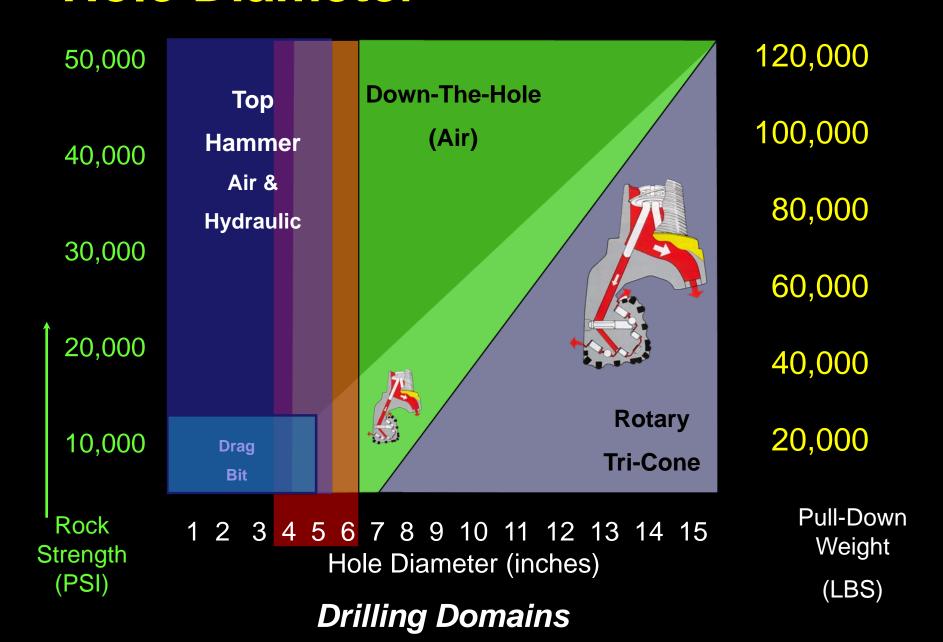
Drill Selection – What Do I Pick?

Bill Hissem


Improving Processes. Instilling Expertise.

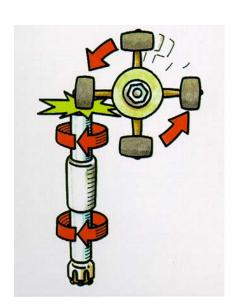
* Hole Diameter

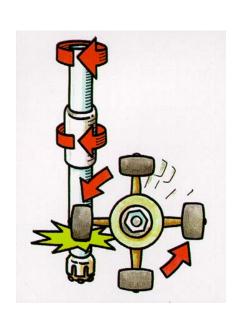
* General Configuration

Top - Hammer

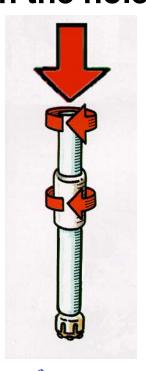
DTH - Trackdrill

 DTH



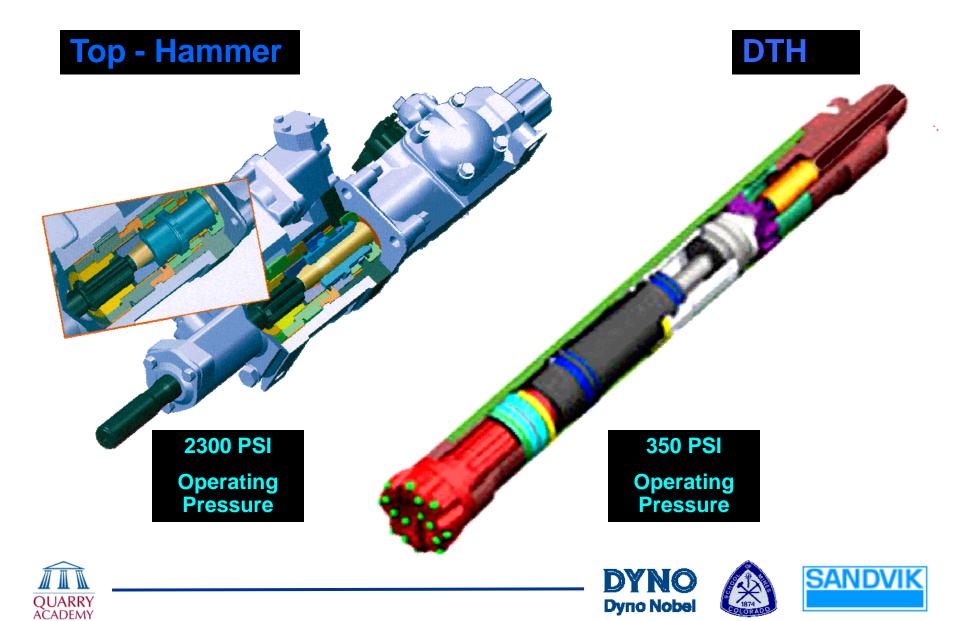

* Primary Difference

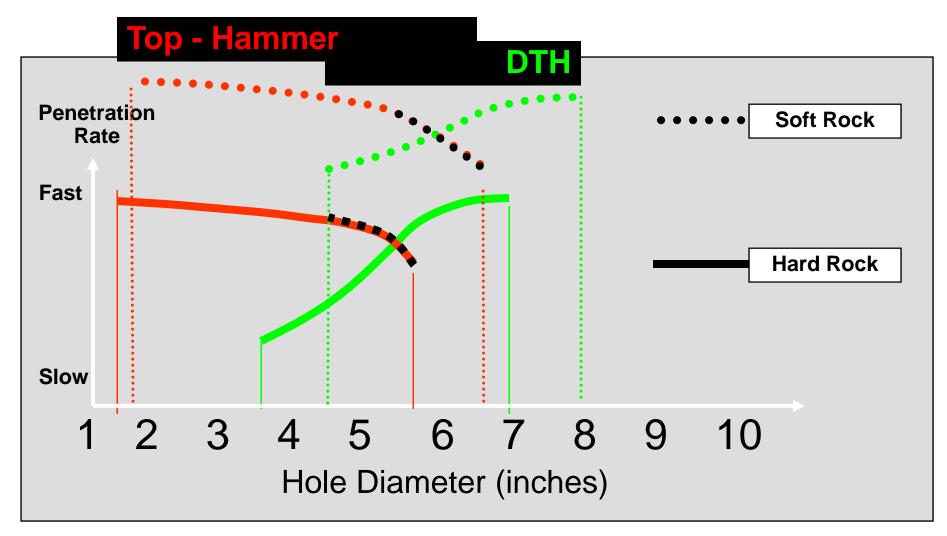
Top - Hammer Puts more


percussion energy in the hole

DTH
Puts more
flushing air
in the hole

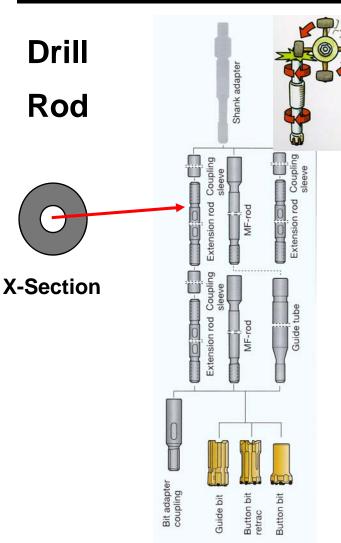
Rotary
Puts more
flushing air
in the hole

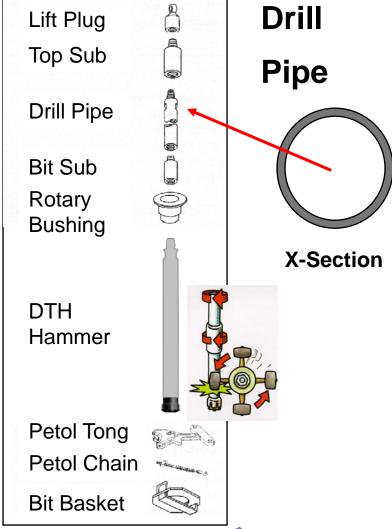




* Hammers

* Bit Penetration Rates





* Drill String Elements

Top - Hammer

DTH

OK – How do I pick out a drill? Or Not?

Drill ownership and operation in-house or Contract Drilling

OK – How do I pick out a drill?

Drill type determines energy distribution within the shot:

Hole diameter

Hole straightness

Explosive energy + rock fabric determine fragmentation:

Charge diameter

Drill pattern

Ownership or Contract Drilling requires an understanding of true costs, effect, and outcome for each case

Drilling is the foundation for explosives distribution in the shot

Typical desired outcomes:

Easy to load muck pile

Little or no oversize

Controlled muckpile shape

Minimum fines and overburden material content

Safe blast event

Minimum off-site disturbance in urban neighborhoods

Minimum overall quarrying costs

Maximum overall quarrying productivity

OK – How do I pick out a drill? Or Not?

Whether you own the drill or not, drilling is required.

So the real question is whether I can get the quality and quantity of drilling I need at a cost equal to or less than the expense of an in-house drilling program.

Drill Selection for Quarry Applications*

	* - Assessments are generalized - case specific exceptions are common	Top Hammer Trackdrill	Down-the-Hole Trackdrill	DTH/(Rotary) Track- Mounted Drill	DTH/(Rotary) Truck- Mounted Drill
1	Hole Diameter: (Consider geology, blast dynamics, fragmentation)	2.5" to 5"	4" to 6"	5" to 8"	5" to 8"
2	Hole Size Range:	Good to Very Good	Medium to Poor	Medium to Poor	Medium to Poor
_	(Flexibility)	(up to 4 hole size steps)	(2-3 hole size steps)	(2-3 hole size steps)	(2-3 hole size steps)
3	Bit Penetration Rate (when comparing at equal hole diameters)	Faster in <mark>smaller</mark> hole diameters and <mark>harder</mark> rock	Faster in <mark>larger</mark> hole diameters and <mark>softer</mark> rock	Faster in <mark>larger</mark> hole diameters and <mark>softer</mark> rock	Faster in <mark>larger</mark> hole diameters and <mark>softer</mark> rock
_	Hole Straightness/Accuracy - (to 40")	Medium to Good/Excellent	Excellent	Excellent	Excellent
4	Hole Straightness/Accuracy - (to 120")	Medium to Bad/Good	Good	Excellent	Excellent
5	Productivity in broken ground conditions	Good to Fair (can back-hammer out of hole)	(high flushing	Good capacity - but can't back hammer o	ut of the hole)
	Speed Between Holes - (Tram speed/spotting/s	set-up)			
6	Smooth benches - solid rock	Excellent	Excellent	Excellent	Medium
	Rough benches - broken rock	Good to Excellent	Medium to Good	Medium to Poor	Poor to Bad
7	Rough Terrain (Rig stability for speed and safety)	Good to Excellent	Medium to Good	Poor to Bad	Bad
8	Small Benches (Minimum working space for rig positioning)	Good to Excellent	Good to Excellent	Medium to Poor	Роог
9	Boom reach from carrier position (Reach affects speed/accuracy/safety)	Good to Excellent	Good	No	No
10	Stand-off from crest & highwall (Operator relative to hole position)	Good to Excellent	Good	Poor	Poor to Bad
11	Safety as a function of hole size	Good to Excellent	Good to Medium	Good to Poor	Good to Poor
"	Shot event control - high wall/crest line shear	Small hole = tight	spacing = more shot control	Large hole = wide spacing =	less shot control
12	Mobilization speed site to site	Fair to Good	Fair	Poor	Excellent
12	mounization speed site to site	(requires truck - legal width)	(requires truck - legal width)	(requires truck - not legal width)	(truck mounted - stack and go)
13	Cost to purchase and operate	Look at balancing r		e size/rig class ments and mechanical utilization =>	drill cost analysis.
14	Maintenance and mechanical support	This deper	nds on your organization - (dealer support - manufactu	rer support
14	(Parts - service support - trouble shooting)	Look at balancing r	ig cost with annual tonnage require	ments and mechanical utilization =>	drill cost analysis.

Drill Selection for Quarry Applications*

* - Assessments are generalized - case specific exceptions are common.

Top Hammer Trackdrill

Down-the-Hole Trackdrill

DTH/Rotary Track-Mounted Drill

DTH/Rotary Truck-Mounted Drill

1	Hole Diameter: (Consider geology, blast dynamics, fragmentation)	2.5" to 5"	4" to 6"	5" to 8"	5" to 8"
2	Hole Size Range:	Good to Very Good	Medium to Poor	Medium to Poor	Medium to Poor
	(Flexibility)	(up to 4 hole size steps)	(2-3 hole size steps)	(2-3 hole size steps)	(2-3 hole size steps)

(when comparing at equal hole diameters) diameters and harder rock diameters and softer rock diameters and softer rock	Bit Penetration Rate 3 (when comparing at equal hole diameters)	Faster in <mark>smaller</mark> hole diameters and harder rock	Faster in <mark>larger</mark> hole diameters and <mark>softer</mark> rock	Faster in <mark>larger</mark> hole diameters and <mark>softer</mark> rock	Faster in <mark>larger</mark> hole diameters and <mark>softer</mark> rock
--	---	--	--	--	--

Ι,	, , , , , , , , , , , , , , , , , , ,	Medium to Good/Excellent	Excellent	Excellent	Excellent
4	Hole Straightness/Accuracy - (to 120")	Medium to Bad/Good	Good	Excellent	Excellent

5 Bodowski to bodowski do 198	Good to Fair	Good
5 Productivity in broken ground conditions	(can back-hammer out of hole)	(high flushing capacity - but can't back hammer out of the hole)

Drill Selection for Quarry Applications*

*- Assessments are generalized - case specific exceptions are common.

Top Hammer Trackdrill

Down-the-Hole Trackdrill

DTH/Rotary Track-Mounted Drill DTH/Rotary Truck-Mounted Drill

	Speed Between Holes - (Tram speed/spotting	ig/set-up)			
6	Smooth benches - solid rock	Excellent	Excellent	Excellent	Medium
	Rough benches - broken rock	Good to Excellent	Medium to Good	Medium to Poor	Poor to Bad
7	Rough Terrain	Good to Excellent	Medium to Good	Poor to Bad	Bad
•	(Rig stability for speed and safety)	Good to Excellent	Mediani to Good	Fuoi to Dau	Dau
8	Small Benches	Good to Excellent	Good to Excellent	Medium to Poor	Poor
	(Minimum working space for rig positioning)				
9	Boom reach from carrier position	Good to Excellent	Good	No	No
	(Reach affects speed/accuracy/safety)	Good to Executent	3000	110	No
10	Stand-off from crest & highwall	Good to Excellent	Good	Poor	Poor to Bad
"	(Operator relative to hole position)	Good to Excellent	3000	1 301	1 001 10 Dau

Drill Selection for Quarry Applications*

* - Assessments are generalized - case specific exceptions are common.

Top Hammer Trackdrill

Down-the-Hole Trackdrill

DTH/Rotary Track-Mounted Drill

DTH/Rotary Truck-Mounted Drill

Safety as a function of hole size	Good to Excellent	Good to Medium	Good to Poor	Good to Poor
Shot event control - high wall/crest line shear	Small hole = tight spacing = more shot control - Large hole = wide	- Large hole = wide spacing =	less shot control	

12	Mobilization speed site to site	Fair to Good	Fair	Poor	Excellent
	Mobilization speed site to site	(requires truck - legal width)	(requires truck - legal width)	(requires truck - not legal width)	(truck mounted - stack and go)

13. Cost to nurshape and energte	Scalar to hole size/rig class
13 Cost to purchase and operate	Look at balancing rig cost with annual tonnage requirements and mechanical utilization => drill cost analysis.

Maintenance and mechanical support	This depends on your organization - dealer support - manufacturer support
(Parts - service support - trouble shooting)	Look at balancing rig cost with annual tonnage requirements and mechanical utilization => drill cost analysis.

Consider each of these criteria as they apply to your site and organization, assigning value according to your priorities.

There are 3 approaches taken in drill selection:

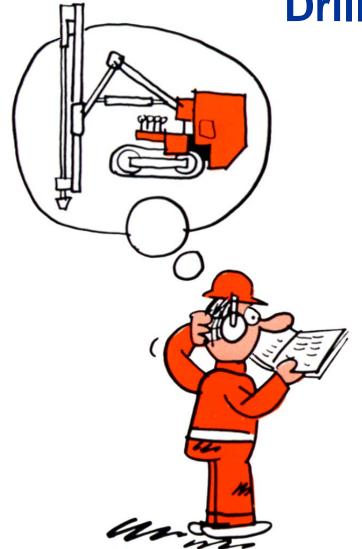
	Operations priority	Methodology
1	Focus on budget and invoice costs	Buy the largest hole diameter and the cheapest drill you can find. Or
		Sub-contract the drilling on a competitive bid - lowest cost/dr-ft basis.

There are 3 approaches taken in drill selection:

Operations priority	Methodology
Balance budget imperatives with applications issues	Committee consensus drives selection
	Balance budget imperatives with

There are 3 approaches taken in drill selection:

	Operations priority	Methodology
3	Find lowest overall cost/ton operating scenario	Create a working operating economic cost model that demonstrates full process sensivity and incorporates internal and external factors



Drill Selection

- 1) Establish your criteria
- 2) Eliminate drill alternatives that don't fit the application
- 3) Evaluate support issues
- 4) Run cost analysis for each scenario for comparison

What are the advantages of drill ownership?

Operational

- Control of Training
- Schedule as needed
- Daily driller communication

Economic

- Low \$/ton with good utilization
- Specialized Drilling
- Better if no viable contractors are available

What are the advantages of a Contract Driller?

- Can backstop spot production demands
- > Requires no mechanical support
- > Fewer operators required (more staff?)
- ➤ More predictable operating \$ budget forecast?

What to look for in a Contract Driller

- ➤ MHSA/Safety Compliance Part 46
- ➤ Well trained, dependable staff
- ➤ Internal back-up fleet capacity
- ➤ Insurance/bond capacity
- Equipment in good order reliable
- ➤ DOT concerns compliance
- Schedule response availability
- >Ability to deliver required production accurate holes

www.quarryacademy.com

Improving Processes. Instilling Expertise.

