Drilling Applications Arne Lislerud – Bill Hissem

Improving Processes. Instilling Expertise.

Agenda

- well planned operations and correctly selected rigs yields low cost drilling
- technically good drilling and correctly selected drill steel yields low cost drilling operations
- straight hole drilling yields safe and low cost D&B operations

The most common drilling methods in use

Simulation tools – Operator training for DPi

Drilling consists of a working system of:

- ∎ bit
- drill string
- boom or mast mounted feed
- TH or DTH hammer Rotary - thrust
- drill string rotation and stabilising systems
- drilling control system(s)
- powerpack
- automation and data acquisition packages
- collaring position and feed alignment systems
- flushing (air, water or foam)
- dust suppression equipment
- sampling device(s)

In situ testing of rock mass properties

- inhole video surveys of shotholes
- sampling of cuttings for chemical analysis
- measurement-while-drilling or MWD based digital pit mapping

Occupational health and safety

- work related accidents for:
 - ✓ mobile equipment
 - ✓ hazardeous work areas
- emissions control
- noise control
- dust control
- fly rock / charging / straight-hole drilling
- falling rocks / wall control

=> safety is as much equipment as it is attitude

General assessment of some health risks by Swedish authorities (UG + SF)

Drilling noise levels - TH

Standard	ISO 4872 L _{WA} dB(A)		
Pressure			
Commando 100	125.7		
Commando 300	123.8		
CHA 660	124.2		
Ranger 700	126		
Pantera 1500	127		

Feed casing reduces noise levels by approx. 10 dB(A)

Safety issues of inpit operations

- pit planning and operations supervision
- safety consciousness of workforce
- operator hazard training
 - => minimum occurrence of accidents

Premature ignition of electric detonators and blast due to lightning

Selecting drilling tools - TH

- bit face and skirt design
- button shape, size and cemented carbide grade
- drill string components
- grinding equipment and its location at jobsite

Optimum bit / rod diameter relationship - TH

Optimum bit / guide or pilot (lead) tube relationship - TH

Guidelines for selecting cemented carbide grades

- avoid excessive button wear (rapid wearflat development)
 - => select a more wear resistant carbide grade
- avoid button failures (due to snakeskin development or too aggressive button shapes)
 => select a less wear resistant or tougher carbide grade or spherical buttons

Bit regrind intervals, bit service life and over-drilling

Example of drill steel followup for MF-T51

Bit service life (dr-ft)

Trendlines for bit service life

Relationship SJ and VHNR

- rock surface hardness, VHNR
- rock surface hardness, SJ

Vickers Hardness Number Rock, VHNR

Accurate drilling gives effective blasting

Sources of drilling error

- 1. Marking and collaring errors
- 2. Inclination and directional errors
- 3. Deflection errors
- 4. Hole depth errors
- 5. Undergauge, omitted or lost holes

Examples of drill-hole deviation

Directional error Ø3½" retrac bit / T45 in granite

Deflection with and without pilot tube for Ø3½" DC retrac bit / T51 in micaschist

Deflection caused by gravitational sagging of drill steel in inclined holes in syenite

I-26 Mars Hill Highway Project, North Carolina

D & B excavation volume Contractor for presplitting Equipment for presplitting Bench height Drill steel Target accuracy at hole bottom Rock type 13.7 mill. m³
Gilbert Southern Corp.
3 x Ranger 700 with PS feeds
7.6 m with 40° inclined walls
Ø3" retrac / T45
152 mm at 10.0 m or 15.2 mm/m biotite-granite gneiss

I-26 Mars Hill Highway Project, North Carolina

© Quarry Academy 2009

Lafarge Bath Operations, Ontario

Annual production
Rock type

1.6 mill. tonnes limestone

Current program - Pantera 1500

Bench height	32 m
Bit	Ø115 mm guide XDC
Drill steel	Sandvik 60 + pilot tube
Hole-bottom deflection	< 1.5 %
Gross drilling capacity	67 drm/h
Drill pattern	4.5 x 4.8 m ² (staggered)
Sub-drill	0 m (blast to fault line)
Stemming	2.8 m
No. of decks	3
Stem between decks	1.8 m
Deck delays	25 milliseconds
Charge per shothole	236 kg
Explosives	ANFO (0.95 & 0.85 g/cm ³)
Powder factor	0.34 ka/bm ³

Drill-hole deflection error control

- select bits less influenced by rock mass discontinuities
- reduce drill string deflection by using guide tubes, etc.
- reduce drill string bending by using less feed force
- reduce feed foot slippage while drilling since this will cause a misalignment of the feed and lead to excessive drill string bending (occurs typically when drilling through sub-drill zones from prior bench levels)
- avoid gravitational effects which lead to drill string sagging when drilling inclined shot-holes (> 15°)
- avoid inpit operations with excessive bench heights

Drill-hole length, L

How bit face designs enhance drill-hole straightness

When the bit starts to drill through the fracture surface on the hole bottom - the gauge buttons tend to skid off this surface and thus deflect the bit.

More aggressively shaped gauge inserts (ballistic / chisel inserts) and bit face profiles (drop center) reduce this skidding by allowing the gauge buttons to "cut" through the fracture surface thus resulting in less overall bit and drill string deflection.

How bit skirt designs enhance drill-hole straightness

As the bit cuts through the joint surface - an uneven bit face loading condition arises; resulting in bit and drill string axial rotation - which is proportional to bit impact force imbalance.

A rear bit skirt support (retrac type bits) reduces bit and string axial rotation by "centralizing" the bit.

Other counter measures:

- longer bit body
- add a pilot tube
- lower impact energy
- rapid drilling control system reacting
- to varying torque and feed conditions

Drill-hole deflection trendlines in schistose rock

Selecting straight-hole drilling tools - TH

- optimum bit / rod diameter relationship
- insert types / bit face and skirt
 - ✓ spherical / ballistic / chisel inserts
 - ✓ normal bits
 - ✓ retrac bits
 - ✓ drop center bits
 - ✓ guide bits

additional drill string components

✓ guide tubes / pilot (lead) tubes

Drilling Management Drill pattern at quarry floor

Drilling Management Vertical projection of Row 1

© Quarry Academy 2009

Prediction of deviation errors

- direction of deviation can not be "predicted"
- magnitude of deviation can be predicted

Rock mass factor, k_{rock}

massive rock mass	0.33			
moderately fractured	1.0			
■ fractured	2.0			
mixed strata conditions	3.0			
Bit design and button factor, k _{bit}				
normal bits & sph. buttons	1.0			
normal bits & ball. buttons	0.70			
normal X-bits	0.70			
retrac bits & sph. buttons	0.88			
retrac bits & ball. buttons	0.62			
■ retrac X-bits	0.62			
quide bits	0.38			

■ guide bits

Drill-hole Deviation Prediction					
-		-			
Location				Bench H = 33m	
Rock type				Granitic gneiss	
Bit type				Retrac bit	
Bit diamet	er (mm)			dbit	76
Rod diameter (mm)			dstring	45	
Guide tube	e diameter (mm)		dguide / No	No
Total def	flection fa	ctor		k def	1,34
rock mass		k rock	1,30		
drill-string stiffness		k stiffness	0,138		
bit wobbling		kw obbling	0,592		
quide tubes for rods			kguide	1,000	
bit design and button factor			kbit	0.88	
	constant			krod	0,096
Inclinatio	on and dir	ection er	ror factor	k I+D	47,8
Drill-hole	e deviatio	n predicti	on		
	Drill-hole	Drill-hole	Drill-hole	Drill-hole	Drill-hole
	Length	Inc + Dir	Deflection	Deviation	Deviation
	L	∆LI+D	∆Ldef	∆Ltotal	∆Ltotal / L
	(m)	(mm)	(mm)	(mm)	(%)
	9,3	444	116	459	4,9
	13,4	640	241	684	5,1
	17,6	840	415	937	5,3
	21,7	1036	631	1213	5,6
	34.1	1628	1550	2254	6.6

How drilling errors affect down-stream operations

Drilling	reduced drill steel life
Blasting	 danger of poor explosives performance in neighbouring shotholes due to deflagration or deadpressing
	 danger of flyrock due to poor control of front row burden
Load and Haul	poor loading conditions on "new floors" with reduced loading capacities due to toes and quarry floor humps and locally choked (tight) blasts
Good practice	max. drill-hole deviation up to 2-3 %

Mechanics of percussive drilling

Energy transfer efficiency in TH drilling

The energy transfer chain in TH drilling

© Quarry Academy 2009

Matching site drilling to transfer efficiency curve - TH

Drilling Management Drilling in variable rock mass

Summary of some topics in percussive drilling

Drill bits

- ✓ induce rock chipping
- ✓ sets conditions for impact energy transfer efficiency in TH drilling
- ✓ clean hole bottoms flushing
- ✓ self stabilising bit bodies enhance straight hole drilling

Bit regrinding – extended bit life

- remove snakeskin avoid premature button breakage
- ✓ reshape topworn buttons reduce bit forces and button breakage
- ✓ avoid flat buttons, low protrusion and bit bottoming

Drill steel

- ✓ impact energy transfer efficiency in TH drilling
- ✓ flushing return air velocity
- ✓ tubes or pilot tube/rods straight hole drilling

Drilling control systems

- ✓ bit feed speed control
- ✓ flushing flow control
- drill string anti-jamming
- ✓ feed force and impact power control
- ✓ feed alignment, hole length and rig positioning systems
- ✓ input source for condition monitoring and MWD

www.quarryacademy.com

Improving Processes. Instilling Expertise.