Screening – Making The Right Stuff

Improving Processes. Instilling Expertise.

"Theory of Screening"

Often described as "not so much a science but a black art"

So let's see what we can make of it.

- What is screening?
 - Particles being classified based on their size

Feed

Undersize

Screening Theory STRATIFICATION

- Large particles rise to the top \bullet
- Smaller particles sift through the voids and find their way to • the bottom
- A material bed is required for effective screening

What is conventional-screening?

Material is fed onto the screen.

What is conventional-screening?

What is conventional-screening?

Material moves along the screen due to gravity and the motion of the screen

Conventional screening is based on stratification

What is conventional-screening?

Particles of the same size end up in the same layer, this is called <u>stratification</u>

What is conventional-screening?

What is conventional-screening?

Conventional Screening – based on stratification

Throughput along the length of a screen

(through screening surface)

Screening surface

Selection of critical undersize

What is free-fall screening?

Stratification of material on deck

Free-fall screening is based on principle of free-flow of the material trough and over the deck. Optimal free-fall screening demands at least 70 % of the feed through the deck.

Screening Theory

FREE FALL SCREENING

Near Perpendicular Motion

Deck Inclinations

Screening Efficiency... is a measure of the accuracy at which a screening machine is able to separate particles smaller than the screen deck openings from particles larger than the screen deck openings.

Screening Efficiency

Efficiency of undersize <u>RECOVERY</u>

E = (81/90)100**= 90%**

E = (9/10)100= 90%

Screening Efficiency SCREEN EFFICIENCY AS AFFECTED BY LOAD

Screening Efficiency MAKING IMPROVEMENTS

How Can Screening Efficiency Be Increased?

- Lower angle of incline
- Lower material bed depth
- Increase efficiency of screen media
 - More open area
 - More flexibility
- Reverse rotation of inclined screen
- Wet screening
- Optimize speed and/or throw

a = Separation Size

Hole size – Rubber vs Wire

Screening Theory MAXIMUM MATERIAL BED

- **D** = No more than <u>4 times</u> the opening for Aggregate
- **D** = No more than <u>3 times</u> the opening for Raw Coal
- **D** = No more than <u>3 inches</u> for Drain & Rinse or De-sliming

Factors Affecting Material Speed & bed depth.

Stroke length

Mechanical Limits ACCELERATION

Directly Related to Speed and Throw of Screen

• G-FORCE = {(RPM)² x THROW} / 70,400

Application Dependent

- Coarse Separation Low Speed and High Throw
- Fine Separation High Speed and Low Throw

AFFECTS THE OPERATING STRESS LEVELS OF THE SCREEN BODY

Mechanical Limits

CARRYING CAPACITY

Carrying Capacity...the amount of material a screening machine can carry over the decks before the momentum of the screen body is overcome by the weight of the material.

Which bed depth is right for stratification?

A thick bed:

- Becomes easily fluid, helps stratification.
- Shorter distance for fine particles to sift down to the deck.
- Less pegging tendency, stones are not forced down.
- Can promote bouncing and critical size carry-over.
- Can reduce accuracy.
- Overload the screen carrying capacity.
- Can prevent segregation and fines carry-over

Bed-depth has to be right—not too thick not too thin!!!!

Screens Calculation of screen area

Basic formula for through put in conventional screening (t/h per ft²):

Screening Area ft² = U / (A x B x C x D x E x F x G x H)

- A: Nominal capacity for separation
- B: Oversize (0.45 ... 1.04)
- C: Halfsize (0.5 ... 3.5)
- D: Deck Location (1.0 ...0.8)
- E: Wet screening (1.0 ... 2.0)
- F: Material Weight (1.50.3)

- G: Open area of screen media
- H: Shape of Opening (1.0 ... 1.2)
- U: Undersize stph smaller than opening

n media (1.0 ...1.2) aller than opening

Basic factor A; nominal capacity

100

Factor B; amount of oversize

- © Oversize stop bouncing
- \otimes Oversize is "in the way" for small particles to get through the bed

QUARRY ACADEMY

% Oversize in the Feed

Factor C; Amount of half size

- Halfsize is % smaller than 1/2 the separation in through put
 - Small stones pass easily
 - Big stones goes over easily
 - Nearsize stones needs a lot of area to "select" an opening

Factor D; Deck position

Deck Position	Factor: I
1	1.0
2	0.9
3	0.8
4	0.7

- The material reaches the lower decks later
- Especially a problem for some short four deck screens

Factor E; wet screening

- Water helps small particles sift through, flushes the fines through the holes
- Big stones are less influenced by water
- Water amount, where it is added, pressure & type of nozzles is important

In dry screening and >25 mm separation, E=1

Factor F; bulk density

 Not linear, neither "practical" (especially over 1.6 t/m3) density) **QUARRY** ACADEMY

Factor G; Open area of screen media

G = % open area available

Base area (50)

Factor H ; Surface Opening Shape

Square	1.0
Round	0.8
2:1	1.15
3:1	1.2
4:1	1.25

Factors influencing screen performance

Resonant Frequencies WHY WE TEST

- If operating speed is near a natural frequency, a state of resonance will occur causing self destruction
- Resonance frequencies vary on different sizes and types of screens
- To fine tune a finite element analysis model
- To eliminate trial and error

Resonant Frequencies WHEN WE TEST

Industry Changes Require New Designs such as:

- Larger screens
- Synthetic surfaces
- Different speeds
- Higher "G" force
- Increased production
- Special options

Resonant Frequencies FINITE ELEMENT ANALYSIS

Resonant Frequencies FINITE ELEMENT ANALYSIS

Side Plate Bending

Torsional Mode

THROW CARDS

Critical frequencies at 840, 885 and 825 RPM. **Operating speed at 750 RPM.**

Analyzer Detects Critical Frequencies

FREQUENCY ANALYSIS

800 RPM OPERATING SPEED

Resonant Frequencies RESULTS, ANALYSIS & CORRECTIVE POSSIBILITIES

Results Indicate Large Operating Window:

• No changes required

Results Indicate Small or No Operating Window:

- Speed change
- Structural change

SPEED CHANGE REQUIRES THROW ADJUSTMENT OR MECHANISM CHANGE

www.quarryacademy.com

Thanks for your attention

Improving Processes. Instilling Expertise.

