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Ground Waters and Surface Waters

in Exploration Geochemical Surveys

Taufen, P.M.[1]

1. Western Mining Corporation, Perth, Western Australia, Australia
ABSTRACT

The geochemistry of natural waters traditionally has provided an important avenue for the explorationist to evaluate min-
eral deposit prospectivity in a third “depth” dimension. Appreciation of basic principles in aqueous geochemistry provide
a means to understanding element mobilities and interpreting dispersion patterns, with applications in both the minerals
exploration and environmental disciplines. Applied hydrogeochemistry in minerals exploration peaked in the 1970s, but a
new episode in hydrogeochemical minerals exploration has been opened, and investigation of robust element anomalies
and dispersion patterns, at concentration levels unattainable a decade ago, can now proceed on a cost-effective basis. 

This paper is divided into three parts. An abbreviated overview of some fundamentals of inorganic aqueous geochemistry
controlling element mobilities, and a brief historical perspective of the use of hydrogeochemistry in minerals exploration
comprise the first two parts. These are followed by two case histories illustrating how water surveys can be used in both
early-stage and late-stage (pre-feasibility) exploration programs.

Inorganic aqueous geochemistry can be simplified by considering three fundamental aspects of this field: solution specia-
tion, mineral precipitation, and element sorption onto solid substrates and solution particulates. These fundamentals are
useful in interpreting hydrogeochemical survey results. Applications of hydrogeochemistry to minerals exploration and
resource development are presented, with examples from a blind porphyry Cu system under pediment cover in arid terrain
of the southwestern United States, and a high-sulfidation Cu ore body in a high-relief tropical environment in the Philip-
pines. Survey results from each example may be understood in terms of hydrogeochemistry fundamentals, and demonstrate
useful applications of hydrogeochemistry in minerals exploration programs.

ABBREVIATED FUNDAMENTALS OF
INORGANIC AQUEOUS GEOCHEMISTRY

Geochemical mobilities in natural water are determined largely by three
fundamental processes: element speciation in solution, precipitation of
minerals, and surface sorption processes.

Element speciation in solution

Total element concentrations from laboratory analyses of water indi-
cate nothing about the form of elements in the solution analyzed. For
example, copper in water may be present as a free Cu2+ ion, a Cu-
hydroxide ion complex, a Cu-carbonate neutral aqueous species, or a
variety of other forms. In examining water data, it is important to con-
sider the cationic, anionic, or neutral-charge phases, known as the ele-
ment speciation, of the chemical elements of interest under the Eh-pH
conditions at hand. Whether a metal will be present as a cation, anion,

or neutral species in solution can be evaluated by obtaining complete
water analyses for major and trace elements. Then any of a number of
software programs, Minteq, EQ3/6, etc. (Allison et al., 1991; Wolery and
Daveler, 1989), capable of evaluating competing complex-formation
reactions can be used to determine the relative thermodynamic stabili-
ties of metal complexes in solution, and the relative proportions of coex-
isting phases for a given element.

Speciation often is strongly dependent on water pH. How Cu and Zn
speciation changes with pH may be seen by examining the water analysis
results presented in Tables 1a and 1b.

It may be seen from Table 1b that Cu species in the analyzed solution
change significantly from predominantly Cu2+ ion to predominantly the
neutral Cu(OH)2 aqueous species when pH is increased from 6.3 to 7.3.
In contrast, Zn species in solution are almost unchanged over this same
pH shift. Differences in element speciation behavior in solution affect
how elements interact with each other and with charged solid materials
in natural water. Speciation helps explain differences in element mobil-
ities in nature. 
In “Proceedings of Exploration 97: Fourth Decennial International Conference on Mineral Exploration” edited by A.G. Gubins, 1997, p. 271–284
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Mineral precipitation

Mineral precipitation reactions also can remove elements from solu-
tion. Mineral-forming elements leave the solution as solid minerals pre-
cipitate. Even when elements are not expressly listed in precipitating-
mineral stoichiometries, they can be removed from solution as co-
precipitates, or as species sorbed onto newly formed precipitates. Solu-
tion conditions favoring mineral precipitation reactions can be deter-
mined using the same aqueous geochemistry computer software codes
used for speciation evaluations, to indicate when solutions are saturated,
undersaturated, or supersaturated with respect to various mineral solu-
bility products. By determining the activities in solution of dissolved
mineral components, and expressing ratios of species activities to min-
eral solubility products, saturation indices can be calculated to indicate
the degree of saturation of a particular mineral. Saturation indices
greater than one indicate supersaturation of the mineral phase.

For the solution analysis in Table 1, equilibrium saturated mineral
species are displayed in Table 2 below for pH=6.3.

Sorption

While metal sorption onto solids is a complex topic (Jenne, 1994,
1993; Smith, 1991; Anderson and Benjamin, 1990; Davis and Kent, 1990;

Benjamin and Leckie, 1981; Davis and Leckie, 1978), some of the funda-
mental controls are readily appreciated. Sorption interactions between
solution species and solid substrates are dependent on the surface charge
of solid surfaces. Surface charges on solid surfaces are strongly influ-
enced by pH (Kuo and McNeil, 1984; Harter, 1983; Kinniburgh and
Jackson, 1982; Shuman, 1977). When solid surfaces are positively
charged, they attract and sorb negatively charged solution species
(anions). When negatively charged, surfaces attract and sorb positively-
charged (cationic) solution species.

The pH-dependence of sorption is shown conceptually in the equa-
tions below, where the symbol S represents a solid surface. It may be seen
that acidic, low-pH solution conditions cause positively charged solid
surfaces, and that alkaline, high-pH conditions generate negatively
charged solid surfaces.
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For solid surfaces in nature, there is a characteristic pH value where
the surface charge is zero, called the point of zero charge, or pHpzc. At
pH values below the pHpzc for a given surface, the surface is positively
charged. Conversely, at pH values above the pHpzc for a given surface,
the surface is negatively charged. Point of zero charge values for some
common mineral surfaces are displayed in Table 3.

By considering speciation of elements in solution, and the positive or
negative surface charges on mineral surfaces at existing pH values, one
can predict whether ions will be present as free species in solution, or
will be sorbed to solid surfaces. The solid surfaces to which ions sorb can
be present as immobile substrates, or as suspended particulates or col-
loids, and these can take many forms. Colloidal particles range in size
from about 1 nanometer to 10 microns in diameter, and are made up of
mineral grains, amorphous precipitates, bacteria, and other substances.
Some examples are shown in Table 4.

Table 1a: Speciation example—laboratory analysis

Element Concentration Element Concentration

Na+ 7.2 mg/L Cu2+ 27 µg/L

Mg2+ 8.5 mg/L Zn2+ 950 µg/L

Ca2+ 34.6 mg/L

Fe2+ 18 mg/L

Al3+ 60 µg/L SO4
2- 170 mg/L

K+ 1.2 mg/L Cl– 18 mg/L

Mn2+ 1.9 mg/L HCO3
– 5 mg/L

Table 1b: Speciation example—pH = 6.3 and pH = 7.3

Species Distribution

Element pH=6.3 pH=7.3

Cu 63.7% as Cu2+ 29.7% as Cu2+

29.0% as Cu(CO3) (aq) 6.7% as Cu(CO3) (aq)

15.4% Sorbed 2.3% as Cu(OH)+

44.6% as Cu(OH)2 (aq)

4.7% as CuSO4 (aq)

10.5% Sorbed

Zn 81.3% as Zn2+ 80.6% as Zn2+

14.8% as ZnSO4 (aq) 14.7% as ZnSO4 (aq)

2.5% Sorbed 2.5% Sorbed

Table 2: Saturation state of equilibrium mineral species 
based on solution analyses from Table 1; pH = 6.3

Species Saturation Index Saturation State

Al(OH)10SO4 .09 Undersaturated

Boehmite 1.01 Supersaturated

Diaspore 2.79 Supersaturated

Ferrihydrite 4.59 Supersaturated

Fe(OH)2.7Cl3 9.35 Supersaturated

Gibbsite .93 Undersaturated

K-Jarosite 9.45 Supersaturated

Na-Jarosite 6.76 Supersaturated
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An improved understanding of the three fundamental processes
described above (element speciation in solution, precipitation of miner-
als, and surface sorption processes) can provide insight into hydrogeo-
chemistry surveys applied to minerals exploration and environmental
studies appropriate at the advanced stages of successful minerals explo-
ration programs

APPLICATIONS OF HYDROGEOCHEMISTRY
TO MINERALS EXPLORATION

AND RESOURCE DEVELOPMENT

Hydrogeochemistry in minerals exploration—
Historical patterns

Hydrogeochemistry in minerals exploration enjoyed greatest applica-
tion in the 1970s, according to the number of publications in the explo-
ration literature (Figure 1a), where a literature search revealed 97
references dealing with this subject. Applications of hydrogeochemistry
to minerals exploration decreased during the 1980s and early 1990s, but
are probably on the increase again due to improved analytical capabili-
ties for water analysis. The widespread use of hydrogeochemistry in the
1970s corresponds with intense uranium exploration in this decade, and
relatively fewer hydrogeochemical surveys have been documented for
volcanogenic massive sulfide, base-metal sulfide, or gold deposits
(Figure 1b).

In the writer’s view, these patterns are in the process of changing. The
use of water as a sampling medium in minerals exploration will increase
as more exploration programs are directed toward searching under
transported cover. In addition, hydrogeochemical exploration has
become viable for a wider commodity range, since recently available and
affordable induction coupled plasma / mass spectrometry (ICP/MS)
analytical capability in commercial laboratories allows a wider variety of
commodity and pathfinder elements to be detected in water surveys.

1. Stumm and Morgan, 1970.
2. Davis and Kent, 1990.

The examples presented in the next section illustrate how hydro-
geochemistry can be useful in minerals exploration programs.

Hydrogeochemistry in minerals exploration:
Two case histories—overview

Two examples presented here demonstrate how hydrogeochemistry
can be successfully applied in minerals exploration. Results are
described from groundwater survey work at a covered porphyry Cu sys-
tem near Casa Grande, Arizona, U.S.A., completed by the U.S. Geolog-
ical Survey (USGS), and streamwater orientation work carried out by
Western Mining Corporation around a high-sulfidation Cu system in
the Philippines.

Groundwater geochemistry at the
Casa Grande porphyry Cu-Mo system

USGS open file report (Ficklin et al., 1981) describes groundwater
geochemistry results from the Casa Grande porphyry Cu-Mo system.
This deposit is approximately 700 m in diameter, and is found beneath
interlayered Basin-and-Range valley alluvium and recent volcanics
comprising a cover thickness of approximately 300 to 700 m. The min-
eralization occurs within the Sonora desert arid environment. In the
USGS study, 78 irrigation water wells, covering an area of approximately
250 km2, were sampled from April 1977 to June 1980. In the USGS
report, water samples are described as having been analyzed by a com-
bination of methods, principally flameless atomic absorption (cations),
and ion chromatography (anions), for Ca, Mg, Na, K, Sr, Si, Fe, Mn, Al,
Ag, As, Ba, Bi, Cd, Co, Cr, Ce, Cu, Li, Mo, Ni, Pb, Rb, U, Zn, HCO3

-,
SO4

2-, NO3
-, Cl-, and F-. An interpretation of the USGS results is pro-

vided here.
Figures 2 through 4 show the distribution of water wells with respect

to known mineralization, along with well-water pH values, and the
water concentration plots for Cu, Mo, As, K and SO4

2-.
Well-water pH values generally are elevated in this arid environment,

but somewhat suppressed pH values below pH = 7.4 are observed in
close proximity to and immediately northwest of the Casa Grande
deposit (Figure 2). While water pH levels still are alkaline, the observed
subtle lowering of pH is likely due to some minor acid generation asso-
ciated with sulfide oxidation. Due to the generally elevated pH in this
arid environment, copper mineralization is not indicated by Cu in solu-
tion (Figure 2). Copper mobility is strongly limited, and in accordance
with the fundamentals of aqueous geochemistry, probably precipitates

Table 3: Points of zero charge for some mineral surfaces

Mineral pHpzc 
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Goethite [2] 7.3

MnO
2

[2] 2 – 4.5

kaolinite 4.6

montmorillonite 2.5

calcite 9.5

albite 2.0

Table 4: Types of colloids in natural water

Kaolinite particles

Illite and other 2:1 clays

Colloidal humic, fulvic acids

“dissolved” Fe(III)—colloidal Fe-oxides stabilized by humic or 
fulvic acids— important for Au transport

Biological colloids—important for Au transport
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as Cu(OH)2, co-precipitates with iron oxides, or sorbs onto immobile
mineral surfaces. Colloid-facilitated transport probably is not an impor-
tant mechanism of metal dispersion in this situation, since colloids often
are trapped in pore spaces in migrating groundwater systems, and in this
saline environment, charged colloidal particles are expected to readily
coagulate and flocculate.

In contrast to Cu, informative anomalies with good contrast are evi-
dent for Mo, As, K, and SO4

2- (Figures 3 and 4). The molybdate, arsen-
ate, and sulfate anions are not precipitated, co-precipitated, or sorbed at
ambient pH, and exhibit good mobility. Elevated potassium concentra-
tions, perhaps liberated through acid-water attack of potassic or phyllic
alteration zones in the porphyry system, likewise indicate largely con-
servative (non-reactive) behavior of potassium in solution, and
sufficient mobility to provide a clear anomaly expression associated
with mineralization.

Stream water geochemistry at the
Tampakan Cu deposit, Mindanao, Philippines

As part of a commitment to environmental stewardship worldwide,
Western Mining Corporation maintains a science-based program to
understand controls on water quality in advanced exploration and early
resource development projects. With an improved understanding of
controls on water quality at an early stage in a project area, the environ-
mental impact of development can be better anticipated and alleviated.
The following description of work in the Tampakan project area of the
Philippines results from company commitment to understanding and
maintaining water quality in the environment.

Copper mineralization at Tampakan comprises a high-sulfidation
enargite-rich system, with sulfides outlined by the ground I.P. anomaly
shown in Figures 5 and 6. Mineralization is hosted by “basement”
andesitic volcanic rocks, and these are overlain by a younger andesite
volcanic flow. Intrusive diorite crops out in a stream about one kilometer
west of the defined mineralization. A significant rock alteration assem-
blage in the area is the mapped “silicified zone” (Figures 5 and 6), com-
prised almost entirely of clay, quartz, and pyrite. This alteration style
exhibits substantial net acid production potential due to the contained
pyrite, and the alteration assemblage contains no identified minerals
with significant pH-buffering capacity. Clay-quartz-pyrite “silicified
zone” alteration is found mostly west of the main copper mineralization,
and is cut by flowing streams in the region.

Streamwater samples at Tampakan were collected and preserved
using procedures specific for the intended analysis. Samples for cation
analysis were filtered using 0.45 micron membrane filters, then acidified
in the field to below pH=2. Samples for anion analysis and samples col-
lected for field sulfate and alkalinity determinations were filtered but not
acidified. Cations were run commercially by induction coupled plasma
/ mass spectrometry (ICP/MS), and anions by ion chromatography.
Sulfate and alkalinity were determined using portable field kits, with
analyses completed the same day as sample collection.

Andesitic rocks containing mafic silicate minerals provide consider-
able pH-buffering capacity in the chemical weathering system at Tam-
pakan, and serve to keep the stream waters flowing over these rocks
from becoming acidic. Natural streamwater alkalinities are high in
stream waters flowing over andesitic volcanic rocks. Where acid is pro-
duced from weathering of sulfides in the silicified zone, alkalinity in the
incoming stream water is consumed by acid generated upon sulfide oxi-
dation, and the pH values are low (below pH=5). Upstream and down-
stream from the silicified zone, stream waters flow over andesitic rocks,
and the water-rock interaction rapidly raises streamwater pH to values
above pH=7. The pH distribution is bimodal (there were no recorded
pH values between pH = 5.5 and pH = 6.9 in the survey), and is clearly
controlled by water-rock interactions.

Metal contents in water increase directly with the drop in stream
pH, and decrease directly with the increase in stream pH, as displayed
in Figure 5 where pH and Cu water concentrations are plotted. Within
the reach of stream flowing over the mapped silicified zone, stream
water copper concentrations are elevated. In fact, stream waters in this
relatively short section of stream naturally exceed set copper concen-
tration limits for some of the recreational and fishery water usage clas-
sifications specified in 1990 Filipino legislation. These elevated Cu
concentrations are natural, not the result of any disturbance or activity
by man. In reaches of stream beyond the silicified zone, where water
flows over andesitic rocks with greater pH-buffering capacity, metal

Figure 1a: Literature references by decade on hydrogeochemical
minerals exploration.

Figure 1b: Literature references by commodity on hydrogeochemical
minerals exploration.
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Figure 2: pH and Cu in irrigation well waters in the Casa Grande area, Arizona, U.S.A.



276 Exploration Geochemistry
Figure 3: Mo and As in irrigation well waters in the Casa Grande area, Arizona, U.S.A.
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Figure 4: K and SO4
2- in irrigation well waters in the Casa Grande area, Arizona, U.S.A.
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values are much lower in water, and legislated concentration limits are
not exceeded. Mineral precipitation, co-precipitation, and increased
metal sorption with increasing pH likely explain the reduced solution
concentration levels of Cu observed when stream water flows over
andesitic rocks.

Just as copper concentrations in water increase in the more acid
reach of stream water shown in Figure 5, copper concentrations in
stream sediments along this same portion of the stream decrease to a

level below the regional geochemical anomaly threshold for this part of
Mindanao island. Acid water generated by the natural, unbuffered
weathering of sulfides leaches copper from the stream sediment and
raises the Cu concentrations in streamwater solution. The stream then
redeposits copper (through mineral precipitation, co-precipitation, or
sorption reactions) from the stream water back onto stream sediment as
the pH increases, due to water interaction with acid-buffering minerals
in the mafic volcanic rocks.

Figure 5: pH and Cu in stream waters of the Tampakan area, Mindanao, Philippines.
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This phenomenon has potentially important implications in miner-
als exploration. Low Cu values in stream sediment may be encountered
relatively short distances downstream from major Cu-mineralized
sources, if the reach of stream sampled occurs in a naturally acid zone.
Measurement of water pH and sulfate (Figure 6) can help identify these
acid zones in routine exploration programs.

There also are potentially important environmental implications
resulting from this understanding of natural controls on streamwater

quality. High-quality environmental baseline studies must account for
the geological controls on water quality, with specific identification of
important water-rock interactions in the baseline area. The rapid
improvement of water quality observed in this study, as naturally acid
water flows downstream over rocks with high pH-buffering capacity,
suggests that local acid-absorbing geological materials might be useful
in mine planning and development. Streamwater alkalinities (Figure 6)
can help indicate the most promising source areas for acid-consuming

Figure 6: SO4
2- and alkalinity in stream waters of the Tampakan area, Mindanao, Philippines
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rocks for use in mine planning. In fact, complete water analyses of the
most alkaline stream water in the survey (102 mg/L CaCO3 alkalinity)
indicated that calcium carbonate is supersaturated in this water based on
a MINTEQ (Allison et al., 1991) computer simulation.

An understanding of the metal speciation in stream waters also has
important environmental implications, since the free ion forms of met-
als are much more toxic to aquatic life than the same metals in the form
of metal-complexed species. A knowledge of the thermodynamically
favored metal forms in stream waters allows some appreciation of the
toxicity of natural stream waters, and how this toxicity might change
based on various strategies of resource development. Strategies can be
developed to increase metal complexing in stream waters exiting a
project, and thereby reduce the metal toxicity to aquatic life.

Stream waters at Tampakan represent a classic example of how rock
mineralogy can control water geochemistry, and the relationship
between rock and water is fundamental to understanding the trace ele-
ment aqueous geochemistry and element dispersion patterns in miner-
als exploration. A good understanding of local water-rock interactions
likewise is important for planning and executing strategies to maintain
high water quality during resource development.
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