Fragmentation Management for the Downstream Value Chain

Scott G. Giltner

Improving Processes. Instilling Expertise.

• SAFETY CULTURE •

Topics to Be Covered

- The purpose of drilling & blasting in producing crushed stone
- Relative cost of drilling & blasting vs other quarrying activities
- Cost/production opportunities offered with optimized fragmentation
- Factors affecting fragmentation
- Self-evaluation of fragmentation

Why Drill and Blast?

Blasting Intensity

- Drill and Blast is the first step in the breakage and separation process. Therefore, it impacts all the subsequent downstream process efficiencies.
- Drill and Blast is still the most cost effective method to break and move the large volumes of rock – when done correctly!

Rock Breakage Phases

Relative Energy and Costs

	Specific energy kwh/t	Energy factor	Cost factor	
Drill and Blast	0.1 – 0.25	1	1	
Load and haul	0.2 – 0.5	1 - 5	2 - 10	· .
Crushing	1 – 2	4 - 20	2 - 10	Lighten Up

Generally the harder the rock, the higher the factor.

Drilling & Blasting Cost - Leverage

- Blasting
- □ Secondary Breakage
- Loading
- Hauling
- Crushing

Drilling & Blasting Cost - Leverage

- Drilling and blasting is the first step in the comminution processes
- A 10% increase in drilling and blasting cost can be compensated by
 - ✓ 4.6% reduction in excavation and hauling costs

<u>or</u>

✓ 6.4% reduction in crushing

1% decrease in excavation/hauling = 2.1% increase in D&B

or

1% decrease in crushing/benefaction = 1.6% increase in D&B

Traditional Blast Optimization

\$/t

Blasting effort \$/t

Fragmentation Management

Fragmentation Management

Profit = Revenue - Cost

Common Fragmentation Issues

- Oversize breakage costs
- Excavator costs (diggability)
- Crusher costs (throughput)
- Recovery (fines)

Fragmentation Optimization Opportunities

- Better digging and bucket fill factors
- Consistent crusher throughput and power draw
- Reduction in blast induced damage
- Reduction in material losses (more saleable product)
- Potential to produce better priced end product

Factors Affecting Fragmentation

Balancing for Fragmentation

Geology Factors

Structure describes the features which primarily determine the fragmentation performance of the rock mass.

- Jointing/Bedding
 - Defines maximum fragment size
 - Influences transmission of stress wave
 - Influences gas penetration
- Rock Strength & Elasticity
 - Determines how the rock mass responds to the explosive energy applied
 - Influences confinement on explosive

Rock Structure

Block size < 0.7 ft (0.2 m)

Block size > 6.5 ft (2 m)

Rock Structure

Block size 0.6 - 3 ft (0.2 - 1 m)

Block size 0.3 - 0.8 ft (0.1 - 0.25 m)

Rock Properties

QUARRY ACADEMY

Effect of Rock Stiffness

Effect of Rock Stiffness

Blast Design Factors

- Hole Diameter
 - Influences energy distribution and burden stiffness
- Burden/Spacing
 - Influences energy distribution and burden stiffness
 - Relationship with joint spacing affects oversize
- Bench Height
 - Influences burden stiffness
- Delay Time & Accuracy
 - Influences interaction between detonating holes
- Staggered/Square pattern
 - Determines distribution of energy in rock mass

Hole Diameter & Burden/Spacing

Blast Design Factors

- Hole Diameter
 - Influences energy distribution and burden stiffness
- Burden/Spacing
 - Influences energy distribution and burden stiffness
 - Relationship with joint spacing affects oversize
- Bench Height
 - Influences burden stiffness
- Delay Time & Accuracy
 - Influences interaction between detonating holes
- Staggered/Square pattern
 - Determines distribution of energy in rock mass

Burden Stiffness

Stiffness = Height/Burden

Blast Design Factors

- Hole Diameter
 - Influences energy distribution and burden stiffness
- Burden/Spacing
 - Influences energy distribution and burden stiffness
 - Relationship with joint spacing affects oversize
- Bench Height
 - Influences burden stiffness
- Delay Time & Accuracy
 - Influences interaction between detonating holes
- Staggered/Square pattern
 - Determines distribution of energy in rock mass

Interhole Delay Time & Fragmentation

Blast Design Factors

- Hole Diameter
 - Influences energy distribution and burden stiffness
- Burden/Spacing
 - Influences energy distribution and burden stiffness
 - Relationship with joint spacing affects oversize
- Bench Height
 - Influences burden stiffness
- Delay Time & Accuracy
 - Influences interaction between detonating holes
- Staggered/Square pattern
 - Determines distribution of energy in rock mass

Explosive Energy Distribution

Explosives Factors

- Velocity of Detonation
 - Indication of energy available
 - Indicator of energy partitioning (shock vs gas)
 - Determines how explosive energy is applied to rock mass
- Density
 - Influences total explosive energy available in a hole
- Coupling
 - Influences transfer of explosive energy to rock mass

Explosive Selection

Explosive Selection to Meet Rock Structure and Strength Properties

Strength

Structures

Explosive Selection to Meet Blast Objectives

Fragmentation requirement

In Summary Fragmentation Results...

Have a significant impact on quarry economics

Therefore, Fragmentation Optimization ...

- Should consider all the downstream processes rather than just drill and blast costs
- Should consider quality as well as quantity
- Should be site specific
- Should be flexible to cope with site specific changes and market conditions

'Take Home' Questions on Fragmentation

- Does the shovel/loader bucket fill with a single smooth pass?
- Does the shovel/loader remain stable during digging (no rocking or violent movements)?
- Does the muckpile flow during digging?
- Do the haul trucks dump at the crusher without delay?
- Is the throughput and power draw of the crusher consistent?
- Is secondary breakage required on a regular basis?
- Are the desired product sizes produced without waste (fines or other unsaleable/low profit products)?

www.quarryacademy.com

Improving Processes. Instilling Expertise.

