Water resistance |
|----------------|-------------------------------------------|-------------------------|----------------------------------|------------------|
| ANFO **        | 2200 - 4300                               | 3.9                     | 0.7 - 1.1                        | Poor             |
| HANFO **       | 4000 - 5000                               | 3.5                     | 1.0 - 1.35                       | Fair             |
| Watergels **   | 4200 - 5000                               | 2.9                     | 1.15                             | Good             |
| Emulsions **   | 4200 - 5200                               | 3,1                     | 1.25                             | Good             |

typically commercial explosives have non-ideal detonation resulting in higher VODs and detonation pressures for increasing shothole diameters

\*\* up to 10% AI powder is commonly added to increase bottom charge energy content and detonation pressure



#### Shothole pressures and radial fractures



Detonation front pressure (MPa) Quasi-static shothole pressure  $p_d \sim 0.00025 \cdot CD \cdot VOD^2$ 

 $p_{\rm s} = 30\% - 70\% \text{ of } p_{\rm d}$ 

= dependent on rock mass stiffness { E, ν, ρ, O }



#### **Examples of fracturing around shotholes**

Radial (and vertical) fracturing around shothole walls



Radial fracturing can be enhanced or arrested by preexisting rock mass jointing

Horizontal "cone" fracturing from shothole bottom corners















#### **Drill pattern layouts**

• for the systematic distribution of radial fractures in benches



• and minimise the occurrence of gas venting from walls ∲ S·B **R**<sub>max</sub> Pattern distance ratio, R<sub>max</sub> / 1. 1 1. 0 S/B = 1S/B = 20. 9 0. 8 0. 7 0. 6 1. 2. 3. n n n S/B = 1S/B = 1.15





#### **Explosives performance rated by continuous VOD** *measurements*

- exact timing of explosive columns
- variation of VOD along explosive columns
- occurrence of malfunctioning explosive columns





#### **Explosives performance rated by continuous VOD measurements**





#### **Explosives performance rated by visual observation**





# Rock mass blastability - effect of intact rock blastability

Scaled rock mass

blastability parameters:

$$\frac{I_a^{3/5} \cdot 0^{1/2} \cdot (c_p^2 \rho)^{3/10}}{n^{2/5} \cdot \rho^{4/5}}$$



| Rock type                    | Sonic (dry)<br>velocity, c <sub>p</sub><br>(m/s) | Anisotropy<br>I <sub>a</sub> | Porosity<br>n<br>(%) | Density<br>ρ<br>(g/cm³) | Blastability rating |
|------------------------------|--------------------------------------------------|------------------------------|----------------------|-------------------------|---------------------|
| Poorly cemented<br>limestone | 2800 -                                           | 1.0 - 1.2                    | < 35                 | 2.0 - 2.8               | Extremely good      |
| Limestone                    | - 5000                                           | 1.0 - 1.2                    | 0.5 - 1.5            | 2.6 - 3.0               | Good                |
| Granite                      | 3000 - 4500                                      | 1.0 - 1.4                    | 0.5 - 1.5            | 2.6 - 2.7               | Good                |
| Gneiss                       | 2500 - 4500                                      | 1.1 - 1.9                    | 0.5 - 1.5            | 2.7 - 3.0               | Medium              |
| Micaschist                   | 1800 - 3300                                      | 1.5 - 3.5                    | < 1.5                | 2.6 - 2.9               | Poor                |



# Rock mass blastability - effect of rock mass discontinuities





#### Rock mass blastability - blasting directions

Isotropic rock with shallow dipping joints - e.g. quartzites, granites, limestones , ...

B



| Firing   | Backwall | Fragmentation | Back-break & Toe | Floor          |
|----------|----------|---------------|------------------|----------------|
| <b>→</b> | Α        | Poor          | Major            | Major          |
| •        | В        | Good          | Some problems    | Average        |
| Ľ        | С        | Good +        | Minor            | Average        |
| ÷        | D        | Good          | Minor            | Average - Poor |



#### Rock mass blastability - blasting directions

Anisotropic rock with shallow dipping fissures - e.g. micaschist, micagneiss, ...



| F | iring    | Backwall | Fragmentation | Back-break & Toe | Floor          |
|---|----------|----------|---------------|------------------|----------------|
| 1 | →        | Α        | Poor          | Extensive        | Extensive      |
|   | <b>4</b> | В        | Good          | Minor            | Average        |
|   | K        | С        | Good          | Minor -          | Average        |
|   | +        | D        | Good          | Minor            | Average - Poor |



#### **Rock mass blastability - blasting directions**

Isotropic rock with steeply dipping joint sets - e.g. quartzites, granites, limestones, ...



| Firing   | Backwall | Fragmentation | Back-break & Toe | Floor   |
|----------|----------|---------------|------------------|---------|
| <b>→</b> | Α        | Good          | Minor            | Average |
| •        | В        | Poor - Minor  | Uneven           | Varying |
| Ľ        | С        | Good -        | Major            | Minor   |
| +        | D        | Good          | Minor            | Average |



#### Sequential firing systems

- electric caps
- fuse + detonating cord + surface delays + NONEL
- NONEL UNIDET
- electronic caps

#### Sequential firing guidelines

- sequential firing of straight rows (increased burden relief results in a longer throw)
  - => max. muckpile throw (typical for wheel loader operations)
- sequential firing of "V shaped rows" at site specific delay times
  - => peaked muckpiles
     (typical for shovel operations)
- sequential firing to reduce throw but not heave and fragmentation
  - => max. degree of selective loading of ore (typically shovel operations)





Stemming ejection and gas venting in bench walls resulting in excessive air blast and reduced heave and throw



## Results of tight timing between rows





Rear-end packing of muckpile occurs

#### Blast analysis using high-speed photography or video

- functionality of stemming
- occurrence of undesirable events such as gas venting and stemming ejection
- flyrock and its origin
- bench face and bench top displacement profiles and velocities
- accuracy of firing times especially surface delays











#### Illustration of row-by-row shot firing events





#### Summary of shot firing delay windows





#### **Example of shot firing event applications**

| Occurrence                                                                                              | Accumulated time                                                           | Mt. Coot-tha Quarry                                                        | Delay constants                                 |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------|
| Detonate row #1                                                                                         | $t_1 = 0$                                                                  | t <sub>1</sub> = 0 ms                                                      |                                                 |
| Split-along-row #1 fracturing                                                                           | $t_2 = t_{split}$ $\sim 1 + S / (0.38 \cdot C_p)$                          | $t_2 = 1 + 4.0 \cdot 1000 / (0.38 \cdot 5000)$<br>= 3.1 ms                 | 3.1 / 4.0 = 0.78 ms/m                           |
| Bench wall movement commences<br>( and split-along-row #1 opens )                                       | $t_3 = t_{wall}$                                                           | $t_3 = 5.5 \cdot 3.5$<br>= 19.3 ms                                         |                                                 |
| Expansion time for rock in row #1                                                                       | $t_4 = t_{wall} + t_{row expansion}$                                       | $t_4 = 19.3 + 0.25 \cdot 3.5 \cdot 1000 / 15.7$<br>= 19.3 + 55.7 = 75.0 ms |                                                 |
| Detonate row #2 at $t_5 = t_1 + \Delta t_{row}$ :<br>Ø Optimum fragmentation<br>Ø Optimum burden relief | $t_5 < t_1 + t_{wall}$<br>$t_5 \otimes t_1 + t_{wall} + t_{row expansion}$ | t <sub>5</sub> < 0 + 19.3 ms<br>t <sub>5</sub> ∞ 0 + 19.3 + 55.7 = 75.0 ms | 19.3 / 3.5 = 5.5 ms/m<br>75.0 / 3.5 = 21.4 ms/m |



#### Basic guidelines for shot firing delay constants





#### **Passive control of ground vibrations and air blast**

- *reduce number of shotholes per cap #*
- use single-shot sequential firing avoid detonating shotholes at times where stress wave amplitudes from adjacent shotholes can interact
- reduce charge weight per cap # by using:
  - smaller shothole diameters
  - decoupled charges
  - decked charges
  - air-decked charges
- use stemming and stemming plugs to reduce air blast



#### Active control

- use of single-shot response analysis to accurately simulate and evaluate the overall seismic effects of multi-shot blast responses
- map property as to seismic anomalies
- use of more accurate firing systems than those currently available based on pyrotechnic cap technology
- increase blast size to minimise the occurrence of blast induced annoyance to neighbours



#### **Blasting results**

- => shotrock fragmentation
- => muckpile throw, swell and loadability
- => side / back break and floor humps







#### Measuring shotrock fragment size distributions

- splitting samples into retained fractions on bar grizzlies, rectangular or square screens (1 or 2D volumetric based method)
- *I* photo and video image analysis (2D area based method)
- rock fragment count method incorporating fragment dimension ratios (2 or 3D area based method)





#### Shotrock fragment dimensions

Shotrock fragment dimension ratios H / B and L / B are fragment size dependent. Fragments become more cubical as their distance of origin from a shothole wall increases.







#### Characterisation of shotrock fragment size distribution

$$P(k_i) = 100 \cdot [1 - e^{-\ln 2 \cdot (k_i / k_{50})^n}]$$

- $P(k_i)$  = passing in % for size  $k_i$
- $k_i$  = fragment size in mm ( $L_i$ )
- n = uniformity index
- $k_{50}$  = mean fragment size ( 50% passing )







#### **Uniformity index n - effect of bench charging zones**

A simplified expression for estimating the shotrock uniformity index is:

 $n = 1.60 \cdot (k_{50} / 270)^{0.61} \cdot f_{CL}$  $f_{CL} = "charged" bench height ratio$ 

Since the shotrock fragment size distribution parameters  $k_{50}$  and n are dependent parameters, this leads to a simplification in that it is not necessary to find seperate blast design guidelines for both size distribution parameters - only the mean fragment size  $k_{50}$ .





#### Melkøya LNG Plant Site Preparation

| Joint Venture           | AF Spesialprosjekt A/S - Phil & Søn A/S  |     |
|-------------------------|------------------------------------------|-----|
| Duration                | July 2002 - May 2003                     |     |
| D & B excavation volume | 2 400 000 bm³ peaking at 80 000 bm³/week | 100 |
| Breakwater armourstone  | 670 000 compacted m <sup>3</sup>         |     |
| Rock mass conditions    | Terrain benches in fractured gneiss      |     |
|                         |                                          |     |







#### Fragment size distribution

| Mesh<br>opening, d<br>( mm ) | Size<br>fraction<br>(mm) | Retained<br>on mesh<br>( kg ) | Cumulative<br>retained<br>( kg ) | Cumulative<br>retained<br>(%) | Cumulative<br>passing<br>(%) |
|------------------------------|--------------------------|-------------------------------|----------------------------------|-------------------------------|------------------------------|
| 25                           | > 25                     | 0                             | 0                                | 0                             | 100                          |
| 10                           | 10 - 25                  | 4                             | 4                                | 40                            | 60                           |
| 5                            | 5 - 10                   | 2                             | 6                                | 60                            | 40                           |
| 0                            | 0-5                      | 4                             | 10                               | 100                           | 0                            |



Fragment dimension H (mm)





Fraction 10 - 25 mm



Fraction 5 - 10 mm





#### **Sieve** versus photo image analysis of stockpile size





#### Examples of rock fragment size distribution



Top of muckpile  $k_{50} = 526mm$ n = 1.69



Loading front  $k_{50} = 214mm$ n = 1.19

Scale: Balls Ø206mm

Stockpile (mesh sizing)

 $d_{50} = 32mm$ n = 1.60



#### Shotrock assessment

| Bench Blasting<br>Operations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Shotrock<br>Designation                                                  | Mean Fragment<br>Size,k₅₀<br>[mm]                                    | Loading<br>Equipment                                                                  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|--|
| Aggregate Quarries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Crushing & Screening                                                     | 125 - 290 <sup>1)</sup>                                              | Wheel Loaders,<br>Front Shovels or<br>Hyd. Excavators                                 |  |  |
| Rockfill Dam Quarries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Supporting Fill:<br>Fine Zone<br>Fine Zone<br>Coarse Zone<br>Coarse Zone | 160 - <sup>2)</sup><br>200 - 250<br>250 - 320<br>- 440 <sup>3)</sup> | Wheel Loaders<br>Wheel Loaders<br>Wheel Loaders<br>Wheel Loaders +<br>Hyd. Excavators |  |  |
| Open Pit Mining                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Crushing & Milling                                                       | 160 - 250 <sup>4)</sup>                                              | Shovels +<br>Wheel Loaders                                                            |  |  |
| Road Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sub-base                                                                 | 200 - 310                                                            | Hyd. Excavators                                                                       |  |  |
| <ol> <li>Targeted mean fragment sizes dependent on primary crusher openings, primary crusher capacities and marketability of fines.</li> <li>Blasts with a high portion of shotrock for transition zones (k<sub>max</sub> = 200 mm).</li> <li>Blasts with a high portion of shotrock for dam slope rip-rap and crown cap. Fragment size criteria for supporting fill is typically k<sub>max</sub> ≈ 2/3 of placement layer thickness.</li> <li>Blasts with the largest mean fragment sizes were observed for orebodies with low mechanical strength properties.</li> </ol> |                                                                          |                                                                      |                                                                                       |  |  |



### Fines and Boulder Management

#### Trendlines for shotrock fragment size distribution





### **Fines Management**

#### Nodest Vei A/S, Norway - effect of shotrock microfracturing

| Rock type             | Anorthosite<br>Slurrit 50-10 |  |  |
|-----------------------|------------------------------|--|--|
| Explosive             |                              |  |  |
| Test blasts<br>tonnes | 4 x 50 000                   |  |  |
| Bench height          | 11 m                         |  |  |







#### **Boulder handling**

- boulder count dependent on primary crusher opening (and to a lesser extent capacity)
- sort boulders from muck pile
- down-size boulders
- minimize boulder count using reduced uncharged height and/or tighter drill patterns







#### Shotrock boulder count versus charged portion of blast

Boulders originate from the uncharged portion

of a bench blast. To reduce shotrock boulder count and size; the uncharged portion of the blast must be reduced, and if necessary, by

using smaller shotholes - which dictate smaller

drill patterns, less stemming and sub-drill.





$$k_{50-shotrock} = k_{50-CL} / f_{CL}^{0.76}$$



#### **Primary crushing - gross capacity components**

- crusher size design capacity versus feed fragment sizing
- scalping scalping capacity increases with grid opening
- occurrence of boulder bridging, blockages and delays
- occurrence of no shotrock delivery versus use of pre-primary surge pile
- downtime for maintenance and replacement of wear parts







#### Matching boulder size to primary crusher opening





#### **Example of application using shotrock fragment size** distribution

| Primary crusher opening                                    | W                       | = 950 mm                                     |                                                    |
|------------------------------------------------------------|-------------------------|----------------------------------------------|----------------------------------------------------|
| Crusher limit as to boulder height                         | H <sub>max</sub>        | = <u>950</u> · 0.8                           | = 760 mm                                           |
| Crusher limit as to boulder length                         | L <sub>max</sub>        | = 760 · 1.6 / 1.2                            | = 1013 mm                                          |
| Crusher limit as to boulder thickness                      | <b>B</b> <sub>max</sub> | = 760 · 1.0 / 1.2                            | = 633 mm                                           |
| Shotrock size distribution parameters k <sub>50</sub><br>n | <b>k</b> 50             | = 250 mm                                     |                                                    |
|                                                            | n                       | = 1.30                                       |                                                    |
|                                                            |                         | - In 2 · ( 1013 / 250 ) <sup>1.30</sup>      |                                                    |
| Shotrock oversize percentage                               | P(1013)                 | = 100 · e                                    | ,                                                  |
|                                                            | . ,                     | = 1.39 %                                     |                                                    |
| Blast volume                                               | 10 000 bm <sup>3</sup>  |                                              |                                                    |
| Shotrock boulder (oversize) count                          | N                       | ≤ 10 000 · 0.0139 / (<br>≤ 286 boulders / 10 | ( 1.013 · 0.760 · 0.633 )<br>) 000 bm <sup>3</sup> |
|                                                            |                         |                                              |                                                    |



#### Methods for down-sizing boulders

- hammering with breakers mounted on:
  - *bydraulic excavators working along the loading front*
  - *I* hydraulic excavators working at boulder stockpiles
  - *stationary booms located at primary crushers or grizzlies*
- drop-weights or swing-balls
- secondary blasting







#### Typical inpit usage of hydraulic excavator mounted breakers

down-sizing boulders Rammer G 80 removing floor humps 120 scaling and cleaning back walls <u>P</u> breaking up frozen sub-drill zones prior to removal per **Boulders** 1 2 3 4 5 6 Boulder size (m<sup>3</sup>)



#### How drilling and blasting affect down-stream operations



#### Quarry process mapping => Modelling => Objective measurements => Management of operations

Fine tuning drill, charging and firing patterns to local geological conditions is based on extensive field trials incorporating the analysis of blast behaviour by high-speed videos, shotrock fragmentation and throw, ground vibration monitoring, boulder count, loading and hauling capacities, and crushing plant performance studies.

