INTRODUCTION

The applicability of the airborne electromagnetic (AEM) induction method for exploration is a function of the tools available for a determination of the detailed ground resistivity distribution. This includes 3-D outlining of conducting bodies and zones, determination of the thickness and type of sediment above bedrock, tracing of palaeochannels with more or less conductive fill relative to the surroundings, and identification of the fault system and structure of the bedrock. A detailed investigation of the resistivity pattern requires a high-resolution measuring device. Maximum resolution is achieved for “coincident” transmitter and receiver coils (Duckworth et al., 1993), but in practice it is sufficient that the coil spacing s is smaller than the flight altitude h above ground. Mundry (1984) has shown that the well-known integral

\[
Z = s^2 \int_0^\infty R_0(f, \lambda, \rho, d, z) e^{-\lambda h} J_0(\lambda s) d\lambda
\]

(1) can be simplified if \(s \leq 0.3\ h\). In the “Mundry integral” the Bessel function \(J_0\) is replaced by 1 and the coil spacing \(s\) has disappeared under the integral. Physically this is equivalent to the “superposed dipole condition” as postulated by Fraser (1978).

The Mundry integral—without the Bessel function—has a number of favorable features:

a. For a uniform half-space, the integral depends only on the ratio \(\delta = h/p\), where \(p\) is the half-space skin depth

\[
p = \sqrt{\frac{\mu_0}{4\pi}} \frac{1}{\rho}\ .
\]

(2)

This leads to a straightforward inversion of measured data into the true (or apparent) half-space parameters, resistivity \(\rho\) (or \(\rho_a\)) and distance \(h\) (or \(h_a\)).

b. The Mundry integral can be used to yield a transfer function \(C\), which provides a depth reference (centroid depth, \(z^*\)) to the apparent resistivity \(\rho_a\) calculated from the response of a layered half-space (Sengpiel, 1988). The centroid depth was defined as

\[
z^* = h_a - h + h_a Re C ,
\]

using the real part of \(C\), while the imaginary part \(Im C = -p_a/2\) was not used. Siemon (1996) has shown that it is preferable to use the latter to define \(z^*_p = h_a - h + p_a/2\). In Figure 1, a comparison of the sounding curves \(\rho_a(z^*)\) and \(\rho_p(z^*_p)\) is presented. Only the latter shows the lower conducting layer at the correct depth for this model.

c. The integral can be regarded as a Laplace integral and thus be evaluated numerically very fast (Fluche, 1990). This is of importance for the iterative inversion of measured data into model parameters (see further below).

Applying the above features (a) and (b) to a set of multi-frequency EM data yields a number of corresponding \(\rho_a h_a\) and \(z^*\) values, which determine a sounding curve \(\rho_p(z^*_p)\) for each measurement site. A color-coded representation of all \(\rho_p(z^*_p)\) curves along a flight line provides a resistivity/depth section (“Sengpiel section,” Sengpiel, 1990). Since apparent resistivity values are used in these sections, only a smoothed image of the true resistivity pattern is obtained; the more conductive zones of the ground are over-emphasized relative to the resistive parts.

NEW TYPES OF MULTI-FREQUENCY SOUNING CURVES

A number of “dynamic” sounding curves, which are more sensitive to vertical resistivity contrasts, were recently presented by Siemon (1996). The basic ideas were adopted from magnetotellurics and modified for dipole induction. In Figure 1, a dynamic sounding curve \(\rho_{NB}(z^*)\) is shown which is derived from the standard \(\rho_p(z^*_p)\) sounding curve by differentiation \(d\rho_p(f)/df\), where \(f\) is the frequency. The corresponding centroid depth is \(z^*_f = \sqrt{2} z^*_p\). Huang and Fraser (1996) presented a similar formulation, but they differentiated the conductance curve with respect to an effective depth \(z_{eff}\) yielding a \(\rho_A(z_{eff})\) sounding curve (Figure 1). While their differentiation is based on discrete \(ra\) and \(z_{eff}\) values of two neighboring frequencies, the differentiation in our case is conducted after a spline interpolation of the \(\rho_p(f)\) curve, which leads to stable results.

Another sensitive sounding curve \(\rho_p^i(z^*_p)\) is shown in Figure 1. The apparent resistivity \(\rho_p^i\) is derived simply from the ratio of the quadrature and inphase components of the AEM data and the true flight alti-
INVERSION OF THREE-FREQUENCY FIELD DATA

Figure 2 gives an example of a BGR standard resistivity section with the results of our inversion procedure for a three-layer case. The data (upper part of Figure 2) were produced in the vicinity of Hannover with the BGR 3F-Dighem bird. The dotted line is the trace of the bird altitude above the ground or the vegetation. The layer thicknesses and color-coded resistivities are plotted downward from the tree canopy, which is obtained from measurements with a radar and a barometric altimeter. The top, resistive “layer” corresponds to the vegetation. The second layer (20–60 Ωm, till 6–20 Ωm) and third layer (4–15 Ωm) portray the geology as indicated. Incisions into the clay substratum were caused by glacial meltwater. The glacial channel system can be mapped in great detail using the elevation of the upper boundary of the third layer above sea level.

INVERSION OF DATA FROM 3-D BODIES

The traditional application of AEM is the location of (conducting) 3-D targets. We present a method to determine the depth and the dip of a conductor by an automatic inversion of field data using the centroid depth concept. Figure 3 shows an example as follows:

a. Upper part: The anomalous secondary field data calculated for a horizontal coplanar coil system 30 m above ground for a model of a 60 m thick dike at a depth of 60 m. The dike is 500 m long and its vertical extent is 200 m. The Z_a values on the right give the normal secondary field values for a 100 Ωm half-space. The model calculations were conducted using an algorithm of Xiong (1993), which was kindly made available to B. Siemon.

b. Lower part: A standard resistivity section of p_a and z_p^* and the color code is shown. The dotted horizontal lines represent the centroid depths z_p^* for the five frequencies (given above) of the new BGR bird.

For this model, the anomalous field reaches 10 ppm (inphase) for $f = 1792$ Hz and about 6 ppm for $f = 375$ Hz. The true depth of 60 m is accurately reproduced by the strong resistivity gradient at this depth. The conducting body causes a broad halo of lower apparent resistivities around it. The limited horizontal extent of 40 m in flight direction is indicated by the field strength minima above the center of the body. Nevertheless, we can conclude that a relatively thin body can be clearly located using a vertical dipole system. Another conclusion is that parameters like the apparent resistivity and the centroid depth, both derived for a half-space model, can readily be used to locate a body of limited extent at the correct depth. The anomaly is likely to be due to current gathering in the body rather than by anomalous induction. Similarly, the minimum p_a values in the center of the anomaly are much closer to the bedrock resistivity than to the presumed body resistivity of 0.1 Ωm.

More examples of such model calculations will be shown. This technique of inversion has already been successfully applied to field data from deep sulphide bodies during an AEM survey in Tanzania (Sengpiel, 1991). Poster examples will be shown.
Figure 2: Resistivity section and associated curves along a flight line near Hannover. From top to bottom: Measured three-frequency data, total error of inversion, EM bird altitude (dotted curve), and color-coded resistivity section, in which the results of a Marquardt-type data inversion including the forest "layer" are shown. The BGR survey outlined the glacial channel system incised into the clay substratum.
REFERENCES

Figure 3: Anomalous secondary field values (top) calculated for the 3-D model shown below. The color-coded resistivity section (below) was obtained using the $\rho(z)z$ sounding curve concept as explained in the text. The (symmetric) halo of lower resistivities around the conductor indicates its depth and (vertical) dip.