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3-D Inversion of Induced Polarization Data
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ABSTRACT

We present an algorithm for inverting induced polarization data acquired in a three-dimensional environment using the
linearized equation for the IP response. The inverse problem is solved by minimizing an objective function of the charge-
ability model subject to data and positivity constraints. The minimization is carried out using a logarithmic barrier
method. We study the effect of different approximations to the background conductivity in the IP inversion and demon-
strate that good IP results are obtainable without using the best conductivity estimate derived from full 3-D inversion of
the DC data. We also study the joint use of surface and borehole data in improving the resolution of the recovered charge-
ability models, and demonstrate that the joint inversion of surface and cross-hole data produces chargeability models supe-
rior to those obtained from inversions of individual data sets.

INTRODUCTION

In an earlier paper (Oldenburg and Li, 1994), we presented three differ-
ent approaches for inverting induced polarization (IP) data and illus-
trated them using 2-D examples. IP data can be inverted by a linearized
approach, by performing two DC resistivity inversions, or by a full non-
linear inversion. These methods are general and applicable to either 1-D,
2-D, or 3-D problems, but their implementation in 3-D poses numerical
and computational challenges. In this paper, we address the extension of
our algorithm developed in that paper to the 3-D environment. Here we
choose to work with the linearized approach and implement it for gen-
eral electrode configurations. When the magnitude of the chargeability
is moderate, the secondary potential φs measured in an IP experiment is
linearly related to the intrinsic chargeability by (e.g., Siegel, 1959),

[1]

where φη is the total potential measured in the presence of the IP effect,
σj and ηj are respectively the conductivity and chargeability value in the
jth region, and is the sensitivity of the secondary potential. When
the measured total potential is not approaching zero, an apparent
chargeability ηa can be defined as the ratio of the secondary potential to
the total potential, and the linear relation in Equation [1] becomes

[2]

where  is the corresponding sensitivity.
Apparent chargeability is the preferred form of IP data and it is well

defined in the surface and some downhole surveys. However, in the
cross-hole experiments using dipole sources or receivers, the electric

field often changes sign along the borehole and the measured total
potential differences can approach zero. These near-zero potentials
make both the apparent chargeability and its sensitivity undefined in
Equation [2]. It is therefore necessary to use the secondary potential as
data directly.

Given a set of measured IP data, inversion of either Equation [1] or
[2] allows the recovery of the intrinsic chargeability model. Since the
true conductivity structure is unknown in practical applications, an
approximation to it is substituted in the calculation of the sensitivities.
This approximation is usually obtained by inverting the accompanying
DC potential data. Thus, the IP inverse problem is a two-stage process.
In the first stage, an inverse problem is solved to recover a background
conductivity model from the DC data. This model is then used to gen-
erate the sensitivity for the IP inversion and a linear inverse problem is
solved to obtain the chargeability model.

FORMULATION OF THE INVERSION

Assume we have a set of N IP data, which can be apparent chargeabilities
or secondary potentials. To invert these data for a 3-D model of charge-
ability, we first use an orthogonal mesh to divide the model region into
M cells and assume a constant chargeability value in each cell. The data
are formally related to the chargeabilities in the cells by the relation in
Equations [1] and [2],

[3]

where the data vector and the model vector
. J is the sensitivity matrix corresponding to the

data, whose elements Jij are calculated from the assumed approximation
to the background conductivity.
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The number of model cells is generally far greater than the number
of data available, and thus an underdetermined problem is solved and it
is necessary to obtain the solution by minimizing an objective function
of the model subject to the data constraints in Equation [3].

We use a model objective function that is similar to that for the 2-D
case but has an extra derivative term in the third dimension,

[4]

where η0 is a reference model. The functions ws, wx, wy, and wz are spa-
tially dependent weighting functions while αs, αx, αy, and αz are coeffi-
cients which affect the relative importance of the different components.
For numerical solution, Equation [4] is discretized using the finite dif-
ference approximation.

The data constraints are satisfied by requiring that the total misfit
between the observed and predicted data be equal to a target value. We
measure the data misfit using the function

[5]

where the δi is the standard deviation of the estimated error of each
datum.

The total objective function to be minimized is formed by introduc-
ing a tradeoff parameter µ,

[6]

Minimization of Equation [6] subject to the constraint that the
chargeability be positive using any optimization technique yields the
desired chargeability model. The positivity constraint is required since
the chargeability is defined in the range (0,1). We choose to use an inte-

rior point method in which the positivity is implemented by including a
logarithmic barrier term in the objective function:

[7]

where λ is the barrier parameter. The minimization starts with a model
whose elements are all well above the zero bound and a large value for λ.
It then iterates to the final solution as λ is decreased towards zero. The
tradeoff parameter µ is fixed during the minimization.

We illustrate our algorithm using a test model composed of five
anomalous rectangular prisms embedded in a uniform halfspace. The
geometry of the model is shown in Figure 1. There are three surface
prisms simulating near surface distortions, and two buried prisms sim-
ulating deeper targets. DC resistivity and IP data from both surface and
cross-hole experiments have been computed.

The surface experiment is carried out using a pole-dipole array with
a=50 m and n=1, 6. There are seven traverses spaced 100 m apart in both
east-west and north-south directions. The resulting data set consists of
1,500 observations. We have contaminated the data with a minimum of
2% independent Gaussian noise. We first perform a full non-linear
inversion of the DC resistivity data and then use the resultant conduc-
tivity in the inversion of the IP data. The inverted chargeability model is
shown in Figure 2 by one cross-section and two plan-sections. The
model yields a good representation of the true anomalous chargeability
zones. The definition is clear near the surface and becomes more def-
fused at depth. This is an expected result when surface data are inverted.
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Figure 2: The chargeability model recovered from inversion of surface
data. The conductivity from full 3-D DC inversion is used to calculate sen-
sitivities. The position of the true prisms are indicated by the white lines.
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Figure 1: Perspective view of the five-prism model. Seven surface
traverses in the east-west direction and four boreholes are also shown. For
clarity, seven traverses in the north-south direction are not shown. The
prisms S1, S2, and B2 are more conductive and S3 and B1 are more resistive
than the background. All five prisms are chargeable.
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INVERSION USING APPROXIMATE
CONDUCTIVITY MODELS

The full non-linear inversion of 3-D DC resistivity data is a costly under-
taking, especially when the recovery of the conductivity model is but an
intermediate step towards the end goal of recovering the chargeability
model. More importantly, good IP inversion results are often obtained
by using other less rigorous approximations to the conductivity. Our
experience with 2-D inversions (Oldenburg and Li, 1994) has shown
that good first-order results concerning the chargeability distribution
can often be obtained by approximating the earth using a homogeneous
conductive halfspace. This suggests that reasonable recovery of a
chargeability model could be achieved by using intermediate approxi-
mations between these two end members corresponding to a uniform
halfspace and the conductivity model recovered from a full non-linear
3-D DC inversion. Thus, the accurate recovery of the background con-
ductivity via a full 3-D inversion of DC data may not be necessary.

We have examined five different approximations, including the con-
ductivity obtained from full 3-D inversions used in the preceding sec-
tion. These approximations are briefly discussed below.

1. A uniform halfspace: This is the simplest approximation and no
inversion of DC data is involved.

2.  One-pass approximate 3-D inversion: This is the conductivity
model obtained from a linear inversion of the DC data assuming
that the actual conductivity consists of weak perturbations of a
uniform halfspace.

3. Composite 2-D inversions: Independent 2-D inversions are carried
out along each line so that a 2-D model is generated. The 2-D mod-
els are then combined to form a 3-D representation of the true con-
ductivity.

4. Limited 3-D AIM updates: The one-pass 3-D inversion is used to
carry out a small number of AIM updates to produce an approxi-
mate conductivity model.

5. Full 3-D inversion: The conductivity model obtained from com-
plete AIM updates or from linearized inversions. 

We have inverted the surface IP data from our test model using these
different conductivity approximations. The results are compared with
the true model in Figure 3. Each panel in that figure is the cross-section
of the recovered chargeability model at N=475 m, which passes through
four of the five prisms. All five models recover the essential features of
the true model and they present a general trend of improvement as the
approximation to the background conductivity improves.

JOINT INVERSION OF SURFACE
AND BOREHOLE DATA

Crosshole data have been used in the effort to achieve high resolution
images of the subsurface structure obtainable from DC/IP experiments.
However, although crosshole data are very sensitive to the vertical vari-
ation, they have rather poor sensitivity to the lateral variation because
the data have limited spatial distribution and the array separation is
restricted to a small range. Surface data, however, usually have good
areal coverage and therefore possess much better resolving power for
determining lateral variation in the subsurface structure. The surface
data can provide good complementary information to the crosshole
data if the targets are within the depth of penetration of the surface
arrays. Joint inversion of these two data sets will improve the resolution
of the recovered chargeability model.

We have placed four vertical boreholes around the anomalous region
in the test model and the locations are shown in Figure 1. Crosshole

Uniform halfspace Approx.  3D inversion

Composite 2D inversions Limited AIM updates

Full 3D inversion True chargeability
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Figure 3: Comparison of char-
geability models recovered from
the 3-D inversion of surface IP
data using five different approxi-
mations to the background con-
ductivity. The process by which
each conductivity approxima-
tion is obtained is shown in each
panel. The lower-right panel is
the true chargeability model.
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pole-dipole data, with a receiver-dipole length of 50 m and 2% of Gaus-
sian noise, have been simulated. Both source and receiver are placed
every 25 m along the borehole; only one borehole in any pair of bore-
holes is used as the source hole and the reverse configuration switching
the source and receiver holes is not used. A total of 1,530 observations
are generated. In the following, we first apply our 3-D algorithm to the
crosshole data from the five-prism model. We then jointly invert the sur-
face and crosshole data and demonstrate that the resultant model is
superior to the model obtained from the individual inversion.

Figure 4 shows the chargeability model recovered from the crosshole
data alone. (In this and the following joint inversion, we have used the
conductivity model recovered from full 3-D inversion of the corre-
sponding DC data.) The definition of the anomalous prisms is rather
poor, although the larger ones are all identified to a certain extent. There
is excessive structure in the region immediately surrounding the bore-
holes. Figure 5 displays the chargeability recovered from the joint inver-
sion of surface and crosshole data. It shows dramatic improvement over
the models from individual inversions in Figures 2 and 4. The most
noticeable feature is the clear image of the two separate buried targets.

DISCUSSION

We have developed a 3-D IP inversion algorithm that is applicable to
data acquired using arbitrary electrode configurations. We represent the
model by a large number of cells of constant conductivity and charge-
ability and obtain the solution by minimizing an objective function. The
interior point method with a logarithmic barrier is shown to be an

efficient approach for large 3-D inversion with positivity constraint.
Several different, inexpensive approximations to the background con-
ductivity used in sensitivity calculation have been shown to produce
reasonable IP inversion results. Therefore, the costly full 3-D inversion
of DC data does not seem to be a prerequisite to a high quality 3-D IP
inversion. Lastly, application of our inversion algorithm to joint surface
and crosshole data has demonstrated that the inversion of these two
complementary data sets can greatly improve the resolution of the
inverted chargeability model.
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Figure 4: Chargeability model recovered from crosshole data alone.
Figure 5: Chargeability model recovered from the joint inversion of sur-
face and crosshole data.
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