Screen Applications

Charles Hillman

Improving Processes. Instilling Expertise.

Screening

Separation using a media for sorting particles by particle size

How is a Screen To be fed ?

The Screening Process

- **1.** Stratification (on feed plate)
- 2. Stratification (on screening media)
- **3.** Extraction of "easy" undersize particles <75 % of hole size
- 4. Extraction of "critical" undersize

DYN

Dyno Nobe

Very high fines content

Stratification - Properties

- Horizontal transport of material along the screen deck
- Vibrations create a fluid state in the bed
- Small particles flow between large one stratification
- Small particles fall through selection based on probability
- Correct material bed is necessary for stratification and selection

Screening Theory

Screening Theory - Example

Screening Principles

Incline Uses Gravity +/- 20 degree. Energy Efficient • Linear motion Horizontal or inclined decks

Retention Time is 1.5-2.0 longer

Free-Fall - Properties

- Screen decks inclined to keep vertical movement
- Low bed depth allows small particles fall trough media.
- High horizontal velocity keep big particles of the feed zone
- Higher utilization of screening area
- Vibrations to create horizontal movement

Screening Applications

The Screen Area Sizing method

- Based on separation, not on hole size. Product ?
- Based on accuracy, percentage over & or undersize. Spec.?
- What is actually required of the final product ! Use / Where?
- Aggregates oriented market / Shape
- Disregards "efficiency" concept (Quick Cut/Re-direct)
- Intended for screening of zero to "x" fractions (Long)
- Very accurate for fine screening (Surface Area Bed depth)
- Constant revisions ,(Multiple tasks or media)
- Media Type (Open Area / Metal /Synthetic)
- Washing Plant

Screening Area Factors

Schemarubrik

Calculation method:

What bed depth is right for stratification?

- Becomes easily fluid, helps stratification
- Means shorter distance for fine particles to sift down to the deck
- Means less pegging tendensy, stones are not pressed down
- A thick bed:
- Slower speed gives more time on screen and more time for selection
- Sufficient bed prevents bouncing

What bed depth is right for accuracy? (Discharge end)

- Max bed depth at discharge is 3 5 times separation
- Min bed depth is 1 time separation
 - If too thick, all stones have probably not had enough chances to pass
 - With too thin bed, material will be bouncing which destroys the stratification & accuracy

Factors affecting bed depth:

Factors affecting material speed

Moisture problems and solutions

- Use maximum stroke (Increase Stroke).
- Use flexible media such as:
 - ✓ Flexible rubber/polyurethane
 - ✓ Thin wire mesh, piano wire/harp screens
 - ✓ Z –Wire
- Water sprays
- Ball decks
 - ✓ Works on screens with low inclination

Capacity through deck, factors

$Q_{spec} = A \times B \times C \times D \times E \times F \times G \times H \times I \times J \times K \times L$

Q spec: Specific capacity (t/h x m²)

- A: Separation
- B: Oversize
- C: Halfsize
- D: Type of material
- E: Bulk density
- F: Moisture

- G: Type of screen
- H: Wet screening
- I: Deck position
- J: Screening element
- K: Fraction length
- L: Accuracy demands

Screen Variations

Horizontal Linear Motion Screens

(Free Swing)

- ✓ Good accuracy
- High capacity per m²
- Low build height
- ✓ Low wear on screening media
- ✓ Good drain, rinse and dewatering capacity

- Increased risk of pegging
- More complicated drive
- Higher energy usage
- More complex mechanism adjustments
- High Cost

Inclined Circular Motion Screens (Free Swing)

- Wide application range
- Resistant to pegging
- ✓ Simple drive (Single or Dual)
- Light design
- ✓ Average Cost
- High build height
- Not best accuracy
- Not highest capacity
- Low retention time

Resonance Screens

- ✓ Good accuracy per m²
- ✓ Very low build height
- Low tendency to pegg
- ✓ Allows for long screen lengths
- Low dynamic loads on foundations
- ✓ Many fractions from one deck possible
- Low capacity
- High weight
- Expensive
- High maintenance

Elliptical Motion Screens

- Good accuracy per m²
- Low installation Head Room (Portable) **Dual Shaft**
- Low tendency to peg
- Reduced wear on screening media (not always) \checkmark
- ✓ High Capacity
- Flexiable Application
- Triple-shaft screens Expensive drive with gearbox
- Highest energy use
- Can be tough to change cloth

Tensioning Types (Side)

Tensioning types (Length/End)

Side Frame & Torsional movement

 Stiffer sideplates in vertical direction will help

 Diagonally stiffer frames will help

Factors Influencing Natural Frequencies

- Height & weight of sideplates
- Thickness & stiffness of sideplates
- Distance between decks
- ✓ Weight of decks and media
- Frame stiffnes in different directions
- Back plate design
- ✓ Unders Carrying Tray under screen
- ✓ Extra crossbeams over top deck
- Extent, quality and position of welds
- Corrosion, cracks and unproper repairs
- ✓ Springs & Screen Support Frame

How can carrying capacity be increased?

INCREASE MOMENTUM OF SCREEN $(M_1V_1=M_2V_2)$

- Larger throw
- Increased RPM
- Heavier screen box maybe required

INCREASE MATERIAL TRAVEL RATE

- Steeper incline Angle
- Straight line motion versus circular motion

CARRYING CAPACITY

- m = Eccentric weight (inclined screen) or live weight (horizontal screen)
- v = Material travel rate (fpm)
- s = Stroke (inches)
- n = Screen rotational speed (rpm)
- I = Length of screen deck (ft.)
- C₁ = Constant derived from performance data

Bearing life:

Calculated using eccentric weight, throw, speed, basic dynamic capacity (BDC.) of bearing, and constants for vibrating equipment:

B₁₀ Life =
$$\frac{16,667}{\text{RPM}}$$
 x $\begin{bmatrix} \frac{\text{BDC}}{\text{Fa x P}} \end{bmatrix} \frac{10}{3}$

Fa = 1.2 factor for vibrating equipment

- **A** Number of bearings
- $P = \frac{\text{Eccentric weight x 1/2 throw x (RPM)}^2}{35,200 \text{ X A}}$
- Speed changes will effect bearing life more than throw changes.
- Increasing the mass will decrease bearing life if the throw is maintained

Bearing life:

BEARING LIFE "continued"

Bearing Life:

- Decreases as speed increases
- Decreases as throw increases
- Decreases as weight increases

LUBRICATION: TYPE, TEMPERATURE AND VOLUME ARE IMPORTANT FACTORS

Checks for Performance

- **Bed Depth**
- Too High
- Too Low
- Unbalanced
- Fed from The Side
- Underfed
- Cracked Structural/support
- Rock n Roll
- Unstable Motion

Low Cloth Life - Poor feed

- Poor feed Material
- Wears Quickly
- Low Lower deck Life
- **Carry Over**
- Unders Mixed w/Overs
- Plugging decks
- Flattens/ Shakes Poorly
 - Poor Material Movement
 - Box Moves/ Not Material
 - Material flows odd
 - Material Moves Slow

- Carrying to many Unders
- Bouncing/Spillage, Low Bed Depth
- Heavy/Light Side Load
- Low Bed depth
- Sags material travels to side
- Sagging Media / Timing/ feed (Surge)
- Feed /C/L Gravity/Frequency (critical)
- High Drop Point, No or small feed Box
- Oversized material For Media Design
- Setting /Angle Material Abrasive
- Improper choice of Upper deck/feed
- Too little Area/Bed Depth/ Media Type
- Angular Fraction/ Hole type/ Media
- Moisture Content / Media
- Belt tension / Momentum/Speed
- Check Cloth tension/ equal
- Springs Stiff/ weak/Poor Support (frame)
- Cracked deck Support Frame (weld)
- bad Belts/ Motor or Bearings

Track Temperature & frequency As well as belt tension & Media tension

- Blinding
- Performance

Media/Screen Applications

Screen	Primary	Secondary	Thirtary	Final &	Pros/Cons	Throw	Accelera
Location	Scalp	Separation	Separation	Washing		Inches	te-
							ration
							(G)
Inclined HD	Х					1/4-1/2	2.5-3,5
Inclined Med.		Х	Х			1/4-3/8	2,5-4.4
Linear /Horizontal		Х	Х	Х		1/4-3/4	5,0
Free-Fall HD	Х	X				5/16-3/8	3,5-5.0
Free-Fall FLO			X				3,5-4.5
Steel Bars /Plate	X	Х			Cost/Stress		
Rubber/Steel Lined	Х	X			Weight/Cost		
Heavy Rubber		Х			Life/Open Area		
Heavy Wire		Х			Cost/Open Area		
Wire		X	X	X	Cost,Area/Life		
Rubber		Х	X	X	Life/Cost,Area		
Poly/Synthetic			X	X	Life,Flexbility/Cost		
Light/Z- Wire/Piano				X	Area,Clean/Life		

Which Media ?

Media Options

Minimizing Common Screening Problems

Screening Problems	Wire Cloth	Harp Screen	Perforated Plate	Urethane	Rubber	Self- Cleaning
Plugging (wet)	Fair to Good 1,2	Excellent 1	Not Recommended	Good to Excellent	Fair	Excellent
Plugging (dry)	Fair to Good 1,2	Excellent 1	Not Recommended	Not Recommended	Fair	Excellent
Blinding or Sticking	Fair to Good 1,2	Excellent 3	Not Recommended	Fair	Not Recommended	Excellent
High Abrasion (dry)	Good 4	Good 1	Good to Excellent 5	Fair	Excellent	Good
High Abrasion (wet)	Good 4	Good 1	Good to Excellent 5	Excellent	Good	Good

1) oil tempered steel

2) slotted

3) stainless steel wire

4) premium wire

5) AR plate

Imagine !

Assume a Quarry has Three (3) finishing Screens

The three finishing screens operate at 85 % The Quarry produces 500,000 TP Year If we only improved the three Units to 92%

What could be the payback ?

Finish Screens see 320k x 1.07 =extra 22.4+1.6 24000 Tons *(More bottom line.....)* 24 x \$ 8.00 = 192 k

Which screen may have a carrying capacity problem?

Improving Processes. Instilling Expertise.

