Explosives & Initiation systems

Harald Bornebroek

Improving Processes. Instilling Expertise.

Orica Mining Services

• The world's largest supplier of commercial explosives

- 28% market share 50 countries
- 4 mil. tons of bulk explosives, 10.000 tonnes/d, 1500 blasts/d
- Pioneers of new technology
- Advanced blasting solutions tailored to specific customer needs and challenges
- Regional offices in Australia, Asia, Europe, the Middle East, Africa, North America and Latin America
- Partnering Customers in open cut coal, open cut metal, underground mining, seismic, avalanche, quarrying and construction markets

Explosion

...a rapid expansion of matter into a volume much greater than the original volume.

Explosive

...a combination of various substances and mixtures that produce a rapid exothermic reaction when initiated.

All Explosives Require Fuel and Oxidizer

Explosive Properties

Explosive efficiency is dependent on intimacy of fuel/oxidizer contact...

Smaller Particles

More Efficient

Emulsion Matrix

Sensitising

And what makes the **ANE MATRIX** into an **EXPLOSIVE?**

Physical sensitisation

• Glass Micro Ballons (GMB)

Chemical sensitisation

• Gas bubbles ("Chemical-Gassing")

Unsensitised Matrix

Sensitized Matrix

Molecular Explosives Oxygen and Fuel In Molecule, not just mechanically mixed

PETN TNT HMX

QUARRY ACADEMY

Detonation

A specific type of explosion consisting of an exothermic reaction which is always associated with a shock wave.

Important Characteristics of a Detonation

- Fast Release of Energy
 - **Generates Shock Wave**
 - **Generates Large Gas Pressure**

Blast Resultants

Crushing Around the Borehole Wall: Crack Formation: Shearing: Heat and Light: Mass Movement: Ground Movement: Air Blast:

Explosive Properties

- Velocity of Detonation
- Density
- Detonation Pressure
- Borehole Pressure
- Sensitivity
- Energy

- Pressure Tolerance
- Safety
- Temperature Affects
- Post Blast Fumes
- Shelf Life
- Water Resistance

Velocity of Detonation

The Rate at which the Detonation Wave Travels Through an Explosives Column

QUARRY ACADEMY

Factors Affecting Detonation Velocity

- Oxidizer Fuel Interface
- Confinement
- Temperature
- Product Density
- Product Diameter
- Oxygen Balance

Density

Grams per Cubic Centimeter

ANFC) Densit	y 0.84	4 g/cc

Emulsion Matrix 1.4 g/cc

Density Control

Add Microballoons or Air/Gas

Detonation Pressure

A Function of Density and Velocity of Detonation

Density x (VOD)²

Detonation Pressures

Explosive	Pressure (kbars)	
ANFO	34	
Water Gel	76	
Emulsion	100	
Ammonia Gelatin Dynamite	135	
Pentolite Cast Booster	240	

QUARRY ACADEMY Digability

Energy Partitioning

Shock Energy

Gas Energy

Absolute Weight Strength (AWS)

The Absolute Amount of Energy Available In Each Gram of Explosive

Absolute Bulk Strength (ABS)

The Absolute Amount of Energy Available In Each <u>Cubic</u> <u>Centimeter</u> of Explosive

Relative Weight Strength (RWS)

Compares Explosive Energy per Weight to the Energy of an Equal Weight of ANFO

Standard ANFO

RWS = 100

Relative Bulk Strength (RBS)

Compares Explosive Energy per Volume to the Energy of an Equal Volume of ANFO

Sensitivity

Ease of Initiation by ...

Shock Impact Friction Heat

UN Classifications for Explosives

1.4 Detonating Devices

- 1.5 Booster Sensitive Explosive
- 5.1 Oxidizer

Water Resistance

The Ability of an Explosive to Withstand Exposure to Water

WATER RESISTANCE

- **Detonators**
- **PENTEX Boosters**
- **Packaged Emulsion**
- **Bulk Emulsion**
- **Emulsion/ANFO Blends**

ANFO

Blasting Fumes

Harmless and Harmful . . .

CARBON DIOXIDE	CARBON MONOXIDE
WATER VAPOR	NITROUS OXIDES
NITROGEN	HYDROGEN SULFIDE
OXYGEN	

EXPLOSIVES SELECTION CRITERIA

- Ground water conditions
- Rock properties
- Hole diameter & depth
- Drilling capacity / costs
- Rel. explosive costs per unit of effective energy
- Fragmentation & Heave characteristics
- Shelf life
- Desired results

Initiation Systems

Definition

An Initiation System is a means of detonating high explosive charges **reliably**, at the specified **time** and in the correct **sequence**

Shock Tube Construction

QUARRY ACADEMY

- Multiple Layers Tubes
- HMX / AI Dust Mixture
- Coreload Limits ≈ 15 mg/m

Nonelectric Initiation Shock Tube – Live & Fired

Shock Tube - Live

Shock Tube - Fired

Shock Tube vs. Detonating Cord

QUARRY ACADEMY

3 Areas of Initiation System

Detonator Assembly

Surface Delay - Construction

Function Surface Delay

Electric Initiation of Nonelectric Blast

QUARRY ACADEMY

Nonelectric Initiation of Nonelectric Blast

Detonating Cord Cord Types

'Cordtex' 3.6 'W'
Uniflex
'Cordtex' 5 'W'
'Cordtex' 5 'P'
'Cordtex' 10 P
Redcord
'Profiler'

Detonating Cord

MS Connector

to Fire detonating cord ONLY

Nonelectric Initiation

Pro's and Con's

Pro:

+ easy handling,

- + no extra tool required,
- + ruggedized,

+ safe against stray current,

- + no risk of Leakage,
- + no system limits,

Contra:

- no Circuit Testing,
- additional element: Surface Delay,
- Calculation of the real firing time,
- accuracy,
- Shock Tube can not be shortened/cut,
- Shock Tube waste in muck pile.

Detonator Construction

Precision & Value

Influence of Timing on Wave Frequency

High frequency – Choppy Ship is smooth - Don't feel anything

Ship rolls - Unpleasant

Benefits of Electronic Initiation

- Smooth walls reduced back break
- Improved fragmentation reduced fines
- Improved vibration control
- Precise control over rock pile heave
- Unlimited timing possibilities

www.quarryacademy.com

Improving Processes. Instilling Expertise.

