Load & Haul Practical Cost Improvement Volvo Construction Equipment

Improving Processes. Instilling Expertise.

Course Agenda

- Purpose and Goal
- A Test
- Where's the Money??
- Practical Cost Improvement
 - Big Idea
 - Additional Ideas
- Conclusion

Course Purpose

- Provide simple, but tangible ideas to improve productivity or costs of your current mobile fleet.
- **Important** This is an open <u>dialogue</u>, not a lecture.

Course Goal

• Deliver at least 2-3 ideas for basic but significant improvement in your operations.

Load & Haul A Test

QUARRY ACADEMY **Producer Price Indices (PPI)**

Load & Haul A Test

QUARRY ACADEMY **Producer Price Indices (PPI)**

Observations

- **Prices** \rightarrow Moving in the good direction
- **Cost** \rightarrow Moving also, which direction?
 - \rightarrow with higher fluctuation.

Managing Costs - Key to:

- Business viability ?
- Competitive advantage ?

Ways to improve

- Change what you do,
- Change how you do it,
- Change what you **use** to do it.

What is an O & O ?

• Est. Ownership and Operating Costs

Ownership = Cost of capital or asset . . .

"Variable" Operating = Cost of operating the asset . .

Usually expressed as \$ per hour.

Estimated O&O Costs Where's the Money ??

40 ton Articulated Hauler

50 ton Wheel Loader \$132.08/hr

<u>Assumptions</u> - 20,000 hrs - \$20/hr operator wage - \$4.00 /gal diesel

Where's the Money ?

• Fuel → Consumption is your #1 opportunity, TODAY

What can you do about it ???

- Fuel consumption depends on:
 - Machine applications,
 - Operator efficiency.
- Operators competency depends on:
 - Experience
 - TRAINING.

Operator Training

Measure

- → Benchmark
 - \rightarrow Continuous Improvement
 - = Lowered Costs

THE BIG IDEA

Operator Training

- Something you can affect, today
- Good for safety, production, and accounting
- Good for operators career and well-being.

Training Success Stories

- Where real, tangible cost reductions were made.
- Common themes:
 - Measurement
 - Evaluation
 - Fleet benchmarking

Example #1 Sand Plant - 5 x wheel loaders (L110)

• Cost improvement desired by owner.

Actions Taken

- Contacted the local dealer
- Reviewed machine data history
- Checked assumptions
- Made a plan.

Example #1 Sand Plant - 5 x wheel loaders (L110)

Example #1 Sand Plant - 5 x wheel loaders (L110)

- One machine = +1.2 gal/hour more
 - Over 5 years

→ +\$9,600 more cost /year → +\$48,000 additional cost.

- Actions Taken with dealer
 - Checked machine and operating conditions
 - Provided operator training.

Result \rightarrow Pulled fuel burn back to fleet norm - with no loss in productivity.

What Changed?

- Training work **with** the machine, not **against** it.
 - Better utilize high torque / low RPM engine & load-sensing hydraulics
 - \rightarrow Noise/smoke don't equal production.
 - Better bucket loading while burning less fuel.

Example #2 Compost Producer - 5 x wheel loaders (L180)

- Operator training provided as part of a continuous improvement program.
- **<u>Before</u>** Operator Training
 - Average fuel consumption
 - Average tire life 2,000 hr per set.
- After Operator Training
 - Average fuel consumption
 - Average tire life (est.)

- 4.7 gal/hr (1.6 gal/hr less)
- 4,000 hr per set.

6.3 gal/hr

<u>Result</u> Fuel Savings per fleet

up to \$64,000 per year

(1.6 gal/hr x 5 units x 2,000 hr x \$4.00/gal)

 \rightarrow Plus additional savings from improved tire life...

Example #2 Compost Producer - 5 x wheel loaders (L180)

What changed?

- Recurring "pedal-to-the-metal" mentality:
 - Expensive in fuel and noise, but
 - Also tire life and component life.
- Utilized on-board data
 - Targeted the training
 - Validated the improvement
 - **Quantified** the improvement
 - → Supports a fact-based **business case**, not opinion.

On-board Data

• Idle time and Engine speed

What is a typical idle time (%), for a loader?

• Idle time -30-55% typical on many sites.

... Waiting on trucks, smoke breaks, lunch, shift change ... it adds up.

Example #3 – Idle Time Impact

- Typical Case
 - 2,000 engine hr/year
 - 50% idle (1,000 hr work)

After 5 years:

- Hourmeter 10,000 hr
 - warranty status?
 - residual value?
 - engine/component life?
- Service Expense
 - 20 x 500hr services(40 x if 250hr intervals)
- Operating Expense
 - Fuel burn?

 Improved Case – What If? 1,000 hr work + 33% idle → 1,500 engine hr/year 	<u>Example</u>
After 5 years:	
 Hourmeter 7,500 hr warranty status? residual value? engine/component life? 	\$20,000
 Service Expense 15 x 500hr services (30 x if 250hr intervals) 	±\$ 9,000
 Operating Expense Fuel burn: 1500 gal less? 	+\$ 6,000
= The difference \$??	= \$35,000 +

Example #4 - Recycling yard 3 x Excavators (EC290)

- Working with grapples, busy jobsite, 3 shift operation
 - Remote-monitoring showed **30% idle time**
- The owner proposed a trial **operator incentive plan**:
 - Share any fuel savings over a 90 day period.
- Results:

15% reduction in idle time

 \rightarrow saved 3 gal/machine/day \rightarrow 810 gallons saved over the test period.

Reduced max engine RPM and utilized the auto-idle feature

 \rightarrow saved 5 gal/machine/day \rightarrow 1350 gallons saved over the test period.

- Total = 2,160 gallons saved over 90 days → \$8,640 saved (\$4.00/gal)
 - \rightarrow extrapolate to 1 year = \$34,560
 - \rightarrow extrapolate to 5 yrs = \$172,800.

Conclusions

• Expensive technology isn't necessary to save fuel

Optimize operator performance, TODAY

 \rightarrow continuous training, monitor data and evaluate.

 \rightarrow a little training \$ can save a lot \$\$ in fuel.

 \rightarrow Make an ROI!

- In these examples, savings potential per unit over 5 years:
 - Ex #1 \$48,000 saved per unit
 - Ex #2 \$ 64,000 saved per unit
 - Ex #4 **\$ 57,600** saved per unit.

... in fuel alone. Plus tires and other benefits . . .

• How does this compare to your annual training budget??

<u>But</u> . . . ?

- "My operators are all professionals . . ."
 - "They share experiences and help each other . . ."
 - "I can rely on them to know what is best . . ."
 - "My guys have 20 years experience. They've seen it all . . ."
 - "We train every year . . ."

Separate Fact from Opinion!

Volvo Operator Evaluation

- Empirical study on behavior, variability, and performance:
- **Tested** 73 operators, classified in 4 skill levels
- Metrics Productivity, fuel efficiency, and performance in 3 wheel loader applications.

Volvo Operator Evaluation 2012

• 73 operators, self-graded 4 categories: Novice, average, inside professional, external professional.

3 Quarry Applications Tested

(crushed stone)

1. Rehandling

2. Load & Carry (crushed stone)

QUARRY academy 3. Face Loading (blasted rock)

Volvo Operator Evaluation 2012

• 73 operators, 4 categories: Novice, average, inside professional, external professional.

Some Conclusions

- A. Overlap between categories reliable self-evaluation?
- B. 'Novices' vs 'professionals':
 - Productivity varied up to 700%
 - Fuel efficiency varied up to 200%

C. <u>Excluding</u> 'novices':

- Productivity still varied up to 300%
- Fuel efficiency still varied up to 150%
- D. Strong relation between experience and results
 More experience (trained) = better results.
- E. Variability within 'professionals' <u>only</u>!
 Productivity varied over 100%
 - Fuel efficiency varied over 70%.

Observations

- **Prices** \rightarrow Moving in the good direction
- **Cost** \rightarrow Moving also, which direction?
 - \rightarrow with higher fluctuation.

Managing Costs - Key to:

- Business viability ?
- Competitive advantage ?

Ways to improve

- Change what you do,
- Change how you do it,
- Change what you **use** to do it.

Operat<u>ional</u> Improvement

Example #5 – Truck Loading

Example #5 – Truck Loading

As shown on video

Max Production (approx) *

- 23 trucks/hour
- 920 tons/hour (835 tph)
 * 30 second spot time.

What If spot = 15 seconds?

Max Production (approx)

- 26 trucks/hour
- 1040 tons/hour (943 tph)
 - → 13% improvement

+120 ton/hr x 8 hr/day = +960 ton/day = \$ ____ ?

Example #5 – Truck Loading

+ Productivity + Safety

Backhoe excavator working on the pile

Example #5 – Truck Loading

- Backhoe excavator working on the pile
- + Productivity + Safety

15 second spot time <20 second load cycle

Example #6 – Optimal Truck Payload

• How many passes is best?

Example #6 – Optimal Truck Payload

- **Coal mine**, poor weather conditions
 - Fleet of 90t rigid dump trucks
 - 15.5 yd³ face shovel, poor digging/fill factor
 - 5 pass loading, slight overload
 - 1.2 mile main ramp out of pit
 - 10% grade + 5-7% rolling resistance.
- Truck Fleet Issues
 - Operating costs
 - Unscheduled downtime.

Example #6 – Optimal Truck Payload

QUARRY Academy

Example #6 – Optimal Truck Payload

Proposed Solution

 4 full pass to 88 ton payload (vs. 5 lite passes to 101 ton).

Results

- 12% faster cycle time
- 25% less time on grade, utilizing 2 gears instead of one.
- Per unit truck production the same (99%) despite lower payload each cycle.

Potential Upside

- Higher shovel production
 - \rightarrow more fleet production potential.

As-Is	Proposed
5 pass	4 pass

Payload	Т	101	88
Truck Cyc	le Time	min	min
Load Time	e	2.7	2.2
Haul	pit floor	1.0	1.0
	main ramp	13.3	10.0
	top road	2.0	2.0
Turn/Dum	р	1.5	1.5
Return	top road	2.0	2.0
	main ramp	7.0	7.0
	pit floor	1.0	1.0
Spot Time)	0.5	0.5
	Total	31.0	27.2
			88%

Unit Truck Production		
Cycles/50 min hour	1.61	1.84
Unit Production (Tph)	162.9	161.9
		99%

Theoretical Shovel Production				
Trucks/Hour Capacity	15	19		
Hourly Production (Tph)	1,239.0	1,340.0		
		108%		

Example #7 - The Impact of Attachments

Consider Yard Operations

Loading crushed stone from a stockpile = "Rehandling"

• Rehandling is a unique application

- Flat, maintained area
- Consistent material and digging conditions
- Varied loading points
- Traffic Zone?
- Old(er) machines, often with a GP or rock bucket?
 - GP = General Purpose

→ A purpose-built re-handling package = +7% efficiency vs. GP bucket.

Example #7 - The Impact of Attachments

Example #8 - The Impact of Tires

Match the Tire to the Job

• Tread pattern, tread depth, rubber compound.

Consider Load & Carry

• Which is 'right' for the job? What's the cost of mis-application?

Example #8 - The Impact of Tires

Match the Tire to the Job – Load & Carry

Example #9 – Operational Layout

- Load & Carry vs. Load & Haul
 - \rightarrow Do you need trucks?

Potential Benefits

- Less operators, less traffic
- Better utilization
- Different ramp/hopper design

Economics – depends on travel distance

- Traditional Break Even: 50-120m (150-400')
- Today: +/-200m (650'). Why?

QUARRY

ACADEMY

Final Conclusions

• Cost efficiency

- Fuel consumption is key
- Invest in your operators it's worth it!
- Leverage monitoring data
- Continuous, systematic training

Optimize operations

- Traffic fundamentals
- Payload matters
- Get the specs right for the job
 - cost vs. benefit

• Fleet considerations

• Viability of load & carry vs. short hauls.

Thank You! Questions?

David Nus

Director, Global Mining & Aggregates

david.nus@volvo.com

M: +1 828.301.7654

www.quarryacademy.com

Improving Processes. Instilling Expertise.

