Workshop Name: 314 Chemical Crushing Case Studies

Instructors: Larry Mirabelli – Dyno Nobel Americas Bill Hissem – Sandvik / North America

Workshop Content / Deliverable: This workshop will review case work at three (3) operations. The case work demonstrate how implementation of Chemical Crushing along with Lean / 6 Sigma management principles resulted in total process improvements and a reduction in cost to manufacture. In each case, metrics were established to quantify baseline and resulting performance when subsequent changes to either field variables or controls were made. In each case, alteration of the fragmentation gradation in the blast muckpile showed measurable improvements in downstream production throughput, minimization of waste, and economic gain.

Chemical Crushing Case Studies

Bill Hissem & Larry Mirabelli

Improving Processes. Instilling Expertise.

Chemical Crusher Case Work

- Process Improvement from Drill to Prewash Capital Quarries Company Inc., Holts Summit, MO
- Process Improvement / Fines Reduction Wending Quarries Incorporated, IO
- Blast Crush Improvement Lafarge Building Materials, Ravena, NY

Operations Process Improvement* Leveraging Drill & Blast – Case Work #1

Capital Quarries Company Inc. Holts Summit, MO

* From Drill to Pre-wash Product. Waste defined as minus 3/8".

Operations Process Improvement Case Work #1 Project Outcomes

- Drilling and Blasting cost increased by 28%.
- Waste was reduced by 19%.
- Impressive cost savings and increases in plant tonnage throughput within the "Blast to 1 inch minus" process of the Holt Summit Value Map were realized over the validation phase of the project.

Operations Process Improvement Case Work #1 Project Outcomes

- The standard cost model for the "Blast to 1 inch minus" process of the Holt Summit value map showed that over the total process:
 - ✓ There was a 10% to 27% increase in crusher plant capacity

✓ 27% from baseline of 373 TPH to an average of 475 TPH.
A plus 102 TPH shift in capacity.

- There was a 7% to 31% reduction in net total cost per ton when scalping was used.
- When scalping was not utilized an 8.8% reduction in the net cost per ton was achieved.

Focus of Casework

- Reduce total cost to convert insitu rock reserves to saleable product.
- Validate that extra dollars spent in drilling and blasting can lower total production cost.

Missouri Quarry Productivity Improvement - Casework

- Baselining
- Identification and implementation of metrics
- "Lean Thinking" Analysis
- Use of blasting fragmentation and process equipment models.
- Field validation of process improvement solutions

The Quarry

The Quarry Process

The Quarry Process – Old

- Load & Haul to Primary Crusher in pit.
- Crusher Run moved by conveyor to Secondary Crush Screen Plant on upper level.

The Quarry Process – New

Portable Primary Crusher that can be constantly moved near to the working bench in pit.

 Crusher Run moved by conveyor to Secondary Crush Screen Plant on upper reclaim level.

The Quarry Process – Interim

Metso LocoTrack[®] Diesel Powered Mobile Crushing Plant

Primary - Norberg C110 44 x 34 Jaw

Tertiary - HP 300 Cone Crusher

Three (3) Triple Deck Screen Units

Quarry Process – Interim

Products

- 2 inch x 4 inch stone
- 1 inch x 2 inch stone
- ✓ 9/16 inch x 1 inch road base
- 3/8 inch x 1 inch concrete rock
- ✓ 5/16 inch x 3/8 inch stone

Waste

✓ 0 inch to 5/16 inch fines

The Quarry Process – Interim

Cedar Valley Crush / Screen

Drilling

Furukawa FRD1200ED

- ✓ 1¾ inch diameter T45 rod
- ✓ 4 inch bits

Burlington Formation

- ✓ 10 ft x 14 ft x 33 ft
- ✓ 4 to 5 rows

Cedar Valley Formation

- ✓ 10 ft x 14 ft x 60 ft
- 2 to 3 rows

Subdrill 2 ft

Blasting

- Dyno Nobel Titan 1000 SD
 - Bulk repumpable blasting agent emulsion
- Trojan 35 & 45 Cast Boosters
- Nonel Initiation System
 - 25 ms between holes
 - ✓ 67 ms between rows
- Stem 7 ft
- Powder Factor
 - Burlington Formation 0.95 lb/cu yd
 - Cedar Valley Formation 1.14 lb/cu yd
- Approx. 20,000 ton blasts

Baselining

- Period July 10 to August 15, 2006
- Evaluated each process step
 - Standard operating procedure
 - Costs
- Historical records back to May 1, 2006
- Benches surveyed; drill holes surveyed; blasting & operator logs reviewed; muck pile fragmentation analyzed; primary crusher throughput, finished products and waste tonnages were monitored.

Identification and Implementation of Metrics

 3D Bench survey; drill holes survey; blast load sheets; seismograph reports; drill cycle time; inpit muck pile photo fragmentation analysis; loader cycle time & bucket weight monitoring; oversize count; hydraulic hammer time (in-pit and at primary); crusher feed rate; daily operator logs; haul truck counts.

- Non standard metrics highlighted above as red text -

"Lean Thinking" a Process

- Examines productivity, operational effectiveness, operational efficiency; waste and profitability.
- Enhances operational effectiveness by adapting, achieving and extending best practices.
- "It's not working harder but working smarter" (Eric Strope - President CQCI)

Improvement Areas

- Quarrying benches separately
- Drilling precision and accuracy
- Explosive Energy Distribution throughout rock mass
- Excavation & crushing of muckpile. (tight muck, oversize, reduced throughput)
- Fines/Waste
- Process water (wash plant, settlement ponds etc.)

Modeling

• Fragmentation and process equipment simulators were used to select alternatives with best chance of creating positive change.

Fragmentation

 Kuz-Ram & Modified Kuz-Ram

Process Equipment

- Metso Bruno[®]
- Sandvik Plant Designer[®]

Paul Reynolds

SD 162 lbs/ft3

Cr 40 % Abr 0.87 lbs/s/ metso

operation when feed material quality and gr ds to the theoretical curve used in this calcula capacities will fuctuate due to the variations

N45x10 SD

O HP300

Field Validation of Process Improvements

- Cedar Valley Bench Only.
- Blast sizes 15,000 to 20,000 tons
- Four (4) Validation Blasts
- One (1) additional Baseline Blast
- All blasts were equal in width and 3 rows.
- Blast Design
 - ✓ 12 ft x 10 ft x 60 ft (Row 1)
 - ✓ 10 ft x 12 ft x 60 ft (Row 2 & 3)

Validation / Performance Improvement Testing

Baseline Blast

in the second

Validation Blasts

Drilling & Blasting

Drilling

No change to equipment for validation testing

Blasting

 Grade of repumpable blasting agent emulsion and type/size cast boosters remained unchanged.

Electronic Detonators replaced Nonel.

- remove any variability of individual blast hole firing times;
- assure absolute control of blast hole sequencing; and
- to allow non-conventional timing choices to be implemented.
- Amount of stemming unchanged at 7 ft.
- Powder Factor increased to 1.33 lb/cu yd.

Drilling & Blasting

Blasthole Timing

- All validation blasts were consistent with 10 ms between holes in row 1 and all were sequenced off the open corner of bench.
- Blast 1
 - 17 ms between holes (row 2 and 3)
 - 67 ms between rows
- Blast 2
 - 16 ms between holes (row 2 and 3)
 - 75 ms and 82 ms between rows

Drilling & Blasting

Blasthole Timing

- All validation blasts consistent with 10 ms between holes in row 1 and all were sequenced off the open corner of bench.
- Blast 3
 - 12 ms between holes (row 2 and 3)
 - 118 ms between rows
- Blast 4
 - 17 ms between holes (row 2 and 3)
 - 118 ms between rows

- Capital Quarries was ideal candidate for testing.
 - Not new to continuous improvement process
 - Utilized "Lean Thinking" principles.
 - Empoyees change oriented.
 - ✓ Key Factors
 - Use of portable and mobile in-pit crushing/screening plant.
 - Operational setup compressed entire rock crushing and sizing process and cost model to 1,500 ft radius.

"Blast to 1 inch Minus" Process Model"

Changes to blast design were made to:

- Reduce top size to less than 37 inches or 85% of the size of the feed box for the C110 jaw crusher.
 - Factory targeted capacity of 340 – 470 tons per hr @ 6 inch closed side setting.
- Eliminate hard toe
- Facilitate digging for front end loader
- Eliminate sorting of oversize
- Minimize use of hydraulic impact hammer mounted at jaw feed
- Minimize supplementary breakage with track mounted hammer.

Blast layout and drilling accuracy

✓ Baseline

Planned vs "As Built"
2.5 - 10.5 % variance B & S

Validation

Planned vs "As Built"
2 - 7 % variance B & S

Drill hole deviation

- At best 50% of holes were within 1.5 ft max deviation. (17% worst, 39% Average)
- 18% accumulated variance for average face row burdens.

- Blast 1 had excellent fragmentation and crusher throughput but required a blast design layout change.
- Front row burdens were light and required custom loading.
 - ✓ Average min. burden 8.5 ft
 - Average burden 10.5 ft
- Additional 2 ft was added to burden layout for front row.
 - Average min. burden 10.8 ft
 - Average burden 13.5 ft.

- Fragmentation in all validation blasts resulted in meeting the 100% passing 37 inch criteria.
 - Eliminated need to segregate oversize in the pit.
 - Minimized use of the hammer mounted on Jaw.
 - No dramatic differences were observed in fragmentation gradation of validation blasts.

Improvements simulated by the fragmentation model for 12 ms inter-hole time were not obvious.

12 ms between hole times did display most consistent gradation.

Discussion

Discussion

Validation blasts 1 and 2

- Wheel loader cycle times were reduced by 15%;
- Bucket fill improved by 8
 % and
- The percentage of buckets weighing 12 tons or more improved by 63%.

			CA				
	Date	#	Avg	Avg	% Buckets	Crusher	Daily
		Cycles	Cycle Time	Bucket	over 12 ton	Feed Rate	In-Pit
		per		Weight		(overall)	Crushing
		Shift	min:secs	tons		tons/hr	Tons/shift
Baseline	23-Feb	255	2:08	10.91	25.88%	377.03	2,771
Baseline	26-Feb	253	2:18	11.54	38.91%	363.6	2,759
Baseline	27-Feb	249	1:49	11.48	34.68%	378.95	2,850
Baseline	28-Feb	204	2:25	12.42	66.50%	308.57	2,484
Baseline	1-Mar	273	1:44	12.47	68.13%	433.55	3,403
Total		1,234					14,267
Average			2:04	11.76	46.82%	372.34	
Validation Blast #1	5-Mar	341	1:24	12.69	76.90%	543	4,302
Validation Blast #1	6-Mar	344	1:26	12.69	79.88%	532.4	4,352
Validation Blast #1	7-Mar	298	1:27	13.26	90.57%	484	3,950
Validation Blast #1	8-Mar	115	1:27	13.01	81.74%	540	1,496
Validation Blast #1	9-Mar	165	1:46	12.56	72.70%	506.5	2,073
Total		1,263					16,173
Average			1:30	12.84	80.36%	521.18	
Validation Blast #2	13-Mar	237	2:07	12.27	61.18%	349.3	2,908
Validation Blast #2	14-Mar	299	1:36	12.71	75.59%	463.5	3,800
Validation Blast #2	15-Mar	321	1:30	12.96	83.49%	519.8	4,158
Validation Blast #2	16-Mar	302	1:36	13.25	91.72%	488	4,002
Validation Blast #2	19-Mar	256	1:40	12.27	63.53%	442	3,141
Validation Blast #2	20-Mar	256	1:40	12.27	63.53%	442.4	3,366
Iotal		1,671		10.00		150.00	21,375
Average			1:41	12.62	/3.1/%	450.83	
Validation Plact #2	22 Mor	201	1.00	11 04	44 249/	470.1	3 901
Validation Blast #3	22-IVIAI	321	1.33	12.10	44.24%	470.1	3,601
Validation Blast #3	25-Iviai 26 Mar	219	1.37	11.19	33.40%	400.9	3,000
Validation Blast #3	20-Iviai 27 Mar	210	1.12	11.JZ	30,92%	379.30	2,01
Validation Blast #3	28 Mar	241	1:39	11.04	20.86%	406.5	2,001
Total	20-11/10/	1 301	1.55	11.04	23.0070	400.0	15 207
Average		1,001	1:36	11.62	41.62%	452.64	10,201
Average			1.00	11.02	41.0270	402.04	
Validation Blast #4	29-Mar	253	1:49	12.24	62.45%	407.4	3,097
Validation Blast #4	2-Apr	223	1:46	12.15	60.27%	349.4	2,709
Validation Blast #4	3-Apr	213	1:53	11.97	53.99%	318.6	2,549
Validation Blast #4	4-Apr	251	1:50	12.14	55.78%	380.9	3,047
Validation Blast #4	5-Apr	241	1:59	12.07	56.85%	350.6	2,910
Validation Blast #4	6-Apr	261	1:33	11.5	35.25%	375.3	3,002
Total		1,442					17,314
Average			1:48	12.01	54.10%	363.70	

			CA				
	Date	#	Avg	Avg	% Buckets	Crusher	Daily
		Cycles	Cycle Time	Bucket	over 12 ton	Feed Rate	In-Pit
		per		Weight		(overall)	Crushing
		Shift	min:secs	tons		tons/hr	Tons/shift
Baseline	23-Feb	255	2:08	10.91	25.88%	377.03	2,771
Baseline	26-Feb	253	2:18	11.54	38.91%	363.6	2,759
Baseline	27-Feb	249	1:49	11.48	34.68%	378.95	2,850
Baseline	28-Feb	204	2:25	12.42	66.50%	308.57	2,484
Baseline	1-Mar	273	1:44	12.47	68.13%	433.55	3,403
Total		1,234					14,267
Average			2:04	11.76	46.82%	372.34	
Validation Blast #1	5-Mar	341	1:24	12.69	76.90%	543	4,302
Validation Blast #1	6-Mar	344	1:26	12.69	79.88%	532.4	4,352
Validation Blast #1	7-Mar	298	1:27	13.26	90.57%	484	3,950
Validation Blast #1	8-Mar	115	1:27	13.01	81.74%	540	1,496
Validation Blast #1	9-Mar	165	1:46	12.56	72.70%	506.5	2,073
Total		1,263					16,173
Average			1:30	12.84	80.36%	521.18	

			CA				
	Date	#	Avg	Avg	% Buckets	Crusher	Daily
		Cycles	Cycle Time	Bucket	over 12 ton	Feed Rate	In-Pit
		per		Weight		(overall)	Crushing
		Shift	min:secs	tons		tons/hr	Tons/shift
Validation Blast #2	13-Mar	237	2:07	12.27	61.18%	349.3	2,908
Validation Blast #2	14-Mar	299	1:36	12.71	75.59%	463.5	3,800
Validation Blast #2	15-Mar	321	1:30	12.96	83.49%	519.8	4,158
Validation Blast #2	16-Mar	302	1:36	13.25	91.72%	488	4,002
Validation Blast #2	19-Mar	256	1:40	12.27	63.53%	442	3,141
Validation Blast #2	20-Mar	256	1:40	12.27	63.53%	442.4	3,366
Total		1,671					21,375
Average			1:41	12.62	73.17%	450.83	
Validation Blast #3	22-Mar	321	1:33	11.84	44.24%	470.1	3,801
Validation Blast #3	23-Mar	300	1:37	12.19	60.67%	456.9	3,655
Validation Blast #3	26-Mar	218	1:12	11.52	33.49%	579.58	2,511
Validation Blast #3	27-Mar	241	1:59	11.53	39.83%	350.11	2,801
Validation Blast #3	28-Mar	221	1:39	11.04	29.86%	406.5	2,439
Total		1,301					15,207
Average			1:36	11.62	41.62%	452.64	

			· · · · · CA				
	Date	#	Avg	Avg	% Buckets	Crusher	Daily
		Cycles	Cycle Time	Bucket	over 12 ton	Feed Rate	In-Pit
		per		Weight		(overall)	Crushing
		Shift	min:secs	tons		tons/hr	Tons/shift
Validation Blast #4	29-Mar	253	1:49	12.24	62.45%	407.4	3,097
Validation Blast #4	2-Apr	223	1:46	12.15	60.27%	349.4	2,709
Validation Blast #4	3-Apr	213	1:53	11.97	53.99%	318.6	2,549
Validation Blast #4	4-Apr	251	1:50	12.14	55.78%	380.9	3,047
Validation Blast #4	5-Apr	241	1:59	12.07	56.85%	350.6	2,910
Validation Blast #4	6-Apr	261	1:33	11.5	35.25%	375.3	3,002
Total		1,442					17,314
Average			1:48	12.01	54.10%	363.70	

Discussion

For validation blast 3 (12ms)

- Ioader cycle times were shortest;
- there was no improvement over baseline in bucket fill;
- there was a reduction of 11% in the percentage of buckets weighing 12 tons or more.

			CA	T 988H			
	Date	#	Avg	Avg	% Buckets	Crusher	Daily
		Cycles	Cycle Time	Bucket	over 12 ton	Feed Rate	In-Pit
		per		Weight		(overall)	Crushing
		Shift	min:secs	tons		tons/hr	Tons/shift
Baseline	23-Feb	255	2:08	10.91	25.88%	377.03	2,771
Baseline	26-Feb	253	2:18	11.54	38.91%	363.6	2,759
Baseline	27-Feb	249	1:49	11.48	34.68%	378.95	2,850
Baseline	28-Feb	204	2:25	12.42	66.50%	308.57	2,484
Baseline	1-Mar	273	1:44	12.47	68.13%	433.55	3,403
fotal		1,234					14,267
Average			2:04	11.76	46.82%	372.34	
/alidation Blast #1	5-Mar	341	1:24	12.69	76.90%	543	4,302
/alidation Blast #1	6-Mar	344	1:26	12.69	79.88%	532.4	4,352
/alidation Blast #1	7-Mar	298	1:27	13.26	90.57%	484	3,950
/alidation Blast #1	8-Mar	115	1:27	13.01	81.74%	540	1,496
/alidation Blast #1	9-Mar	165	1:46	12.56	72.70%	506.5	2,073
Total		1,263					16,173
Average			1:30	12.84	80.36%	521.18	
/alidation Blast #2	13-Mar	237	2:07	12.27	61.18%	349.3	2,908
/alidation Blast #2	14-Mar	299	1:36	12.71	75.59%	463.5	3,800
/alidation Blast #2	15-Mar	321	1:30	12.96	83.49%	519.8	4,158
/alidation Blast #2	16-Mar	302	1:36	13.25	91.72%	488	4,002
/alidation Blast #2	19-Mar	256	1:40	12.27	63.53%	442	3,141
/alidation Blast #2	20-Mar	256	1:40	12.27	63.53%	442.4	3,366
Total		1,671					21,375
verage			1:41	12.62	73.17%	450.83	
/alidation Blast #3	22-Mar	321	1:33	11.84	44.24%	470.1	3,801
/alidation Blast #3	23-Mar	300	1:37	12.19	60.67%	456.9	3,655
alidation Blast #3	26-Mar	218	1:12	11.52	33.49%	579.58	2,511
alidation Blast #3	27-Mar	241	1:59	11.53	39.83%	350.11	2,801
/alidation Blast #3	28-Mar	221	1:39	11.04	29.86%	406.5	2,439
otal		1,301	4.20	44.00	44.000/	450.04	15,207
average			1.30	11.02	41.02%	432.04	
alidation Blast #4	29-Mar	253	1.40	12 24	62 45%	407.4	3 097
alidation Blast #4	2-Apr	200	1:46	12.24	60.27%	3/9/	2 709
alidation Blast #4	3-Apr	213	1:53	11 97	53.99%	318.6	2,703
alidation Blast #4	4-Apr	251	1:50	12 14	55 78%	380.9	3 047
alidation Blast #4	5-Apr	241	1:59	12.07	56.85%	350.6	2 910
alidation Blast #4	6-Apr	261	1:33	11.5	35.25%	375.3	3 002
fotal	07.0	1.442	1.00	11.0	00.2070	010.0	17.314
Verage		1,112	1:48	12.01	54,10%	363.70	11,014
			1.70	12.01	04.1078	000.10	

Results

- Impressive cost savings and increases in plant tonnage throughput were realized in spite of 28% increase in D&B costs!
 - 10 to 27% increase in crusher plant capacity over baseline of 373 tons per hour to an average of 475 tons/hr
 - 17% to 31 % reduction in net total cost per ton when scalping
 - 8.8% reduction in net total cost per ton without scalping

Supplemental Work 1

- Metso LocoTrack portable crushing plant, supporting equipment and the blast design were moved to the CQCI California, MO quarry.
 - Similar cost reductions were realized there
 - Increased performance and productivity allowed 25% reduction of budgeted operating days to produce a 100,000 ton order.

Supplemental Work 2

Precision and accuracy of drilling was investigated.

- Sandvik Titon® 500
 - Down-the-hole (DTH) track mounted drill using 3 inch and 3.5 inch diameter drill pipe with 3 inch and 4 inch diameter DTH hammers.

- 4 months testing at 4 quarry locations
- Crushing plant throughput increased another 45%.

Limestone Quarry

Exposed 55 ft Bench Face

Algoa Quarry Shot Survey November 7, 2007

4-1/8" Bit 3" Hammer 3" Pipe

Exposed 55 ft Bench Face looking North

4-1/8" Bit 3" Hammer

3" Pipe

4-1/8" Bit 3" Hammer

3" Pipe

+ 86% TPH thru the crusher.

375 TPH Baseline to 700 TPH with Drill Accuracy & Improved Blast Parameters

Operations Process Improvement Case Work #1 Project Outcomes

- Drilling and Blasting cost increased by 28%.
- Waste was reduced by 19%.
- Impressive cost savings and increases in plant tonnage throughput within the "Blast to 1 inch minus" process of the Holt Summit Value Map were realized over the validation phase of the project.

Operations Process Improvement Case Work #1 Project Outcomes

- The standard cost model for the "Blast to 1 inch minus" process of the Holt Summit value map showed that over the total process:
 - ✓ There was a 10% to 27% increase in crusher plant capacity

✓ 27% from baseline of 373 TPH to an average of 475 TPH.
 A plus 102 TPH shift in capacity.

- There was a 7% to 31% reduction in net total cost per ton when scalping was used.
- When scalping was not utilized an 8.8% reduction in the net cost per ton was achieved.

Conclusions

- Drilling & Blasting can be a significant contributor to the aggregate producer's value chain. Maintaining control of the entire drill and blast process is imperative. Consistency and reproducibility are key drivers.
- The lessons learned in the casework were found to be transferable based on actual performance testing of the blast design at another of the Capital Quarries Company, Inc. operations.

Acknowledgements

- Eric Strope, President, Capital Quarries Company, Inc., Jefferson City, MO
- Kevin Nichols, Superintendent, Capital Quarries Company, Inc., Holts Summit, MO
- Mark Schneider, Driller, Capital Quarries Company, Inc., Jefferson City, MO
- Ron Coulter, Senior Blasting Technician, Dyno Nobel Inc., Hermann, MO
- Keith Henderson, Technical Sales Manager, Dyno Nobel Inc., Union, MO
- Daryl Hale, Account Manager, Dyno Nobel Inc., New Haven, MO

Fines Reduction* Leveraging Drill & Blast – Case Work #2

*Increase saleable product. Lower total cost. Increase profit margin. Fines defined as minus ³/₄".

Operations Process Improvement Case Work #2 Project Outcomes

Pattern Optimization

- Expanded 58%
 - ✓ Baseline 12 ft x 14 ft
 - ✓ Current 14 ft x 19 ft
- **\$0.082 savings per ton drill and blast** (including electronic detonators)

240% 30%

20%

10%

0%

0.1

 4 % reduction in fines with changes to drill & blast design.

10

Size (in)

100

1000

Operations Process Improvement Case Work #2 Project Outcomes

- 11% reduction in fines achieved with changes in plant operation
- Total fines reduced from 73% to 56% of total plant output.
- Increased saleable product by approximately 10% increase.

• Four (4) operational benches. Three (3) of which have value for Cement.

- The quarry's goal is to produce and deliver a cost effective in-spec product to its customers, the Lafarge North America cement plant and an independent aggregate producer.
- Process
 - Superior MK-II 54-75 Gyratory Crusher. Max 2,000 tph at a 9 inch close side setting.

- Operation has maintained a continuous improvement process for over 6 years.
- Key process management and metric systems:
 - Logimine CC4 On-line Mining System
 - GPS Drills, Dozers, Wheel Loaders, Haul Trucks
 - Load Cells Haul Trucks
 - ✓ Geo-Instruments Jean Lutz Drill Monitoring System.
 - WipWare Reflex and Solo Fragmentation Analysis

Process

 Superior MK-II 54-75 Gyratory Crusher. Max 1,700 tons per hour at 6 ³/₄ inch closed side setting and 8 inch open side setting. (400 HP)

Raw Data Acquisition

- Drill Logs
- GPS Blast Hole Map
- Blast Report
- Logimine Operator Report
- Crusher Operator Report
- Crusher input Data
- Conveyor belt Data

Crusher Input Data

- A series of images of each load are automatically captured.
- The number of samples for each blast can range from 600 to 2600
- A daily report including a chart and a CSV file with time stamps and gradation percentages for each load dumped into the crusher.

Conveyor Belt Data

- A second camera is mounted on the discharge belt captures images of the belt feed at a rate of one image every fifteen seconds. - 5K-20K samples per blast
- A daily report including an overall gradation chart and CSV file including time stamps and gradation percentages.

Processing the Raw Data

Processing the Raw Data, putting it into a workable form.

Blast Contribution Rating System

- Expresses the downstream contribution of components.
 - Fragmentation
 - Production Tons/hr
 - Drill and blast cost

CM Shot Contribution Rating System									
		Weight							
Tons Per Hour		40%	Total Blasting	g Cost/Ton	20%	Size (in) for	which 8	0% passes	40%
>2000	11		<.28	11		<8"	11		
1850-1999	10		.2831	10		8-9.99"	10		
1700-1849	9		.3437	9		10-11.99"	9		
1550-1699	8		.3841	8		12-13.99"	8		
1400-1549	7		.4245	7		14-15.99"	7		
1250-1399	6		.4649	6		16-17.99"	6		
1100-1249	5		.5053	5		18-19.99"	5		
950-1099	4		.5457	4		20-21.99"	4		
800-949	3		.5861	3		22-23.99"	3		
650-799	2		.6265	2		24-25.99"	2		
<650	1		>.65	1		>26	1		

Blast Contribution Rating System

Cumulative Fragmentation Gradation

Tons per hour and Percent Passing

Top Size Material

- ✓ Drill and Blast Cost (\$/Ton)
- Energy Factor (MJ/Yd³)
- Powder Factor (Lbs/Yd³)
- Distribution Factor (1- #holes/ft²)
- Timing Factor (ms/ft spacing)
- Power factor (MJ/ms)

Cost/Ton

• Powder Factor

Timing Factor

Results

- 18 % increase in drill and blast cost.
- 20% increase in crusher productivity.
 - \checkmark 7 ³/₄ inch closed side setting and 9 inch open side setting.
- 12 % reduction in crushed product cost per ton.

"View was well worth the climb!"

Acknowledgements

- Ran Tamir, Lafarge Building Materials
- John Truzkowski, Maine Drilling and Blasting
- James P. McGough South Dakota School of Mines

Chemical Crushing Case Studies

• Main points to remember:

- To realize process improvement and economic savings from Chemical Crusher principles, a disciplined control of both plan and execution of the entire Drill and Blast process is required.
- Quantifiable metrics need to be established and used to measure performance of baseline (what is happening today) and of changes to process.
- Savings can be substantial. The view is worth the climb.

Chemical Crushing Case Studies

• Main points to do: (safety above all at all times!)

- Evaluate contribution of Drill and Blast at the operation. Identify all opportunities to leverage Drill and Blast that might exist
- Determine adequacy of controls used in the Drill and Blast process. Particularly those related to performance and quality.
- Consider controlled process to evaluate the best chance opportunity. Use quantifiable metrics to validate operational and economic improvements and justify necessary investments.

www.quarryacademy.com

Improving Processes. Instilling Expertise.

