

Equipment type selection

Drilling operational items and objectives

- drill patterns as per blasting supervisors specs
- site preparation and procedures for:
 - *I* removal or drilling through prior sub-drill zone
 - *marking of collaring positions*
 - *drill-hole alignment*
 - *minimizing drill-hole deflection*
 - *drill-hole depth control*
- selection of percussion power level and other drilling parameters
- selection of drill steel, bit regrinding procedures and consumption followup
- scheduled equipment service and maintenance
- production reporting and work documentation for Quality Assurance
 - *■* shift, weekly reports, ...
 - *drilling deviation reports*
- for contractors rapid rig relocation to new jobsites

Site preparation

Drill-hole positioning, alignment and levelling

Drilling through overburden with foam flushing

Drilling after removing overburden

Drill-hole monitoring & documentation

Water tank for special drilling conditions

Bit regrinding

Field service

Refueling

Utility wagon

Good drilling practices

Setup & Collaring

Drilling

Drill steel selection

Bit regrinding

Drill-hole deviation

- Iock oscillation cylinders, use rear jack (not lift rig), firmly push feed-pin into ground and keep retaining centralizer closed while drilling
- *if the marked collaring point is in a bad spot (sloping surface, sinkholes, etc.) it is then better to collar on the side and adjust feed alignment to correspond to the targeted drill-hole bottom*
- have a plentiful supply and use shothole plugs to avoid rocks falling into shotholes
- *avoid drilling with hot couplings adjust feed pressure or bit RPMs or change bit model*
- change drill rods before threads are totally worn out use thread wear gauges
- I ensure that sufficient flushing is available especially when drilling with large bits
- *©* check that drilling is carried out with optimum bit RPMs with regard to button wear rates
- *if the drill string bends while drilling align feed to drill string so as to reduce the adverse effects of excessive drill string bending on hole straightness*
- *avoid excessive rattling against the hole-bottom and retaining centralizer when loosening threads (typically only 10 20 seconds)*
- select bit type according to rock mass conditions e.g. retrac in broken ground, big front flushing hole(s) in weathered rock/mud seams, spherical buttons in hard and abrasive rock types, etc.
- *select bits, drill rods/guide tubes according to service life or hole straightness requirements*
- avoid excessive loss of bit diameter when regrinding especially when using hand held grinders
- in non-abrasive rocks such as limestone, dolomite, etc. it can be advantageous to adopt frequent "touch-up" regrinds at the rig in stead of traditional regrinding procedures to remove snakeskin on button wearflats and wearflat edges
- excessive drill-hole deviation reduces drill steel life typically caused by bit deflection when drilling through shears and mud seams
- *I* rod breakage is reduced when using rods with loose couplings when compared to MF rods
- *Inver a flashlight to check drill-hole deflection depth as a rough rating of hole straightness*

Drilling in difficult (rock mass) conditions

Prior sub-drill zone

Very jointed rock

Mud seams and shears

Dust prevention

- stabilize drill-hole walls in the prior sub-drill zone with water added to the flushing air
- *drill through the prior sub-drill zone with reduced percussion power and feed force. Adjust*
- the flushing flow to a minimum so as to reduce return-air erosion around the collaring point
- *if drill-hole walls tend to collapse stabilise walls with additives such as Quik-Trol, EZ-Mud, ...*
- I use straight hole drill steel selection guidelines to minimise drill string deflection
- use retrac type bits and back-hammering to ease drill string extraction
- use power extractor if required to retrieve drill string
- adjust drilling parameter settings frequently to match drilling in varying geological conditions
- Soft or weathered rock *increase bit RPMs or use X-bits to increase bit resistance to indentation. This improves the* percussion energy transfer efficiency ratio and reduces the feed force requirement - and reduces the problem of opening tight threads
 - use bits with big front flushing hole(s) to reduce the occurrence of bits getting stuck and the anti-jamming mechanism triggering in too often
 - [I] flushing control automatics recommended it retracts the drill string when the flush flow is close to zero (adjustable set-point)
 - *do not retract the drill string too fast when drilling in mud so as to avoid the collapse of holes* by this "vacuum" effect
 - *avoid high return-air velocities by reducing the flushing flow when drilling in water filled holes* so as to avoid the added water erosion effect on drill-hole walls and the collaring point
 - use ZeroDust[™] to avoid releasing dust into the air when the dust collector empties. ZeroDust[™] also reduces the amount of airborne dust after blasting.

TH - predicting net penetration rates (m/min)

- rock mass drillability, DRI
- percussion power level in rod(s)
- bit diameter

I hole wall confinement of gauge buttons

Η

- *bit face design and insert types*
- *drilling parameter settings (RPM, feed)*
- flushing medium and return flow velocity

	1.8												
	4.0												
•	1.0												
	1.4												
	12												
	1.2												
	1.0												
	0.8												
•	0.6												
	0.4												
			^		^		^		^	6	^	7	
		2	U	3	U	4	U	ວ	U	0	U	(U

Rock drillability, DRI

IL	_510	/HLX5T	51	mm		2"			
IL	-600		64	mm		2.5'	,		
IL	.710	/800T	76	mm		3"			
IL	150	0/1560T	102	mm		4"			
		540/UU X/		0.4			~ ~	- 11	1
	HL	-510/HLX:		64	mm		2.5)″	
	HL	-600		76	mm		3"		
	HL	_710/800T		89	mm		3.5	5"	
	HL	_1000		89	mm		3.5	5"	
	HL	1500/156	0Т	115	mm		4.5	5"	
		HI 510/	-II ¥5T		76	mm		3,	,
					10			5	- ,,
		HL600			89	mm		3.	5
		HL710/8	300T		102	mm		4'	,
		HL1000			115	mm		4.	5"
		HL1500	/1560T		127	mm		5'	,

DTH - predicting net penetration rates (m/min)

- rock mass drillability, DRI
- percussion power of hammer
- bit diameter

I hole wall confinement of gauge buttons

- goodness of hole-bottom chipping
 - *■* bit face design and insert types
 - *drilling parameter settings (RPM, feed)*
- flushing and return flow velocity

Rock drillability, DRI

M5	50 / M55	140 mm	5.5"	
Me	60 / M65	165 mm	6.5"	
[Maa	20	0 E"	
	IVI 30	89 MM	3.5	
	M40	115 mm	4.5"	
	M60 / M65	203 mm	8"	
L.				
	M85	251 r	nm 97	/8"

Gross drilling capacities (drm/shift)

- rig setup and feed alignment time per drill-hole
- collaring time through overburden or sub-drill zone
- drill-hole wall stabilisation time (if required)
- rod handling times (unit time and rod count)
- net penetration loss rate percentage i.e.
 - rods and couplings
 6.1 % per rod
 - Image: MF rods3.6 % per rod
 - tubes
- 2.6 % per tube
- effect of percussion power levels on:
 - net penetration rates
 - drill steel service life
 - *drill-hole straightness*
- rig tramming times between benches, refueling, etc.
- effect of operator work environment on effective work hours per shift
- rig availability, service availability, service and maintenance intervals

Net penetration rate, NPR₂ (m/min)

Typical breakdown of long term rig usage and capacities

TH - annual drill rig production capacities

- shifts per year
- shift hours per year
- engine hours per year $1224 = 1800 \cdot 68 \%$ utilisation
- rock density, t/m³

225 $= 5 d/w \cdot 45 w/a$

1800 $= 8 h/d \cdot 5 d/w \cdot 45 w/a$

Drill-hole size, mm

DTH - annual drill rig production capacities

1800

2.7

• shifts per year

- $225 = 5 d/w \cdot 45 w/a$
- shift hours per year
- engine hours per year $1224 = 1800 \cdot 68 \%$ utilisation

 $= 8 h/d \cdot 5 d/w \cdot 45 w/a$

rock density, t/m³

Annual production, Mtpa 4.5 4.0 Driltech D25/D45/D55 Titon 400/500/600 3.5 3.0 2.5 2.0 1.5 102 152 127 178 203 229 254 5" 6" 8" 4" 7" 9" 10"

Drill-hole size, mm

Simulation tools / study programs

Drilling equipment selection Copyright © Sandvik Tamrock Corp., 1999 (Version 1.3.9) Cour Copyright © Sandvik Tamrock Corp., 1999 (Version 1.3.9) Cour MF rods Y Gas MF rods MF rods Hole size range Coupling: 0.4 Uncoupling: 0.6 min Selected hole si	Immer: CEMENT CO. JUARRY JUARRY MALAYSIA Immer: 3.66 mm ze: 60 mm 89 - 152 mm 127 mm	SURFACE STUDY PROGRAM • task definition / site information • drilling equipment / tools selection	
Imax P(Hmax) Mean fragment s 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 125 30 60 500 91 60 1000 1000 100 4000 1000 20 Picture 20 100	Ze, L., 270 mm Uniformity index 1.36 Bench charged height ratio 0.85 SURFACE ROCK DRILLING/CAPACITY Customer	 drilling capacities drill and charge patterns versus shotroe fragmentation and boulder count equipment performance and required number of units drilling costs blasting costs scenarios (optimisation) drill-hole deviation 	:k
	Rock type Linestone Linestone Drillinole diameter 127 Bench height 12 Hole inclination 8 Drilling rate index 60 DRILLING EQUIPMENT SELECTION Type of rig PANTERA 1500 PANTERA 1500 Rock drill HL 1500 HL Drilling tools MF rods MF Drill rodfube length 4.3 WORKING ARRANGEMENTS Work shifts per day 2 Hours per shift 8 Work days per week 6 6 6	Interstore Limitstore 102 89 mm 12 12 m 8 8 deg 60 60 FRA 1100 PANTERA 800 HL 1000 HL 700 MF rods MF rods 51 4 55 mm 4.3 4.3 m 2 2 shifts 8 8 hours 6 6 days	

Mechanics of percussive drilling

Percussive drilling

Drilling powered by impact induced stress waves

Down-the-hole, DTH

Stress waves transmitted directly through bit into rock

Tophammer

Stress waves transmitted through drill string into rock

Basic functions

- reciprocating piston to produce stress waves
 - provide bit-rock contact during impact
 - provide bit indexing
- flushing
- cuttings removal from hole bottom
- *foam flushing*
- drill-hole wall stabilisation

The energy transfer chain in tophammer drilling

About stress wave energy transmission

Energy transfer efficiency and bit-rock contact

no contact / <u>free-end</u>	=> => =>	incident compressive wave totally reflected as a tensile wave from bit-rock interface no feed force applied no energy transfer to rock
poor contact / <u>underfeed</u>		reflected tensile wave from bit-rock interface of high amplitude and duration applied feed force too low low energy transfer to rock additional drilling occurs with the re-reflected tensile waves from bit-rock interface
optimum contact	=>	max energy transfer from bit to rock
high contact / avarfaad		reflected compressive wave from hit-rock of high amplitude and duration

Feed force levels / rock drill

Reflected stress wave response in rods to feed force levels

Displacement of 1st coupling while drilling

Button indentation, chip formation and bit force

Chip formation by bit indentation and indexing

Button force versus rock strength, UCS

Effect of button indentation and bit force on bit RPM's

Energy transfer efficiencies and feed force requirements

Matching site drilling to transfer efficiency curve

SANDVIK

Drilling in variable rock mass

Ranger 700 and 800 / Pantera 1500

Summary of percussion dynamics and drilling controls

Some topics in percussive rock drilling R & D

Rock mass characterisation and breakage mechanisms

- *drillability of intact rock and rock mass*
- bit indentation and multi-pass rock chipping
- abrasivity of intact rock and rock mass

Percussion power generation and transmission

- *models for wear and failure resistance of cemented carbide inserts*
- *simulation models for bit, drill string and thread performance*
- simulation models for rock drill and feed system performance
- hydraulic fluids mineral oils, bio-degradeable oils, water, air
- drilling control systems

Drill rig design and engineering

- *simulation models for rig stability and booms*
- dust and noise suppression systems
- safety and work environmental issues
- instrumentation and condition monitoring
- remote control and automation
- *reliability*

Drilling applications

- prediction models for overall drilling equipment performance and costs
- prediction and simulation models for rock excavation processes

0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.03

Drilling noise levels

Standard	ISO 4872
Pressure	L _{WA} dB(A)
Commando 100	125.7
Commando 300	123.8
CHA 660	124.2
Ranger 700	126
Pantera 1500	127

Feed casing reduces noise levels by approx. 9 dB(A)

Selecting drilling tools

- bit face and skirt design
- button shape, size and cemented carbide grade
- drill string components
- grinding equipment and its location at jobsite

Optimum bit / rod diameter relationship

Optimum bit / guide or pilot (lead) tube relationship

Guidelines for selecting cemented carbide grades

avoid excessive button wear (rapid wearflat development)

=> select a more wear resistant carbide grade

- *avoid button failures (due to snakeskin development or too aggressive button shapes)*
 - => select a less wear resistant or tougher carbide grade or spherical buttons

Bit regrind intervals, bit service life and over-drilling

Selecting button shapes and cemented carbide grades

Accurate drilling gives effective blasting

Sources of drilling error

- 1. Marking and collaring errors
- 2. Inclination and directional errors
- 3. Deflection errors
- 4. Hole depth errors
- 5. Undergauge, omitted or lost holes

3

5

4

Examples of drill-hole deviation

Deflection with and without pilot tube for Ø89 mm DC retrac bit / T51 in micaschist

Deflection caused by gravitational sagging of drill steel in inclined holes in syenite

I-26 Mars Hill Highway Project, North Carolina

D & B excavation volume Contractor for presplitting Equipment for presplitting Bench height Drill steel Target accuracy at hole bottom Rock type

13.7 mill. m³
Gilbert Southern Corp.
3 x Ranger 700
7.6 m with 40° inclined walls
Ø76mm retrac / T45
152 mm at 10.0 m or 15.2 mm/m biotite-granite gneiss

Lafarge Bath Operations, Ontario

Annual production Rock type 1.6 mill. tonnes limestone

Current program - Pantera 1500

Bench height	32 m
Bit	Ø115 mm guide XDC
Drill steel	Sandvik 60 + pilot tube
Hole-bottom deflection	< 1.5 %
Gross drilling capacity	67 drm/h
Drill pattern	4.5 x 4.8 m ² (staggered)
Sub-drill	0 m (blast to fault line)
Stemming	2.8 m
No. of decks	3
Stem between decks	1.8 m
Deck delays	25 milliseconds
Charge per shothole	236 kg
Explosives	ANFO (0.95 & 0.85 g/cm ³)
Powder factor	0.34 kg/bm ³

Marking and collaring position error control

Marking collaring positions

1a. Use tape, optical squares or alignment lasers for measuring out drill-hole collaring positions.

1b. Use GPS or theodolites to determine collaring positions - an advantage when drilling from undulating terrain.

2. Collaring positions should be marked using painted lines not movable objects such as rocks, shothole plugs, etc.

3. Use GPS guided feed collar positioning device.

Drill-hole deflection error control

- select bits less influenced by rock mass discontinuities
- *I* reduce drill string deflection by using guide tubes, etc.
- *I* reduce drill string bending by using less feed force
- reduce feed foot slippage while drilling since this will cause a misalignment of the feed and lead to excessive drill string bending (occurs typically when drilling through sub-drill zones from prior bench levels)
- avoid gravitational effects which lead to drill string sagging when drilling inclined shot-holes (> 15°)
- *avoid inpit operations with excessive bench heights*

Drill-hole length, L

How bit face designs enhance drill-hole straightness

When the bit starts to drill through the fracture surface on the hole bottom - the gauge buttons tend to skid off this surface and thus deflect the bit.

More aggressively shaped gauge inserts (ballistic / chisel inserts) and bit face profiles (drop center) reduce this skidding by allowing the gauge buttons to "cut" through the fracture surface thus resulting in less overall bit and drill string deflection.

How bit skirt designs enhance drill-hole straightness

When the bit is drilling through the fracture surface - uneven bit face loading conditions arise; resulting in bit and drill string deflections - which are proportional to the bit impact force.

A rear bit skirt support (retrac type bits) reduces bit deflection caused by the uneven bit face loading conditions by "centralizing" the bit with this rear support.

Drill-hole deflection trendlines in schistose rock

Selecting straight-hole drilling tools

- optimum bit / rod diameter relationship
- insert types / bit face and skirt
 - spherical / ballistic / chisel inserts
 - In normal bits
 - retrac bits
 - *drop center bits*
 - **guide bits**
- additional drill string components
 - guide tubes / pilot (lead) tubes

Documention of drilling and charging prior to blasting

- actual distribution of explosives in the rock mass indicating local variations of powder factor
- risk of flyrock from bench face and top
- risk of flashover initiation between shotholes
- risk of dead pressing of explosives

Drill pattern at quarry floor

Vertical projection of Row 1

Summary of *H* = 33*m* bench drill-hole deviation errors

Target inclination	14.0°
Average inclination	14.4 °
Standard deviation	1.4 °
Target azimuth	0.0°
Average azimuth	-7.6 °
Standard deviation	7.7 °

Bench	Drill-hole	Inclin. and directional	Deflection	Total deviation	Deviation
height, H	length, L	errors, ΔL_{I+D}	errors, <i>Δ</i> L _{def}	errors, <i>A</i> L _{total}	$\Delta L_{total} / L$
(m)	((mm)	(mm)	(mm)	(%)
9	9.3	440 (140)	120	420	4.5
13	13.4	640 <mark>(210)</mark>	240	650	4.9
17	17.6	840 <mark>(275)</mark>	400	900	5.1
21	21.7	1040 <mark>(340)</mark>	610	1190	5.5
33	34.1	1630 <mark>(530)</mark>	1470	2270	6.7
	()	values where the systematic azin	nuth error has been e	excluded	

Summary of drill-hole deviation prediction

Prediction of overall drill-hole dev	viation mag	gnitude
 collaring errors 	∠L _c	~ d
 inclination + direction errors 	ΔL_{I+D}	$= k_{I+D} \cdot L$
	k _{I + D}	= 20 - 60 (<i>mm/m</i>) or 1.1° - 3.5°
 deflection errors 	ΔL_{def}	$= k_{def} \cdot L^2$
total errors	ΔL_{total}	$= (\Delta L_{I+D}^{2} + \Delta L_{def}^{2})^{1/2}$

Straight-hole drilling components				
• driller	 marking, collaring position and feed foot slippage adjustment and feed control 			
• drill rig	 inclination and directional control, hole depth, drilling control systems, collaring procedures 			
• drill steel	 bit skidding while collaring, sagging and deflection control 			
 management 	 quality and cost of shotrock production, blasting safety and documentation 			

Prediction of deviation errors

- direction of deviation can not be "predicted"
- magnitude of deviation can be predicted

Rock mass	factor,	k _{rock}
-----------	---------	--------------------------

 massive rock mass 	0.33
 moderately fractured 	1.0
fractured	2.0
 mixed strata conditions 	3.0
Bit design and button factor, k _{bi}	it
 normal bits & sph. buttons 	1.0
 normal bits & ball. buttons 	0.70
• normal X-bits	0.70
 retrac bits & sph. buttons 	0.88
 retrac bits & ball. buttons 	<i>0.62</i>
• retrac X-bits	<i>0.62</i>
• guide bits	0.38

Drill-hole Deviation Prediction						
		preun=3	S.AISPA. LISI			
Location				Bench H - a	3m	
Rock type				Granitic and	88	
Bit type				Retrac bit		
-it type						
Bit diamet	er (mm)			dbit	76	
Rod diame	eter (mm)			dstring	45	
Guide tube diameter (mm)			dguide / No	No		
Total deflection factor				kdef	1,34	
	rock mass			k rock	1,30	
	drill-string	stiffness		kstiffness	0,138	
	bit wobblin	g		kw obbling	0,592	
	guide tube	s for rods		kguide	1,000	
	bit design	and button	factor	k bit	0,88	
	constant			k rod	0,096	
Inclinatio	on and dir	rection er	ror factor	kI+D	47,8	
	n develo (n nur li ci	ion			
Urili-hok	e aeviatio	Drill bolo		Drillabolo	Drill hele	
	Length	Inc + Dir	Deflection	Deviation	Deviation	
	L		ALdef	ALtotal	ALtotal / I	
	(m)	(mm)	(mm)	(mm)	(%)	
	9,3	444	116	459	4,9	
	13,4	640	241	684	5,1	
	17,6	840	415	937	5,3	
	21,7	1036	631	1213	5,6	
	34.1	1628	1559	2254	6.6	

How drilling errors affect down-stream operations

Drilling	reduced drill steel life
Blasting	 danger of poor explosives performance in neighbouring shotholes due to deflagration or deadpressing
	 danger of flyrock due to poor control of front row burden
Load and Haul	 poor loading conditions on "new floors" with reduced loading capacities due to toes and quarry floor humps and locally choked (tight) blasts
Good practice	• max. drill-hole deviation up to 2-3 %

