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ABSTRACT 

 
Regional geochemical data are generally derived from government and industry geochemical surveys that cover areas at various 
spatial resolutions. These survey data are difficult to assemble and integrate due to their heterogeneous mixture of media, size 
fractions, and methods of digestion and analytical instrumentation. These assembled sets of data often contain thousands of 
observations with as many as 50 or more elements. Although the assembly of these data is a challenge, the resulting integrated 
datasets provide an opportunity to discover a wide range of geochemical processes that are associated with underlying geology, 
alteration, and mineralization. The use of data analysis and statistical methods combined with geographical information systems 
provides an effective environment for process identification and pattern discovery in these large sets of data, however it should be 
borne in mind that Areas of mineralization, because of their small areal extent, are generally underrepresented in regional 
geochemical data sets.  Modern methods of evaluating data for associations, structures and patterns are grouped under the term 
“Data Mining”. Mining data includes the application of multivariate data analysis and statistical techniques combined with 
geographical information systems can significantly assist the task of data interpretation and subsequent model building. Geochemical 
data require special handling when measures of association are required. Log-ratios are required to eliminate the effects of closure 
on compositional data. Exploratory multivariate methods include: plots of all possible pairs of data,  adjusting for censored and 
missing data, detecting atypical observations, computing robust means, correlations and covariances, principal components analysis, 
cluster analysis and knowledge based indices of association. These topics are covered with examples to demonstrate their application. 
 
 
 
 
 
 

INTRODUCTION 

 
A review of contributions to the Exploration 1977, 1987 and 
1997 conferences in the field of exploration geochemistry and 
the interpretation of regional geochemical survey data provides 
a perspective and appreciation of the very powerful tools that 
geoscientists now have at their disposal. Boyle (1979) 
described the first part of the twentieth century when rapid 
advancements were made in the recognition of primary and 
secondary dispersion haloes; development of accurate and 
rapid analytical methods; improvements in sampling 
technologies; the development of atomic absorption 
spectroscopy, flourimetry; chromatography; radiometric 
methods, neutron activation analysis, mass spectrometry, 
airborne geochemical sampling methods; improvement in field 
techniques and access (helicopters); heavy minerals in glacial 
media; developments in statistical and computer techniques. At 
that time, Boyle also pointed out that further research was 
required to understand the trace and major element chemistry 
of rocks and their geochemical relationship to metallogenic 
belts. Boyle also noted that future research must focus on the 
identification of mineral deposits at depth, and for countries 
such as Canada, the evaluation of basal till geochemistry is an 
effective means of exploration for metallic mineral deposits. 

The role of government surveys in the collection of various 
geological media and subsequent geochemical analysis was 
considered paramount for a successful mineral exploration 
strategy for any country. Boyle discusses the term “vectors” as a 
means to identify mineral deposits through the evaluation of 
patterns and trends in geochemical data in both 2 and 3 
dimensions. 

At the time of Exploration 77, the use of geochemical data in 
glacial terrains, (Bølviken and Gleeson, 1979); non-glaciated 
terrains (Bradshaw and Thomson, 1979), lithogeochemistry 
(Govett and Nichol, 1979); biogeochemistry (Cannon, 1979; 
Brooks, 1979); stream sediment geochemistry (Meyer et al., 
1979); lake sediments (Coker et al.., 1979) and 
hydrogeochemistry were well advanced. The fundamentals of 
these developments are still applicable today. There have been 
refinements in methods of extraction (digestion methods and 
selective leaches), improvements in detection limits and better 
understanding of the sedimentary environments of stream, lake, 
glacial and weathered environments. Howarth and Martin (1979) 
provided the basics of evaluating geochemical data, the principles 
of which are still in use today. The term “integration” was already 
in use in the 1970’s when it was realized that several types of 
geoscience data could be merged using computer-based methods 
(Coope and Davidson, 1979). 

The Exploration ‘87 meeting contained similar discussions 
along the lines of weathered terrains (Smith, 1989; Mazzucchelli, 
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1989; Butt, 1989), glaciated terrains (Shaw, 1989; Coker and 
DiLabio.,1989), stream sediments (Plant et al., 1989), lake 
sediments (Hornbrook, 1989); biogechemistry (Dunn, 1989) 
and bedrock geochemistry (Govett, 1989). In addition, the role 
of computers, databases and computer-based methods for use 
in mineral exploration were distinct contributions to the 
meeting (Garrett, 1989c; Holroyd, 1989; Harman et al., 1989) 
and expert systems were introduced as a means for decision 
making in exploration (Martin, 1989; Campbell, 1989). 
Exploration ’87 also contained more results on the benefits of 
integrated exploration strategies. 

Exploration ’97 covered much of the same material of 
advances in geochemical exploration methods for the 
geochemistry of glaciated terrains (Klassen, 1997; 
McClenaghan et al., 1997), the geochemistry of deeply 
weathered terrains (Mazzucchelli, 1997; Smith et al., 1997), 
geochemistry of stream sediments (Fletcher, 1997), lake 
sediment geochemistry (Friske, 1997; Davenport et al., 1997), 
lithogeochemistry (Franklin, 1997; Harris et al., 1997), plus 
developments in extraction techniques for the enhancements of 
geochemical responses (Hall, 1997; Smee, 1997; Bloom, 
1997). Closs (1997) emphasized careful sample design and 
objectives are the fundamental tenets of exploration 
geochemistry, which had not changed in the previous 30 years. 
Integrated exploration information management was a major 
focus at the Exploration ’97 conference with significant 
contributions by Bonham-Carter (1997); de Kemp and 
Desnoyers (1997), Davenport et al. (1997) and Harris et al. 
(1997) along with the early developments on the use of the 
world wide web (internet) by Cox (1997). 

Prior to the arrival of Geographic Information Systems and 
desktop statistical computing packages, exploration 
geochemistry was limited in scope in terms of extensive data 
analysis. Textbooks such as those by Hawkes and Webb 
(1962), Rose, Hawkes and Webb (1979) and Levinson (1980) 
provided the foundation for exploration geochemistry strategies 
and defined the principles for planning, executing and 
interpreting geochemical surveys. These texts were written 
before the development of geographical information systems or 
easily accessible statistical packages. As a result, they offered 
limited treatment for a statistical analysis of geochemical 
survey data. In the late 1980s Geographical Information 
Systems (GIS) began to play an increasingly important role in 
the display and management of spatially referenced data (e.g., 
geochemical data). These systems required large computers 
and specialists in the management and maintenance of the 
software. GIS’s have evolved into “Desktop Mapping” systems 
that allow users of personal computers to display, query, 
manage, and to a limited extent analyze spatially referenced 
data.  

Geochemical surveys are an important part of geoscience 
investigations in both mineral exploration and environmental 
monitoring. The International Geological Correlation Program 
(IGCP Project 259 (Darnley et. al, 1995) summarizes the value 
of geochemical surveys for both exploration and global change 
monitoring. This report contains recommendations for 
sampling strategies, data management, analytical methods and 
numerous other topics for the development of a global network 
of geochemical knowledge. A soil or lake sediment survey can 
consist of collecting several thousand specimens and be 
analyzed for 50 more elements. Analyzing and interpreting 

these large sets of data can be a challenge. Data can be 
categorical (discrete numeric or non-numeric) or continuous in 
nature. To extract the maximum amount of information from 
these data there are a wide range of multivariate data analysis 
techniques available. In many cases, these techniques reduce 
these large datasets into a few simple diagrams that often outline 
the principal geochemical trends and assist with interpretation. 
Often, the trends that are identified include variation associated 
with underlying lithologies, zones of alteration, and in special 
cases, zones of potentially economic mineralization. Areas of 
mineralization are typically small in geographic extent. Thus, 
they can be considered as rare events relative to the regional 
geochemical signatures within a study area and they will often be 
under-represented within a population. This means that they may 
often be observed as atypical or they can be masked by the main 
mass of the population. 

The term “sample” in statistical literature, usually refers to a 
selection of observations from a population. In the lexicon of 
geoscientists, specimens of soil, rocks, stream sediments and 
other such media, are often called “samples”. This has been a 
source of confusion between the geoscience and the statistical 
communities. Within this contribution, specimens (i.e. the 
geochemist’s samples) that have been collected in the field are 
referred to as “specimens” and the data derived from them as 
“observations”. Elements are the geochemical entities that 
become variables in the application of statistics. The terms 
variable and element are used interchangeably in this 
contribution. Specimen collection strategies are an important part 
of any geochemical survey program. Garrett (1983, Chapter 4) 
provides useful discussion on various approaches for sampling 
media for geochemical surveys.  

The evaluation and interpretation of geochemical data relies 
on understanding the nature of the material that has been 
sampled. Different materials require a variety of methods and 
techniques for the interpretation of results. In the case of surficial 
sedimentary materials (glacial till, lake and stream sediments), 
different size fractions of specimens might reflect different 
geological processes. The choice of size fraction can have a 
profound influence on the interpretation of the geochemistry of an 
area. In any geochemical survey the material for study should be 
carefully collected and classified in order to provide any clues 
about the underlying geochemical processes. 

Quality control is an essential part of assessing geochemical 
data. All data should be initially examined for analytical 
reliability and screened for the identification of suspect analyses. 
This is typically done using exploratory data analysis methods. 
Issues of quality control, analytical accuracy and precision are 
beyond the scope of this contribution, however it is briefly 
discussed in the section, “Special Problems”. 
 
Two sets of data have been used in this contribution. 

1) Lithogeochemical data from Ben Nevis township, Ontario, 
Canada (Figure 1). 

Rock specimens were collected as part of a study to examine 
the nature of alteration and associated mineralization in a 
sequence of volcanic rocks (Grunsky, 1986a, b). Two significant 
zinc-silver-copper-gold occurrences have been investigated i n  
this area: the Canagau Mines deposit and the Croxall property 
(Grunsky, 1986a). The results of a  detailed lithogeochemical 
sampling program outlined a zone of extensive carbonatization 
associated with the Canagau Mines deposit. A lesser zone of 
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carbonatization is associated with the Croxall property. The 
alteration consists of a large north-south trending zone of 
carbonate alteration with a central zone of silica enrichment 
with gold and copper sulphide mineralization. Small isolated 
zones of sulphide mineralization occur throughout the area. 
The specimens were not collected over a regular grid but were 
collected wherever rock outcrops could be located in the field. 
The geology of the area and the specimen locations are shown 
in Figure 1. 

Lithogeochemical sampling was carried out over the area 
in 1969, 1972 and 1979-1981. A total of 825 specimens were 
analyzed for SiO2, Al2O3, Fe2O3, FeO, MgO, CaO, Na2O, K2O, 
TiO2, P2O5, MnO, CO2, S, H2O

+, H2O
-, Ag, As, Au, Ba ,Be, Bi, 

Cl, Co, Cr, Cu, F, Ga, Li, Ni, Pb, Zn, B, Mo, Sr, V, Y, U, Zr, 
Sc and Sn. Initially, the major element oxides were assessed 
using a multivariate procedure known as correspondence 

analysis and is documented in Grunsky (1986a). Details on the 
geology, sampling methodology and mineral occurrence 
descriptions can be found in Grunsky (1986b). 

2) Lake sediment survey data from the Batchawana district, 
Ontario, Canada (Figure 2).  

This set of survey data, consisting of 3047 lakes sediment 
specimens collected, from 1989-1995, from a series of lakes that 
overlie a PreCambrian volcanic-sedimentary sequence that has 
been intruded by granitic rocks (Grunsky, 1991). The lake 
sediments in the area are derived from the underlying bedrock 
(shown in the legend), glacial overburden and organic matter (not 
shown). Glacial till, outwash sand, lacustrine deposits and recent 
re-worked glacial deposits blanket the area in varying thickness. 
Bedrock exposure is less than 5% of the area with most of the 
glacial overburden being less than 3 meters. 

 

 
Figure 1: General Geology of the Ben Nevis Township area, Ontario, Canada. 
 

 
Figure 2: General Geology of the Batchawana area, Ontario, Canada.
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GEOCHEMICAL DATA MINING 

 
“Data mining (DMM), also called Knowledge-Discovery in 
Databases (KDD) or Knowledge-Discovery and Data Mining, 
is the process of automatically searching large volumes of data 
for patterns using tools such as classification, association rule 
mining, clustering, etc. Data mining is a complex topic and has 
links with multiple core fields such as computer science and 
adds value to rich seminal computational techniques from  
statistics, information retrieval, machine learning and pattern 
recognition.” (Wikipedia, http://en.wikipedia.org/wiki/Data_ 
mining, accessed 2007-Apr-19). 

Common forms of data mining involve supervised and 
unsupervised pattern recognition. Unsupervised data mining 
includes techniques such as cluster analysis, principal 
components analysis, exploratory data analysis, multivariate 
ranking of data, neural networks and empirical indices. These 
methods vary from automatic, semi-automatic, to manual in the 
degree of pattern delineation. The use of a fully automatic 
method does not guarantee a result that necessarily represents 
the best view or meaningful structure in the data. Caution must 
be applied in using such techniques. Supervised methods 
include discriminant analysis, canonical variate analysis, 
model-based clustering, neural networks, support vector 
machines and cell automata. All require a priori assumptions 
and/or “target” and “background” definitions to which 
unknown data can be classified. Typically, target populations 
represent sets of geochemical data that define mineral 
exploration targets.  
 

Visualization of Geochemical Data 

 
Visualization is one the most effective ways of evaluating data. 
The human eye is very adept at recognizing patterns from 
pictures than with tables of numbers. Geochemists need to 
evaluate data comparatively in both the spatial domain 
(geographic location) and the variable (element/oxide) domain. 
When evaluating single elements data can be evaluated using 
simple plots such as probability plots (Sinclair, 1976; Stanley 
and Sinclair 1987, 1989; Stanley, 1987), histograms, or box 
plots. However, there are many other ways to evaluate data 
graphically. Many of these methods have been outlined by 
Cleveland (1993). Garrett (1988) developed a data analysis, 
statistics and visualization system, IDEAS, that provides a 
multitude of methods that are useful to the exploration 
geochemist.  

Even the field of statistical evaluation of data has changed 
significantly in the past 10 years. This is exemplified by texts 
that combine extensive visualization techniques together with 
modern statistical methods (Venables and Ripley, 2002). 

This contribution has made extensive use of the data 
analysis and statistical analysis software package, R (CRAN, 
1999), which provides a number of powerful tools for 
manipulating and visualizing data. Most of the statistical 
graphics herein have been created using R. The application of 
this environment for geoscience applications is described by 
Grunsky (2002a). Recently a new library of statistical routines 
for the visualization of geochemical data (rgr) has been 

published on the Comprehensive R Archive Network (CRAN) 
(www.r-project.org) by Garrett (personal communication, 2007). 
 

Geographical Information Systems 

 
Geographic Information Systems represent digital visualization of 
spatially-based data on a map. Geographical Information Systems 
require a spatial definition of the data plus attribute tables that 
contain information relevant to the specified geographic locations 
and the representation of geochemical data. Examples of this 
have been presented by Bonham-Carter (1989a,b), Hausberger 
(1989), Gaál (1988), Kuosmanen (1988), Mellinger et al. (1984), 
Mellinger (1989), and George and Bonham-Carter (1989). In 
particular, a GIS facilitates the organized storage and 
management of spatially based data that are linked to a number of 
other features or other georeferenced data sets.  

Bonham-Carter (1994) has written a monograph of 
geoscience applications using GIS and Harris (2006a) has edited 
a volume on GIS applications in the earth sciences covering a 
wide range of topics in which geochemistry is covered by 
(Grunsky, 2006; Cheng, 2006; Wilkinson et al., 2006; Harris, 
2006b).  

Depending on the nature of the geochemical data (stream 
sediment, soil, lake sediment, or lithogeochemical) various types 
of analysis can be performed that are dependent on the type of 
associated data present. Point, polygon (vector), and raster 
(regular array cells) features can be overlain, merged and 
analyzed through the associated map merging and database 
querying tools. Raster image grid cells can be considered as 
points provided there is an associated attribute record of data with 
each grid cell. 

As geoscience information and data become available in 
ever-increasing volumes, exploration programs and government 
research programs involve significant amounts of data 
compilation. The compiled datasets are subsequently placed into 
a GIS and integrated with other geoscience information.  Recent 
developments in the use of Geographical Information Systems 
together with data compilation programs have been discussed in 
Wilkinson et al. (1999); and Harris et al., (1997, 1999, 2000) and 
a book with a chapter on the evaluation of geochemical data using 
GIS’s (Harris, ed., 2006a, Chapters 12-16). 

Desktop mapping systems have evolved to the point that they 
are cheaper and less complex, are easier to use and offer an 
effective way for the geochemist to evaluate data. Thus, the goals 
of the geochemist can be achieved faster and at less cost. As 
digitally based map and attribute data are being continually 
created, there has been an increasing demand to view and assess 
these data without the use of complex GIS’s. In its simplest form, 
a desktop mapping system has significant advantages in 
exploration geochemistry. Geochemical data can be loaded and 
visualized in both the geochemical space and the geographic 
space very quickly. Geochemical data can also be processed 
using a number of statistical or other data analysis techniques 
from which the results can also be loaded into a desktop mapping 
system. The permutations and combinations of data layer 
manipulation provide a wide variety of ways of examining and 
interpreting data. 
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Image Processing 

 
When the sampling density of geochemical data is adequate, it 
is desirable to produce maps that represent smoothed gridded 
data and coloured/shaded surfaces. Smoothed, gridded data can 
be considered a raster image. Image analysis is primarily used 
for presentation purposes to enhance the results of an analysis 
or to show variation within data. Image analysis manipulates 
integer scaled raster data using a number of matrix based 
methods and after the use of additional integer scaling 
procedures represents the resulting transformed data on various 
graphical output devices using colour (e.g., intensity, hue, 
saturation, RGB, CMYK). Richards and Jia (1999) provides an 
introduction to image processing methods. Carr (1994) 
provides an introduction to image processing in geological 
applications and Gupta (1991) and Vincent (1997) provide 
comprehensive reviews of remote sensing applications in 
geology. Rencz (1999) contains a collection of papers covering 
the topic of remote sensing in the earth sciences and Pieters and 
Englert (1993) covers the topic of remote geochemical analysis 
through the evaluation of satellite spectroscopy. 
 

Exploratory Data Analysis 

 
Exploratory data analysis is concerned with analyzing 
geochemical data for the purpose of detecting trends or 
structures in the data. These features can provide insight into 
the geochemical/geological processes from which models can 
be constructed. Exploratory methods of data analysis include 
the evaluation of the marginal (individual) distributions of the 
data by numerical and graphical methods. These include the 
use of summary tables (minimum, maximum, mean, median, 
standard deviation, 1st and 3rd quartiles), measures of 
correlation, covariance and skewness. Graphical methods 
include histograms, probability (quantile-quantile) plots, box 
plots, density plots and scatterplot matrices. The spatial 
presentation of data summaries can be incorporated into a GIS 
using features such as: bubble and symbol plots, and 
interpolated grids. 

Multivariate methods include the use of principal 
components analysis, cluster analysis, Mahalanobis distance 
plots, empirical indices and various measures of spatial 
association. 

 

Target and Background Populations 

 
Geochemical background represents a population of 
observations that reflect unmineralized ground. Background 
may be a mixture of several populations (gravel, sand and clay 
or granitoid, volcanic and sedimentary lithologies). The 
separation of the background population into similar subsets 
that represent homogeneous multivariate normal populations is 
important and forms the basis of the modeled approach of 
geochemical data analysis. This can be achieved using 
exploratory methods such as principal components analysis, 
methods of spatial analysis, Mahalanobis distance plots and 
cluster analysis. 

A group of specimens that represent an entity under 
investigation (features of geochemical alteration or 
mineralization) is termed the “sample” population, from which 
inferences will be made about the “target” population that cannot 
be sampled in its entirety. These populations are derived from 
specimens collected from orientation studies over known mineral 
deposits or areas of specific interest. 

Sample populations, whether representing background or 
other populations, represent training sets with unique 
characteristics. These training sets are generally distinct from one 
another through their statistical properties although it is common 
for training sets to overlap. Unknown specimens can be tested 
against these populations to determine if they have similar 
characteristics. Probability based methods can determine if the 
unknown specimen belongs to none, one or more of the 
populations. 

Developing training sets and testing unknown specimens is 
part of the modeled approach to evaluating geochemical data and 
will not be discussed here. This topic and associated references is 
discussed in Grunsky (2000).  

Special Problems 

Problems that commonly occur in geochemical data include: 
· many elements have a "censored" distribution, meaning that 

values at less than the detection limit can only be reported as 
being less than that limit; 

· the distribution of the data is not normal; 
· the data have missing values. That is, not every specimen 

has been analyzed for the same number of elements. Often, 
missing values are reported as zero, which is not the same as 
a specimen having a zero amount of an element. This can 
create complications in statistical applications. 

· combining groups of data that show distinctive differences 
between elements; where none is expected. This may be the 
result of different limits of detection, instrumentation or poor 
Quality Assurance / Quality Control procedures. Leveling of 
the groups is required; 

· the constant sum problem for compositional data. 
These problems create difficulties when applying 

mathematical or statistical procedures to the data. Statistical 
procedures have been devised to deal with all of these problems. 
In the case of varying detection limits, the data require separation 
into the original groups so that appropriate adjustments can be 
applied to the groups of data. 

To overcome the problems of censored distributions, 
procedures have been developed to estimate replacement values 
for the purposes of statistical calculations. When data have 
missing values, several procedures can be applied to impute 
replacement values that have complete analyses. This will be 
discussed in more detail further on in the text. 

Figure 3 summarizes the problems of censoring,  n o n -
normality and the discrete differences in the data due to analytical 
resolution. The image is a shaded relief map derived from the 
density of observations of As vs. Au. The “valleys” represent 
limits in data resolution near the lower limit of detection for Au. 
The actual limit of detection appears as a “wall” at the zero end of 
the Au axis. In contrast, As displays a continuous range of values 
without the same resolution or detection limit problems exhibited 
by Au. 
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Figure 3: Density plot of Arsenic versus Gold displaying censoring 
and quantization of the analytical data. 

 
Standard numerical and statistical methods have been 

developed for data analysis where the values being considered 
add to a constant sum (e.g. whole rock analyses summing to 
100%). This is discussed in more detail below.  

Quality assurance and quality control of geochemical data 
require that rigorous procedures be established prior to the 
collection and subsequent analysis of geochemical data. This 
includes the inclusion of certified reference standards, 
randomization of samples and the application of statistical 
methods for testing the analytical results. Historical accounts of 
Thompson and Howarth plots, for analytical precision studies 
can be found in Thompson and Howarth (1973, 1976a, 1976b, 
1978). Additional discussion on the subject was most recently 
covered by (Stanley, 2003, 2006; Garrett and Grunsky, 2003) 
 

Compositional Data  

 
Geochemical data are reported as proportions (weight %, parts 
per million, etc.) For a given observation compositional 
proportions (i.e. weight %) always sum to a constant (100%). 
As a result, as some measures increase, others are “forced” to 
decrease to keep the sum constant. Because compositional data 
occur only in the real positive number space, the calculation of 
statistical measures such as correlation and covariance, can be 
misleading and result in incorrect assessment of correlation or 
other measures of association. However, the problem is seldom 
severe because the analysis of multi-element geochemistry 
using trace elements usually does not represent an entire 
composition, i.e. they only sum to a few percent of the total. 
The effect of closure, in most cases, may have little or no effect 
on the outcome of most statistical procedures. However it is 
dangerous to make the assumption that closure has no effect on 
the outcome of any statistical measure.  

Aitchison (1986) developed a methodology for data 
analysis and statistical inference of compositional data using 
logratio transformations. These transformations project the 
compositional data into the entire (positive and negative) real 
number space, which allows standard statistical procedures to 
be applied. These methods are gaining popularity and examples 
of application to geochemical data are given by, Aitchison 
(1990), Grunsky et al. (1992) and Buccianti et al. (2006). The 
approach has also been extended into spatial data processing 
that is commonly used in ore reserve estimation (Pawlowsky, 

1989). Recent work by von Eynatten et al. (2002, 2003), 
Pawlowsky-Glahn and Buccianti (2002), Martin-Fernandez et al. 
(1998, 2000) and Barcelo et al. (1995, 1996, 1997) document 
methods and issues around the treatment of compositional data.  
Aitchison (1997) provides a very readable account of 
compositional data issues. Appendix 1 provides a basic 
description of the use of logratios. Buccianti et al. (2006) provide 
the most recent developments in the field of compositional data 
analysis. A package for compositional data analysis (van den 
Boogaart and Tolosana-Delgado, in press), (compositions) 
provides a set of tools for evaluating compositional data using the 
R statistical package (www.r-project.org). 

Most geochemical survey data are comprised of trace element 
measurements that are reported as parts per million (ppm). The 
reporting in parts per million constitutes the potential for closure, 
the trace element concentrations may interfere with each other 
particularly when one or more of the elements of interest are 
close to zero. The application of a centered logratio 
transformation (clr) will provide more reliable and statistically 
defensible results than the use of raw data and if balances can be 
constructed, an orthonormal basis of the variables will result for 
which statistical and vector calculations can be applied.  
 

SUMMARIZING GEOCHEMICAL DATA 

Univariate Data Summaries  

 
The following description of data exploration is based on 
examining univariate populations. Exploratory Data Analysis 
(EDA) plots are shown in Figures 4a-d and 5a-d. These plots are 
often useful when grouped together as they provide different 
ways of summarizing data. Data summaries, in combined 
graphical and text form, provide a basis for context and 
comparison of different data types. 

Histograms 

The histogram is one of the most popular graphical means of 
displaying a distribution since it reflects the shape similar to 
theoretical frequency distributions. Figures 4a and 5a illustrate 
how the histogram can be used to display the distribution of Al 
and As in lake sediments. These two elements have been chosen 
to demonstrate two very different geochemical responses. 
Aluminum is ubiquitous in the lake sediments, mostly derived 
from alumino-silicates such as feldspars. Aluminum abundance is 
largely controlled by rock types such as granites and volcanic 
rocks. Figure 4a illustrates the range of Al values from sediments 
in lake catchments. The distribution appears polymodal, which 
could lead to the interpretation that the lake sediments have been 
derived from several different lithologies. In the Batchawana area 
of Ontario, these lithologies are granite gneiss, migmatite, 
granitoid intrusions, metasediments and metavolcanic rocks.  
However, on closer examination these “peaks” appear to be 
artifacts of analytical method (varying detection limits) and can 
create difficulties with the interpretation. Other graphical 
methods that are discussed below are better suited for interpreting 
these data. 

Arsenic is much less abundant in the country rocks of the 
area. When it is present, it is usually associated with 
mineralization. Relative to Al, elevated amounts of As is a “rare 

144            Advances in Regional-Scale Geochemical Methods
_________________________________________________________________________________________



event”. This is reflected in the histogram of Figure 5a where 
most As values are below 10 ppm. 

For constructing a histogram a number of objective 
procedures have been established as initial starting points for 
interval selection (see Venables and Ripley, 2002. page 112). If 
the nature of the distribution is normal or close to normal then 
Sturge’s rule can be applied. Sturge’s rule sets the number of 
intervals equal to log2n +1 where n is the number  o f  
observations. Sturge’s rule does not work well if the 
distributions are not normal. If the number of intervals is too 
few, then the finer details of the distribution are smoothed over. 
If the number of intervals is too many, then the distribution 
appears discontinuous.  

Histograms can be tuned by experimenting with starting 
points, cut off points and interval selections. This process is 
subjective and when the end points and intervals are well 
chosen, a meaningful interpretation is likely. Conversely, if the 
end points and intervals are poorly chosen, an incorrect 
interpretation, or no significant interpretation can be obtained. 

Box Plots 

The box plot is a method used to display order statistics in a 
graphical form (Tukey, 1977). The main advantage of the box 
plot is that its shape does not depend on a choice of interval as 
does the histogram. Providing the scale of presentation is 
reasonable, the box plot provides a fast visual estimate of the 
frequency distribution. A box plot for As in lake sediments is 
shown in Figure 5b. 

Within a box plot, the box is made up of the median (50th 
percentile), left and right hinges (25th and 75th percentile, or 
first and third quartile). The "whiskers" are the lines that extend 
beyond the box. Several variations exist on the graphical 
presentation of box plots. The extreme ends (maximum and 
minimum values) of the data are marked by vertical bars at the 
end of the whiskers. Alternatively, the whiskers can extend to 
the "fences", which are defined as the last value before 
1.5*midrange beyond the hinges of the data. Observations that 
plot beyond 3*midrange are plotted as bars or special symbols. 
The location of the median line within the box gives an 
indication of how symmetric the distribution is within the 
range of the upper to lower hinge (midrange). The lengths of 
the whiskers on each side of the box provide an estimate of the 
symmetry of the distribution. Notches can also be added to the 
diagram, which identify the width of the confidence bounds 
about the median. Notches are evident in the box plot of Figure 
4b, where the distribution of Al is not highly skewed. The 
notches are less obvious in Figure 5b because of the skewed 
nature of the data and the scaling of the plot. 

When using these plots to compare datasets representing 
different lithologies, etc., the notches provide an informal 
statistical analysis. If the notches do not overlap, it is evidence 
that the difference between the medians is significant. 

Density Plot 

The distribution of data can also be described graphically 
through the use of density plots. Density plots are smooth 
continuous curves that are derived from computing the 
probability density function of the data. The density plot is 
similar to the histogram however the curve actually represents 
an estimate of the probability density function. Density 

estimation involves the use of smoothing procedures to compute 
the curves and is described in Venables and Ripley (2002, p. 126-
132). Density curves can be modified by specifying the range of 
the data from which the smoothing and estimation is calculated. 

Figure 4c shows a density plot for Al in lake sediments. The 
polymodal nature of Al is shown more clearly than in Figures 5a 
and 5b. Figure 5c shows the density plot for As where the skewed 
nature of the distribution is illustrated by the sharp single peak 
followed by a long tail. 
 

 
Figure 4: Exploratory Data Analysis (EDA) plot of Al in lake sediments, 
Batchawana area, Ontario. Note the distinct polymodal nature of the 
distribution. The Q-Q plot suggests that this polymodal appearance may 
be due to lack of precision in the chemical analysis. 

 

 
Figure 5: Exploratory Data Analysis (EDA) plot of As in lake sediments, 
Batchawana area, Ontario. Arsenic exhibits a log-normal type of 
distribution. Extreme values (outliers) influence the shape of the 
distributions in all four plots.  
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Quantile-quantile (Q-Q) Plots 

Quantile-Quantile (Q-Q) plots are a graphical means of 
comparing a frequency distribution with respect to an expected 
frequency distribution, which is usually the normal 
distribution. Q-Q plots are equivalent to normal probability 
plots that have been extensively used by Sinclair (1976) for the 
analysis of geochemical data. Stanley and Sinclair (1987, 1989) 
and Stanley (1987) have written extensively on the use o f  
probability plots for dissecting populations. A general 
description of Q-Q plots can be found in Venables and Ripley 
(2002, p. 108). These plots are generated by calculating 
quantile values for the normal frequency distribution (value of 
the normal frequency distribution over the range of probability, 
0.0 to 1.0) and then plotting these against the ordered observed 
data. If a frequency distribution is normally distributed, when 
the quantile values are plotted against the ordered values of the 
population, the plot will be a straight line. If the frequency 
distribution of the population is skewed or the population is 
polymodal, the Q-Q plot will be curved or discontinuous. The 
advantage of the Q-Q plot is that each individual observation is 
plotted and thus the detailed characteristics of groups of 
observations can be observed. 

Figure 4d shows a Q-Q plot for Al in lake sediments. The 
plot provides some insight into the nature of the data that is not 
shown by any of the other three plots (Figures 4a-c). The 
“stepped” nature of the plot suggests that the values of the data 
are not continuous but are reported as discrete values rounded 
off at the nearest part per million. The step-like pattern 
indicates that measurements were made in 1 ppm increments 
for some of the data and in 0.1 ppm increments for other data. 
In fact, the pattern that is observed is a mixture of four surveys, 
three of which have a resolution of 1 ppm for Al, and the fourth 
survey has a resolution of 0.1 ppm. The departure of the 
stepped plot from the straight line indicates that it is a slightly 
skewed distribution. Figure 5d shows the Q-Q plot for As 
which clearly reveals the non-normal nature of the distribution 
by its non-linearity. Q-Q plots are also useful for identifying 
extreme values at the tails of the distribution. The line that cuts 
through the data represents the intersection at the 25th and 75th 
percentiles of the data. In the case of the As data, it is clear that 
the distribution is very skewed. 

Summary Statistical Tables 

Summary statistical tables, are useful descriptions of data when 
quantitative measures are desired. Summary statistical tables 
commonly include listings of the minimum, maximum, mean, 
median, 1st quartile, and 3rd quartiles. Measures of dispersion 
include the standard deviation, median absolute deviation 
(MAD), and the coefficient of variation (CV). The coefficient 
of variation is useful because the dispersion is expressed as a 
percentage (the mean divided by the standard deviation), so it 
can be used as a relative measure to compare different 
elements. An example of a summary table for a selected group 
of elements from the lake sediment data is shown in Table 1. 
The table lists minimum, maximum, mean, median and 
selected percentile values for 35 elements and loss on ignition 
(LOI). Comparison of the mean and median values for each of 
the elements shows that many of them are significantly 

different from each other. This implies that the distributions for 
these elements are not normal and are likely skewed.  

Summary tables are useful for the purpose of publishing 
actual values, however graphical methods, as previously 
described, provide visualization about the nature of distributions 
and the relationships between observations. The values of a 
summary table are best interpreted when used in combination 
with graphical summaries. 

Spatial Presentation 

It is particularly meaningful to display geochemical survey data 
in a geographical context. A GIS is a very useful tool for 
evaluating geochemical data during the exploratory analysis 
phase. Figure 6 shows a symbol plot of As from lake sediments in 
the Batchawana area of Ontario. Each symbol represents a 
collection site. The number of symbols and the symbol sizes were 
chosen based on an evaluation of the accompanying Exploratory 
Data Analysis (EDA) plot. An initial view of the EDA plot for As 
showed that the distribution was positively skewed and the plot 
was difficult to interpret. A log10 transform was then applied to 
the data values and the resulting EDA plot was much easier to 
interpret. The EDA plot of Figure 6 shows at least 4 distinct 
populations. The first population ranges in values from  < 0.-02 to 
0 log10 scale (.9 to 1 ppm) and is related to the many specimens 
with As values close to the detection limit. The second population 
ranges from 0 to 1.2 log10 scale (1 to 16 ppm) and reflects 
background As values associated with the geology.  The third 
population ranges from 1.2 to 1.6 log10 scale ( 16 to 40 ppm) and 
occurs mainly in the south central part of the Batchawana 
greenstone belt in an area where there is known pervasive 
carbonate alteration associated with shear zones. The fourth 
population ranges from 1.6 to 2.0 log10 scale (40 to 100 ppm) 
and represents areas where there are known sulphides. 

The choice of symbol size and colour can be used clearly 
illustrate patterns of similarity and difference between several 
elements in the data. If the goal is to illustrate atypical 
observations, then once a background range of values has been 
established, observations that exceed the limit of the background 
can be assigned unique colours or different sized symbols. If the 
distribution of the data is non-normal and the observations of 
interest are in the positive tail of the distribution, then a 
logarithmic scale can be used to assign symbol sizes. 

Kürzl (1988) and Reimann et al. (2005) suggests a unique 
approach by creating symbols based on exploratory data analysis 
methods. Using the divisions within a box plot,  
the median value (Q2) and the interquartile range Q1-Q3 ( r ),  
the upper fence (Q3 + 1.5*(Q3-Q1), 
the lower fence (Q1 – 1.5*(Q3-Q1), 
lower outside values (Q1 – 3*(Q3-Q1)) and 
upper outside values (Q3 + 3*(Q3-Q1)) can be used to define 
unique symbols which express the ranking of an observation. An 
example of a seven symbol set can be defined as: 
1 < lower outside values 
2 lower outside values to the lower fence 
3 lower fence to Q1 
4 Q1 to Median (Q2) 
5 Median (Q2) to Q3 
5 Q3 to upper fence 
6 upper fence to upper outside values 
7 > upper outside values 5 Q3 to Q3 + 1.5*r 
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Table 1: Summary Statistics for Lake Sediments, Batchawana Area, Ontario 

Table 1

Summary Statistics for Lake Sediments, Batchawana Area, Ontario

LLD

Num 

Obs Min 1% 5% 10% 25% 50% Median Mean 75% 90% 95% 99% Max S.D. MAD C.V

LOI 2.96 3019 3 35.5 40.11 40.5 43.94 49.5 44 44 53.5 56.54 57.25 57.5 91.5 13.7 13.3 0.3

Ag 0.2 2900 0.2 0.2 0.2 0.2 0.2 0.3 0.5 0.7 1 1 1 1 72 1.5 0.4 2.3

Al 0.36 3047 0.4 1.385 1.955 2 2.19 2.22 2 2.5 3 3.5 3.5 4.17 8 1.2 1.4 0.5

As 0.5 3046 0.5 0.85 0.9 1 1.25 1.3 1.2 2.2 1.5 1.5 2 2 96 4 0.4 1.8

Au 1 3042 1 1 1 1 1 1.5 1 2.1 2 2 2.5 4 64 2.1 0 1

Ba 30 3047 30 132 156.5 160 160.5 175 148 167.8 178.5 195 235 295 680 85.2 71.2 0.5

Be 0.5 3047 0.5 0.5 0.5 0.5 0.5 0.75 0.5 0.8 1 1 1 1 54.1 1 0 1.3

Bi 2 3047 2 2 2 2 2 3 2 2.9 5 5 5 5 10 1.4 0 0.5

Br 1 3046 1 3.4 14.5 17.45 18.05 31 22 25.6 34.5 37.95 43 57.5 132 16.1 14.1 0.6

Ca 0.23 2685 0.2 0.71 0.805 0.87 0.915 1 1 1 1 1 1 1.08 9.1 0.4 0.1 0.4

Cd 0.2 3047 0.2 0.3 0.45 0.5 1 1 1 1 1 1.05 1.1 1.5 6 0.6 0.3 0.5

Co 1 3047 1 4 4.5 5 5.5 5.5 6 6.9 6.5 6.5 8 10.5 105 5 3 0.7

Cr 1 3047 1 18 25.5 26 31.5 32 27 31.3 32 41 41.5 47.5 328 18.2 13.3 0.6

Cu 2 3047 2 13 17 21 23.5 28 29 34.2 31.5 37.5 44 45.5 441 24.3 14.8 0.7

Fe 0.14 2649 0.1 0.4 0.45 0.965 1 1.5 1 1 1.5 1.5 1.505 1.745 15 0.7 0.3 0.7

Hf 1 3046 1 1 1.5 2 2 2.5 2 2.3 2.5 2.5 3.5 6 30 1.4 1.5 0.6

K 0.05 1809 0.1 0.19 0.265 0.33 0.37 0.43 0.3 0.5 0.56 1 1 1 2 0.3 0.3 0.7

La 1 3046 1 13 20.5 27 27 31 25 29 38 44.5 50 50.5 408 19.3 13.3 0.7

Lu 0.1 1605 0.1 0.15 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.25 1 2 0.2 0 0.7

Mg 0.04 1636 0 0.09 0.095 0.1 0.15 0.28 0.2 0.3 0.285 0.305 0.31 1 2 0.2 0.1 0.9

Mn 20 3047 20 76 89 97.5 101.5 127 114 159.8 134 142.5 160 309.5 3410 168 77.1 1.1

Mo 1 3047 1 1 1.5 1.5 1.5 2 2 2.3 2.5 2.5 2.5 3 84 3.2 1.5 1.4

Na 0.03 1999 0 0.17 0.355 0.44 0.52 0.94 0.5 0.7 1 1 1.055 2 4 0.5 0.5 0.8

Ni 3 3047 3 11.5 12 15 15.5 16.5 16 17.3 18 19.5 22.5 29 153 7.9 5.9 0.5

P 150 2197 150 300 515 650 825 830 820 941 970 1060 1105 2315 4700 508.6 474.4 0.5

Pb 2 3047 2 7 8 10 11 12 10 11.6 13.5 14 16 17 1340 27.3 5.9 2.4

Sb 0.1 1627 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.15 0.15 0.2 1 7 0.3 0 1.8

Sc 0.1 3046 0.1 2.6 4.5 5.35 5.4 6 5 5.2 6.35 6.5 7.5 7.5 19 2.2 1.5 0.4

Sr 12 3047 12 48 50 60.5 66 66 60 78.3 94 109.5 117 170 427 54.3 34.1 0.7

Ta 0.5 3046 0.5 0.5 0.5 0.5 0.5 2 2 1.4 2 2 2 2 3 0.7 0 0.5

Th 0.4 3044 0.4 1.9 2.4 2.5 3.25 3.3 3 3.3 3.65 4.5 5.5 8 26 1.7 1.5 0.5

Ti 0.009 1557 0 0.03 0.05 0.057 0.06 0.06 0.1 0.1 0.076 0.105 0.121 0.255 0.3 0 0 0.5

U 0.1 3009 0.1 1.9 2.3 2.5 2.65 2.95 2 4.2 4.1 4.5 5 18.5 195.5 7.5 1.5 1.8

V 5 3047 5 11 18.5 22.5 24 24.5 24 27.1 27.5 37 41 45.5 301 15.9 13.3 0.6

W 1 3046 1 1 1 1 1 1 1 1.7 1 1.5 1.5 2 46 1.7 0 1.1

Zn 13 3047 13 52 62.5 63.5 75.5 98 86 98.6 102.5 114 116.5 145 952 68.1 38.5 0.7

S.D. - Standard Deviation

C.V. - Coefficient of Variation

MAD - Median Absolute Deviation  
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Figure 6a: Arsenic (log10) in lakes sediments, Batchawana area, Ontario. 

 

 
Figure 6b: Exploratory data analysis of arsenic in lake sediments, Bathawana area, Ontario 
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Application of Geostatistical Techniques for evaluating the 
spatial continuity of geochemical processes 

Contouring or imaging techniques are most reliable when the 
sampling density is sufficient enough so that variation between 
sample sites is minimal for the purposes of the sampling 
survey. Subjective judgment is often employed for a decision 
to use contouring or imaging techniques. If the sampling 
density is high, but the geochemist/geologist believes that the 
geochemical response between sample sites is predictable, then 
contouring or imaging may be an appropriate means of visually 
describing the data. If the geochemical variability between 
sampling sites is unknown or large then it is better to use point 
or bubble plots as described previously. A quantitative way of 
assessing spatial variability can be carried out by the use of 
geostatistical procedures. The construction of a semi-variogram 
or correlogram can provide a measure of the spatial continuity / 
variability of a specific element. A semi-variogram measures 
the average variance between sample points at specific 
distances (lags). Generally, as the distance increases between 
any pair of points, the variance is expected to increase, the limit 
of which is the total variance of all of the data. In the 
correlogram, as the distance between any pair of points 
increase, the average correlation between the points decreases, 
eventually decaying to zero. Isaaks and Srivastava (1991, 
Chapter 4) describe a number of detailed methods for 
evaluating the spatial continuity of data. The effectiveness of 
employing geostatistical methods relies on an adequate 
sampling density in terms of representing the actual variation 
of the data as well as the spatial distribution of the points 
themselves.  

A large number of freeware and commercial geostatistical 
software packages are now available for carrying out 
geostatistical analysis. The website www.ai-geostats.org 
provides a list of software that is currently available. A  
geostatistical package (gstat) has been written for the R 
programming environment (Pebesma, 2004), which is freely 
available from the Comprehensive R Archive Network 
(CRAN) (see: www.r-project.org). Deutsch and Journel (1997) 
provide a library of software routines in Fortran. A general 
introductory discussion on spatial statistics can be found in 
Venables and Ripley (2002, Chapter 15) and Davis (2002, 
Chapter 5). 

If the spatial sampling density appears to be continuous 
then it may be possible to carry out spatial prediction 
techniques such as spatial regression modeling and kriging. A 
major difficulty with the application of spatial statistics to 
regional geochemical data is that the data seldom exhibit 
stationarity. Stationarity means that the data has some type of 
location invariance, that is, the relationship between any sets of 
points are the same regardless of geographic location. Thus, 
interpolation techniques such as kriging must be applied 
cautiously, particularly if the data cover several geochemical 
domains in which the same element has significantly different 
spatial characteristics. 

Evaluation of the variogram or the autocorrelation plots 
can provide insight about the spatial continuity of an element. 
If the autocorrelation decays to zero over a specified range, 
then this represents the spatial domain of a particular 
geological process associated with the element. Similarly, for 

the variogram, the range represents the spatial domain of an 
element, which reaches its limit when the variance reaches the 
“sill” value, the regional variance of the element. Theoretically, at 
the origin, the variance should be zero at lag zero. However, 
typically, an element may have a significant degree of variability 
even at short distances from neighbouring points. This variance is 
termed the nugget effect.  

Figure 7 displays 4 semi-variograms for Zn from the 
Batchawana lake geochemistry survey data covering an area of 95 
km (east-west) and 62 km (north-south). Semi-variograms have 
been calculated for 4 preferred directions; East-West, (0 degrees), 
North-South (90 degrees), Northeast-Southwest, (45 degrees) and 
Southeast-Northwest (135 degrees). The y-axis of each figure is 
the correlation and the x-axis is the lag interval. The maximum 
lag distance was chosen as 20,000 meters and the lag interval was 
selected as 200 meters. The selection of a suitable lag distance 
can be made by visually examining the distribution of sample 
sites Geostatistical software packages can also determine 
optimum lag intervals. These figures were generated using the 
gstat package from R. Each figure has been fitted with an 
exponential model. The most regular semi-variograms appear for 
the 135 and 90 degree orientations. This is no surprise given that 
that there are two primary stratigraphic orientations in the area, 
one trending east-west and the other trending southeast to 
northwest. The orientations of 0 and 90 degrees display different 
nugget values, with the lowest nugget occurring with the east-
west orientation, also suggesting better correlation between 
adjacent points in that direction. The 45 degree orientation 
displays a straight line indicating that for the range considered 
(20,000m), maximum variance is not achieved. It should also be 
noted that all four semi-variograms display periodicity, which 
indicates that there is heterogeneity in the spatial structure of the 
data, most likely reflecting changes in the underlying geology 
(granite versus greenstone). 

 
Figure 7: Semi-variogram of Zn from lake sediments, Batchawana area, 
Ontario. Semi-variograms are derived for four different orientations. 
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The use of kriging makes some assumptions about the spatial 
uniformity (stationarity) properties of the data. In many cases, 
particularly in regional sampling programs, there are several 
lithological domains in which elements have different spatial 
ranges.  Kriging can account for various types of spatial drift in 
datasets, however the error in the kriged estimates tends to 
increase.  

The use and application of geostatistical methods is a 
combination of art and science. Skill, knowledge and 
experience are required to effectively use geostatistical 
techniques. It requires considerable effort and time to 
effectively model and extract information from spatial data. 
The benefits of these efforts are a better understanding of the 
spatial properties of the data which permits better estimates of 
geochemical trends. However, they must be used and 
interpreted with the awareness about problems with techniques 
of interpolation and the spatial behavior of the data. 
 

Fractal Methods 

The use of fractal mathematics is playing an increasingly 
important role in the geosciences. Carr (1994) gave a good 
introduction into the use of fractal methods in the geosciences. 
Cheng and Agterberg (1994) have shown how fractal methods 
can be used to determine thresholds of geochemical 
distributions on the basis of the spatial relationship of 
abundance. They have shown that where the concentration of a 
particular component per unit area satisfies a fractal or 
multifractal model, then the area of the component follows a 
power law relationship with the concentration. This can be 
expressed mathematically as: 
 

A(r£n) µ r-a1 
A(r>n) µ r-a2 

 
where A(r) denotes an area with concentration values greater 
than a contour (abundance) value greater than r. This also 
implies that A(r) is a decreasing function of r.  I f  n i s  
considered the threshold value then the empirical model shown 
above can provide a reasonable fit for some of the elements. 

In areas where the distribution of an element represents a 
continuous single process (i.e. background) then the value of  a 
remains constant. In areas where more than one processes have 
resulted in a number of superimposed spatial distributions, 
there may be one or more values of  a  defining the different 
processes. 

An example of the use of concentration versus area plots is 
shown for As derived from lake sediments collected over the 
Batchawana area. Figure 8 shows a colour contoured image of 
As values superimposed on the sample sites. As well, a plot of 
log10 As concentration versus log10 area occupied by each 
contour interval. Distinct changes in slope in the plot represent 
breaks based on the spatial distribution of the data and each 
break represents a threshold between populations of data 
possibly derived from different processes. There are three 
distinct trends shown on the concentration-area plot of Figure 
8. The regional background is characterized by a straight line 
of points ranging from 0.7 (5ppm) to 1.3 (20ppm). Interpolated 
As values greater than 5ppm and less than 20 ppm are shown 
as red, blue and cyan. This represents the regional background 

of the area. The group of points that form a straight line from 1.3 
(20 ppm) to 1.6 (40 ppm) represent the next population reflecting 
As associated with mineralization and anthropogenic effects. 
Anthropogenic effects are prevalent in the eastern part of the map 
area, whereas As values associated with potential mineralization 
are shown in the central and western part of the map area. Values 
above 1.6 (40ppm) represent a small population of observations 
that are greater than 40ppm (shown as orange and red on the map. 
These observations occur in the southeast portion of the map area 
and may represent areas of mineralization. 

 

 
Figure 8: Arsenic from lake sediments, Batchawana area, Ontario. The 
contoured image reflects the area associated with each As contour level. 
The corresponding Concentration-Area plot display changes in slopes, 
which reflect changes in spatial patterns. These changes are associated in 
differences in geology, anthropogenic effects and mineralization. 

 

Cheng et al. (2000) has also implemented the use of power-
spectrum methods to evaluate concentration-area plots derived 
from geochemical data. By the application of filters, patterns can 
be detected related to background and noise, thus enabling the 
identification of areas that are potentially related to 
mineralization.  More details on this methodology can be found in 
Cheng (2006). 
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Multivariate Data Summaries 

Scatterplot Matrix  

The scatterplot matrix a useful graphical multivariate methods 
for visually assessing the relationships between variables. 
When categorical information is available, colour can be used 
to show differences between the categories. 

Two areas were chosen from the Ben Nevis mapsheet 
(Figure 9); one representing an area of carbonate alteration and 
the other, an area of metavolcanics without carbonate 
alteration. Figure 10 shows a scatterplot matrix of a selected 
number of elements from the two areas. The matrix highlights 
associations and patterns in the data. There is a clear distinction 
between the altered and unaltered observations for CO2 with 
Co, Cu and Cr. CO2 shows an overall increase for the altered 
specimens, whereas the abundances o f  Cu, Cr and Co vary 
widely in a suite of specimens from the carbonate alteration 
zone. The distribution patterns for these elements can be 
studied further using other graphical measures such as box 
plots. 

 

 
Figure 9: Map of altered/unaltered sampling sites in the Ben Nevis 
Township area. 

 

 
Figure 10: Scatterplot matrix of altered and unaltered metavolcnics from the Ben Nevis area of Ontario. Carbonate altered rocks cluster differently from the 
non-altered rocks. 
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Multiple Box Plots 

In Figure 1 1 box plots for 9 elements from the Ben Nevis 
lithogeochemistry data show that there are clear differences in 
the geochemistry between the two areas. Box plots are a 
convenient way of summarizing the differences between 
groups of data. Note that there is a distinct shift in the median 
value data for CO2, and Li (an increase) and a corresponding 
decrease in Ca and Sr for the specimens from the altered area. 
This is consistent with studies that indicate that there is overall 
loss of Ca and Sr in the zone of carbonate alteration, and an 
increase of Li and Na. Chromium, Na, Ni, Cu and Co show 
greater variability in the altered area. The greater variability is 
due to a breakdown of the original mineralogy accompanied 
with the addition of CO2, Si, Li, Cu and several other elements 
that are associated with hydrothermal activity and 
mineralization. 
 

DIFFERENTIATING GEOCHEMICAL BACKGROUND 
FROM ANOMALIES 

 
The recognition of a geochemical anomaly requires that a 
geochemical background has been established, which in itself 
can be difficult to define. Geochemical values that depart from 
the background, that is, those values which are atypical, may be 

anomalous. Howarth and Sinding-Larsen (1983, p. 208) discuss 
the concept of anomaly and suggest that anomalous 
concentrations are those values that exceed a given threshold. 
Workshops held by the Association of Exploration Geochemists 
(AEG) in 1983 and 1985 (Garrett, 1984; Aucott, 1987) failed to 
give any formal definitions and concluded that an anomaly is a 
desired level of abundance in which the geologist has a particular 
interest and is different from the regional or background values. 
Joyce (1984, p. 15) discusses the definition of an anomaly in 
terms of an adequate definition of background. 

Historically, values exceeding the 98th p e r centile were 
scrutinized for their potential to be identified as geochemical 
anomalies. As well, the threshold was defined as the mean ± 2 
standard deviations (Hawkes and Webb, 1962; Howarth, 1983, p. 
208). This definition was based on the assumption of normality of 
the data. However, with the introduction of computer-based 
methods for evaluating geochemical data, the ability to study 
sample populations and the nature of geochemical distributions 
has provided powerful tools for the identification of outliers and 
specimens that might be related to mineralization targets 
(anomalies). As a result, the use of choosing thresholds based on 
the calculation of the mean ± 2 standard deviations is no longer 
recommended (see Levinson, 1980; Rose, Hawkes, and Webb, 
1979; and Garrett, 1989a). Filzmoser et al. (2005) describe an 
approach to outlier and anomaly detection using robust methods 
and adaptive techniques for recognizing outliers. 

 

 
Figure 11: Box plots showing the character of selected elements between the altered and unaltered sites. 
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The Threshold and Pathfinder Elements 

 
An important goal of the investigation of geochemical data is 
the detection of spatially continuous zones of elevated values 
of a strategic element that exceeds a specified threshold value. 
Observations that exceed the threshold are termed anomalies. 
Joyce (1984, p.9-13) provides a detailed description of 
indicator and pathfinder elements and minerals that can be used 
in exploration strategies. Garrett (1991) defined the threshold 
as the outer limit of background variation. The term "outer" is 
used instead of "upper". This allows the definition to include 
both "upper" and "lower" limits, as it is common in some 
geochemical environments for depletion haloes to be as 
important as enrichment haloes. Reimann et al. (2005) further 
refined the definition of threshold and background based on 
robust methods.  

The concept of threshold can be extended from single 
element to multi-element data by the use of multivariate 
statistical methods such as the use of the Mahalnobis distance 
(Garrett, 1989b). In the multivariate case, the threshold can be 
selected on the basis of examination of Mahalanobis distance 
plots or some other more robust measure of background and 
departures from it. 

Observations from distributions that represent processes of 
interest (mineralization or anthropogenic effects) usually 

overlap with observations from background distributions such 
that the threshold is more likely a range of values where the two 
distributions overlap. Rather than choose a specific threshold 
value, it may be better to assign a probability of the likelihood of 
an unknown specimen belonging to each population. In 
geochemical surveys, anomalies have a spatial association and are 
small and only occupy a fraction of the area that is covered by the 
regional population. 

Figure 12 shows the threshold as determined by a visual 
inspection of the Q-Q plot. In this case, the threshold for K2O is 
chosen at 2.5 %, which is considered above the usual range of 
values for volcanic rocks. The values that exceed the threshold 
can be identified on the map by choosing a symbol size or colour 
to identify them.  

Mineral deposits are often characterized by a unique suite of 
elements whose values exceed the threshold of the surrounding 
background material. These elements are called pathfinder 
elements and often have a greater spatial extent relative to the 
target being sought. In the Ben Nevis metavolcanic sequence, K 
can be considered as a pathfinder element. Elevated values of K 
are typically associated with epithermal Au deposits. 
Examination of the distribution of K2O in Figure 12b suggests 
that values above 2.5 wt% K2O are atypical and that value defines 
the threshold. The map of K2O values with in Figure 12a 
indicates that high K2O values are associated with the two known 
mineral occurrences as well as several other sulphide bearing 
occurrences.

 

 
Figure 12: K2O map across Ben Nevis Township. Separation of atypical K2O values.
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Outliers or Anomalies? 

 
An outlier can be defined as an observation with a value that is 
distinctively different from observations with which it is 
intimately associated. If a threshold has been defined, then an 
outlier, by default, exceeds the threshold. Outliers may be of 
significance from an exploration or contamination point of 
view. An outlier may define a mineralized zone (anomaly) or a 
value that is above an accepted environmental background 
level. Outliers can also be artifacts of erroneous analytical 
results or data entries. An outlier can be identified as a 
geochemical anomaly if it exceeds the threshold, is not the 
result of an analytical problem, or assigned to an improper 
population. In other words, an anomaly is associated with a 
process of interest (alteration or mineralization), whereas an 
outlier is a value without an interpretation that requires further 
assessment. 

Outliers should always be examined carefully to be certain 
that the observed values are not the result of an error. An 
observation that is an outlier in one group may be 
indistinguishable (masked) from other observations within 
another group. In practice, outliers are assessed by a graphical 
examination of the upper and lower rankings of the data and 
the identification of observations that occur as distinct breaks 
from the background population. The application of a 
transformation may be sufficient to separate the background 
from outliers.  

Figure 13a shows a Q-Q plot of As from the lake sediment 
data. Arsenic, a pathfinder element, is commonly associated with 
gold deposits. An examination of the plot shows that “breaks” 
occur at the approximate values of 20, 25 and 35 ppm. In 
comparison with the fractal approach, the break at 20 ppm is 
equivalent the abrupt change in slope in Figure 8, where the 
concentration-area plot identifies a distinct change in the data 
population at a value of log10As=1.3 (19.95 ppm). These breaks 
most likely represent distinct populations that can be attributed to 
different source lithologies. The breaks are used as the basis for a 
change in symbol sizes on the map of Figure 13b. There are six 
extreme values, which occur above the level of 35 ppm, which is 
considered the threshold. These values can be considered as 
anomalies because of the break in the slope of the curve and the 
distance between these values and the bulk of the population. 
These outliers would be of interest in a mineral exploration 
program. 

In the case of two or more (multi-modal) populations it will 
be necessary to decompose the populations into separate distinct 
populations through the analysis of Q-Q plots, probability plots or 
by computer-based means (Sinclair, 1976; Stanley, 1987; Bridges 
and McCammon, 1980). Garrett (1989b) and Filzmoser et al. 
(2005) have developed methods for outlier detection in 
multivariate data using a multivariate outlier plot, which 
identifies observations that appear to belong to a population 
different from the main population. This has obvious benefits in 
evaluating geochemical data for observations associated with 
alteration or mineralization. 

 
Figure 13:  Map of atypical As (ppm) across the Batchawana area, Ontario.
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Truncated and Censored Data 

 
When an analytical procedure detects the presence of an 
element, but the value is too low to be accurately quantified, 
the value is reported as “less than the limit of detection” (lld). 
The same applies for values that exceed the upper limit of 
detection. The lower/upper limits of detection are the limits of 
reliable quantification by the analytical procedure. Typically, a 
laboratory will report the value prefixed with a “<” for a value 
less than the lld or “>” for a value that exceeds the upper limit 
of detection. When a group of values contains observations that 
exceed the detection limits, the effect is called censoring.  

Figure 14 shows the distribution of Co in metavolcanics 
collected during lithogeochemical sampling program in the Ben 
Nevis township area of Ontario. The analytical procedure for 
Co has a lower limit of detection of 5.0 ppm and 85 out of the 
824 observations fall below that limit. The histogram of Figure 
14a shows a bar with a high frequency of observations at the 
lowest end of the scale. This bar represents the 85 values that 
are less than the detection limit. The Q-Q plot (figure 14b) 
shows these values as a flat part of the distribution at the left 
side of the figure. The density and box plots (Figures 14b,c) do 
not show the censored values as clearly. Historically, censored 
data were handled by applying a substitute value; somewhere 
between 1/3 to 1/2 of the actual detection limit. As the number 
of observations below the lld (censored) increases, then this 
estimate will produce inaccurate estimates of the mean and 
variance (see Sanford et al., 1993). 
 

 
Figure 14: Cobalt (ppm) in metavolcanics, Ben Nevis Township, 
Ontario, Canada.  

 
Several techniques have been developed to minimize the 

problem of censored data. The problem of censored data 
becomes more important when means of elements and 
covariances between elements are required. Using an arbitrary 
“replacement” value (i.e. ½ or 1/3 the lld) can introduce bias in 
the computation of the moments of the distribution. However, 
if the nature of the distribution can be assumed as normal, then 
the replacement value of the censored data and parameters of 
the distribution (mean, variance) can be estimated based on the 
portion of the distribution that is not censored. The process of 
finding suitable replacement values is known as “imputation” 

in the statistical literature. Estimates of the distribution 
parameters are obtained using the EM algorithm (Dempster, 
Laird, and Rubin, 1977), and is discussed by Campbell (1986) 
and Chung (1985, 1988, 1989). From these characteristics, an 
estimate can be made as to how the data is distributed below the 
(lld). The assumption of normality is essential for the EM 
algorithm to work. Campbell (1986) invokes an algorithm to 
transform the data to normality using Box-Cox. Sanford et al. 
(1993) have developed a method that allows for the calculation of 
a suitable replacement value based on a maximum likelihood 
approach. Helsel (1990) provides a detailed discussion on dealing 
with missing data in environmental studies. Chung (1985, 1989), 
Campbell (1986) and Lee and Helsel (2005, 2007) have published 
computer procedures that estimate the mean and variance of 
censored distributions by calculating a replacement value that is 
derived from the characteristics of the uncensored portion of the 
sample population. Dickson and Giblin (2007) have used self-
organizing maps as a means of finding suitable replacement 
values. 

 

Robust Estimation 

 
The presence of extreme or atypical values in a sample 
population can have a dramatic effect on the estimation of the 
mean and variance, which in turn will affect the estimation of 
correlation and covariance with other variables. As these 
measures of association are used by many statistical techniques, it 
is useful to minimize the influence of atypical observations. 
Methods of robust estimation are primarily concerned with 
minimizing the influence of observations that are atypical. There 
are several methods for determining robust estimates of location 
(mean/median) and scale (variance). Robust estimation 
procedures can be applied to both single and multivariate 
populations. Good reviews on robust statistics can be found in 
Venables and Ripley (2002, Chapter 5.5) and Daszykowski et al., 
2007). 

Geochemical distributions are often positively skewed and 
log-normal in appearance. The skewed nature is commonly 
attributed to a mixture of different populations and/or the 
presence of outliers. For such distributions, a robust estimate of 
the mean will be less than the standard estimate of the mean 
because the influence of the long tail and outliers is reduced. 

Methods for robust estimation of location and scale include 
Trimmed Means, Adaptive Trimmed Means, Dominant Cluster 
Mode, L-Estimates, M-Estimates and Huber W-Estimates (see 
Grunsky 2006). 
 

Transformation of Data 

 
Statistical testing and comparison between groups of data usually 
requires the estimation of means, variances and covariances. 
Most statistical procedures assume that the populations being 
tested are normal in nature. If there are outliers (extreme data 
values) or a mixture of populations (polymodal or skewed 
distributions) then the assumption of normality is violated. In 
right-skewed distributions (the most common effect observed 
with geochemical data) estimates of the mean exceed the median 
value. Similarly, the estimation of the variance is inflated for a 
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skewed distribution. The skewed nature of the data can be 
overcome by applying a suitable transformation that shifts the 
values of the distribution such that it becomes normally 
distributed. It has been common in the geological literature to 
apply logarithmic transformations to data as a way to correct 
for a positive skew. The application of transformations to data 
should be carefully applied to avoid masking the presence of 
multiple populations and outliers (Link and Koch, 1975). If 
transformations are applied to data to minimize the effect of 
skewness, then quantile-quantile plots of the transformed data 
should be examined for changes in slope or breaks in the line, 
as these features might suggest the presence of two or more 
populations. 

Transformations that can be applied are: 
· Linear scaling, 

y=kx or y=(xi -`x)/s 

where s is the standard deviation 

· Exponential,  y=ex 

· Box-Cox Generalized Power Transform, 

y=(xl - 1)/l, y=ln(x) for l=0 
 

The linear scaling transformations do not change the shape 
of the distribution. However the degree of dispersion (variance) 
can change. The logarithmic, exponential, and Box-Cox 
generalized power transforms, or log10 modify both the shape 
and the dispersion characteristics of the distributions and are 
the transformations most commonly used. Howarth and Earle 
(1979) provided a computer program for estimating parameters 
for the generalized Box-Cox power transform based on the 
optimization of skew and kurtosis and the optimization of the 

maximum likelihood criterion of Box and Cox (1964). Lindqvist 
(1976) published a computer program (SELLO) for transforming 
skewed distributions based on minimizing skew.  

In exploratory data analysis, transformations are useful in 
assessing whether outliers are the result of a non-normal 
frequency distribution or are truly atypical values. The 
distribution should be examined for outliers both before and after 
a transformation has been applied to the data. Once any outliers 
are eliminated, the data should be re-examined for outliers as 
above until all are identified and eliminated. Campbell (1986) 
prepared computer programs that account for atypical values in 
the estimation of transformations and robust estimates of means 
and variances. Stanley (2006) discusses the application of 
transformations to maximize geochemical contrast and improve 
data presentation. 

Figure 15 shows the effect of applying four different 
transformations on Ni for lake sediments from the Batchawana 
area of Ontario. The data are represented on Q-Q plots. Figure 
16a shows the untransformed data; Figure 15b shows the log10 
transformation of the data; Figure 15c shows a square root 
transformation and Figure 15d shows a Box-Cox generalized 
transformation with a value of λ determined after the top 5% of 
the data were trimmed. The resulting value of λ=0.08 is close 
enough to zero that there is little difference between the log 
transform of Figure 15b and 15d. 

Discussions on the application of transformations of 
geochemical data have traditionally been based on raw analytical 
values and the potential problems associated with closure have 
not been taken into account. Further research is required in this 
field. 

 

 
Figure 15:  Ni in lake sediments, Batchawana area, Ontario. 
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LEVELLING GEOCHEMICAL SURVEY DATASETS  

 
Regional exploration programs and integration projects often 
involve the assembly of diverse sets of data. A common 
problem associated with the assembly of geochemical survey 
datasets is known as levelling. Levelling involves the 
adjustment of values of an element from one survey to be 
similar to the values of another survey. This “similarity” 
implies that the means, medians and variations are similar, or 
in other words, have the same parametric characteristics. 
Levelling geochemical survey data involves many assumptions 
and is mitigated by many factors, which are discussed below. 

In many geochemical studies, the integration of several sets 
of data is necessary. Geochemical surveys may have been 
carried out over an extended period of time during which field 
sampling methods, sample preparation, methods of digestion 
and analytical instrumentation may have changed. Thus, there 
is the potential for a large degree of heterogeneity in the data 
that is not based on the underlying geology. It is not advisable 
to level the results of geochemical data derived from different 
methods of collection (media), preparation (digestion) or 
analytical methods. The detection limits may be different and 
there may be systematic shifts between the groups of data. In 
order to use these data effectively, one or more sets of data 
must be adjusted. This is known as leveling. One set of data is 
chosen against which all other sets of data will levelled. The 
relationship of each element is compared and an adjustment is 
made through the application of a linear transformation. Given 
an observation x, with (i=1,…n) variables, 
 

yi = axi + b 
 

xi is the unadjusted variable for observation x, 
yi is the adjusted variable for observation x, 
a represents the slope of the line in the transformation, 
b represents the intercept or additive adjustment. 

The adjustment can be determined through regression 
methods. Non-linear transformations may also be applied if 
necessary. Figure 16 shows the types of leveling scenarios that 
can be encountered. The x and y axis of each figure shows the 
values of the quantiles (values at 5, 10, 15, etc. percentiles) for 
the two variables. With exception of Figure 16e, each scenario 
shows a possible relationship that will permit leveling. Figure 16e 
shows a random association between the two variables and in this 
case leveling is not possible. A detailed example of leveling 
geochemical data is provided below. 

There are several challenges in leveling data, first of which is 
the choice of data against which to level everything else. 
Considerable time should be spent on assessing the variability of 
each element across all of the surveys to be levelled. There may 
or may not be one set of survey data that can be used as the 
benchmark dataset, for all elements. Choosing when an element 
requires leveling must be carried out with caution. Comparing 
values on maps using bubble plots can be misleading, unless the 
data are evaluated using the same range and scaling. 

Assembling a large number of geochemical surveys and 
evaluating the need for leveling can be a challenging problem. 
Trepanier (2006) developed an iterative and adaptive method for 
leveling a large number of surveys. The method assumes that for 
each element, one set of survey data represents the standard by 
which all other surveys will be levelled. All data is stored in a 
database and an automatic procedure is invoked to search through 
and adjust the data for each element. The method is 
computationally intensive and time-consuming. 

 
Figure 16: Levelling scenarios for geochemical data. 
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As shown previously in Figure 4, there are four typical 
scenarios for levelling between two datasets. 

Note that in Figure 4, the values that are plotted are the 
values at specified quantiles of the data (i.e. 5, 10, 15,….90, 
95th percentiles). The worst possible scenario is shown in 
Figure 4 e where no levelling is possible because no linear 
relationship exists between the two sets of data. It is also 
possible that a non-linear shift or multiplier will level two 
datasets.  Graphical inspection of quantile plots between two 
sets of data should be carried out prior to assessing the type of 
leveling required. 

Daneshfar and Cameron (1998) have demonstrated a 
method of levelling geochemical data described in Darnley et 
al. (1995) that accounts for the geology that underlies 
geochemical data survey sites. The method requires the use of a 
GIS and a statistical package that computes quantiles and linear 
regression. 

A strategy for levelling several datasets involves the 
determination of which dataset should be chosen for all of the 
other databases to be leveled against. The choice of this 
dataset, the “standard dataset”, will depend on the following 
factors: 
· Spatial proximity of the two datasets, 
· Accuracy and precision of the standard dataset, 
· The standard dataset contains enough specimens and 

enough elements so that the other datasets can be leveled 
to it. 

The integration of geochemical survey datasets requires the 
identification of several key parameters so that the data can be 
accurately interpreted, i.e. 
· Type of  media 
· Method of  preparation 
· Method of digestion 
· Method of Analysis 
· Lower and Upper limits of detection. 

If levelling involves geochemical datasets where these 
characteristics are different then it may be unwise to attempt to 
level the data. An alternative approach is to map the departure 
from the median or some other measure that characterizes 
individual specimens against the distribution for a particular 
area. The following discussion describes some of the 
challenges associated with levelling geochemical survey 
datasets. 

Non-spatial leveling is often required (i.e. adjusting 
location and scale) to remove boundary effects and the 
comparison of different analytical methods. This is a subject of 
research that is not well documented (D. Lawie, personal 
communication, 2007). 

The lower and upper limits of detection are commonly 
different between geochemical survey reports. This is due to 
the nature of the method of analysis and the developments in 
the analytical procedures that have taken place over time. As 
the technology of geochemical analysis improves, the lower 
limits of detection also decrease. Thus, when merging 
geochemical survey datasets, the choice of a replacement value 
for the lower limit of detection (lld) may become an issue. A 
straight replacement method as indicated in Section 2.5 will not 
be sufficient because the replacement value is used only to 

ensure a better estimate of the mean and variance of the data. 
Varying detection limits within a large dataset assembled from 
many sources may create significant problems when choosing a 
replacement value. One approach is to set the lower limit of 
detection at the weighted median value for the range of lld’s in 
the dataset. A replacement value can then be determined based on 
the number of observations and associated lld’s. 
 

Levelling Geochemical Survey Datasets – An Example from 
Lake Sediments in Northern Ontario 

 
Figure 17 shows sites for 5 different lake sediment surveys in the 
Batchawana greenstone belt of Northern Ontario. These five 
surveys were collected during the 1980’s by Fortescue and Vida 
(1989, 1990, 1991a, 1991b). Hamilton (1995) describes the 
results of the survey conducted by Fortescue in the Cow River 
Area. The area is an Archean volcano-sedimentary terrane within 
the Abitibi-Wawa subprovince of the Superior Province. The 
geology of the area is described by Grunsky (1991). 

Regional lake sediment surveys were carried out in five areas: 
Pancake Lake, Trout Lake, Hanes Lake, Montreal River and Cow 
River. The sampling program was carried out over several years 
and the methods of analysis were similar for all five datasets. 
However a levelling problem does exist between the survey areas. 
The greatest difference between geochemical data exists between 
the Cow River map sheet and the adjacent Montreal River and 
Hanes Lake survey areas.  

Figure 18 shows the range of values for Zn over the five areas 
in the Batchawana area. The interquartile range, shown in the 
solid box is significantly higher for the Cow River data than of 
the other survey areas. However, the Cow River area also 
contains abundant mafic volcanics rocks of tholeiitic affinity that 
would naturally tend to have higher Zn values relative to the other 
survey areas that are composed of a mixture of tholeiitic, calc-
alkcalic volcanics, sediments and granitoid rocks. Figure 19 
shows a map of Zn values throughout the region. It is clear from 
the map that levels of Zn in the Cow River area (north east 
corner) are high relative to the other areas. There are a number of 
high Zn values within the centre of the volcanic sequence and 
these could be considered legitimate. However, the Cow River 
background Zn values appear to be 10 – 20 ppm higher than the 
background for the adjacent areas. 

Using the approach outlined by Daneshfar and Cameron 
(1998) a quantile regression technique was applied. The 
procedure involves selecting “bands” of specific distances (5, 10, 
15, 20, 25 km, or some suitable scale depending on the nature of 
the surveys) between adjacent map sheets from which quantile 
regression is carried out for each of the bands. The reasoning for 
choosing bands is that an optimum distance, which results in the 
selection of an optimal number of specimens, will result in a best-
fit quantile regression formula for levelling. 

Figure 20 shows the selection of bands that were made for 
levelling the Cow River survey area against the Hanes Lake 
survey area. Bands were selected at the 5, 10, 15, 20 and 25km 
ranges in a north-south direction. 

For each of these bands, a linear regression was carried out 
based on the quantiles of the Zn distributions. 
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Figure 17:  Lake Sediment Survey sites across the Batchawana area, Ontario. 
 

 
Figure 18: Boxplots of Zn from the five survey areas, Batchawana area, Ontario. 
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Figure 19:Unlevelled Zn values in lake sediments, Batchawana area, Ontario. 

 

 
Figure 20: Band selection for quantile regression. Zn in lake sediments, Batchawana area, Ontario. 
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A measure, D is used to determine which band provides the 
best quantile regression. D is defined as: 
 

D = Swi[(qi)e – (qi)e¢]
2  where 

 
wi is the assigned weight to the ith quantile, 
(qi)e is the ith quantile in band of width e 
(qi)e¢ is the ith quantile in band of width e¢ in the adjacent map 
sheet 
e is the width of the band expressed as a measure of distance 
(i.e. meters or kilometers). 

The weights favour quantile pairs at or near the median 
(50th percentile) of the distribution and are based on the 
ordinates of a normal distribution (weight for the median value 
= 0.399). These weights are listed in Table 2. 

 
Table 2: Weights used for Quantile Regression in Levelling 
Geochemical Data 

Table 2 - Weights used for Quantile Regression in Levelling Geochemical Data

Regression Weights

Quantile 5 10 20 30 40 50 60 70 80 90 95

Weight 0.1 0.18 0.3 0.35 0.39 0.4 0.39 0.35 0.3 0.18 0

 
The work by Daneshfar and Cameron (1998) was 

originally carried out in British Columbia where the adjoining 
map sheets show broad geological similarity. When the same 
approach was tried in the Batchawana area the selection of 
bands of appropriate size became problematic.  

Because of the deformed nature of the rocks and the sub-
vertical stratigraphy, there is a significant variation in 
geochemical character over short distances. Figure 21a shows 
the results of the values of D applied to the 5 band selections 
and it is clear that the 5km and 25km bands have the lowest D 
values.  

The difference in D values for the different band selections 
is mostly due to the diversity of lithologies associated with 
each band. For the 5km band, the lithologies are similar on 
both sides of the survey boundary: mafic volcanics and 
granitoid rocks. However for the 10, 15 and 20 km bands, 
Figure 20 shows that there is a range of lithologies within the 
bands between the two surveys and the lithologies are most 
dissimilar for the 15km band. At the 25km band, it is not 
surprising that the D value is lowest for the similar range of 
lithologies between the two survey areas and was thus, the best 
band for the quantile regression methodology. 

Quantile regressions were computed for both the 5 and 
25km bands using the weights for each quantile, which are 
shown in Table 2.  

In Daneshfar and Cameron (1998) the weight for the 95th 
percentile was chosen as 0.103. For this application, it was 
noted that many of the values for the Cow River Zn data were 
atypical and represented a group of specimens unique to Zn 
mineralization within the mafic volcanic sequence. There was 
no equivalent Zn response in the Hanes Lake survey area. 
Thus, the 95th percentile weight was changed from 0.103 to 
zero so that the effects of these large Zn values did not bias the 
leveling of the background.  

The values of D, regression coefficients (intercept, slope) 
and plot of the quantiles for the 5km band selection are shown 

in Figure 21b and for the 25km band selection in Figure 21c. 
From the two plots, it can be seen that the 25km band is a better 
fit and the results from this regression were used to adjust the Zn 
values in the Cow River survey area. Note that the results of this 
regression are equivalent to the shift and multiplier effect as 
shown in Figure 16d. 

 

 
Figure 21: Selection of optimum band width and quantile regression for 
Zn in lake sediments, Batchwawana area, Ontario. 
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Figure 22: Levelled Zn values after applying quantile regression based on the 25km band selection. See text for a detailed explanation. 

 

The results of applying the regression to the Cow River 
survey data for Zn are shown in Figure 22. The levelling 
procedure has had a significant effect on the lower values of Zn 
in the granitoid terrane but left the upper values, associated 
with the mafic volcanics and some Zn rich zones within the 
volcanic sequence relatively unaffected. 

Levelling, using a GIS and statistical procedures can 
produce an optimal result and a combination of these tools is a 
recommended way to level geochemical survey data. 
 

MULTIVARIATE DATA ANALYSIS TECHNIQUES 

 
Multivariate data analysis techniques such as principal 
components analysis, cluster analysis, non-linear mapping and 
projection pursuit regression provide numerical and graphical 
means by which the relationships of a large number of 
elements and observations can be studied. These techniques 
typically simplify the variation and relationships of the data in 
a reduced number of dimensions, which can often be tied to 
specific geochemical/geological processes. The basics of 
multivariate data analysis techniques can be found in Jöreskog 
et al. (1976); Reyment and Jöreskog (1993); Davis, (2002); 
Krzanowski (1988) and Howarth and Sinding-Larsen, (1983). 
Mellinger (1987) provides a systematic approach to the 
application of multivariate methods in geological studies. Other 
methods include non-linear mapping (Sammon, 1969), 
projection pursuit (Friedman, 1987), multidimensional scaling 
(Kruskal, 1964) and self-organizing maps (Kohonen, 1995). A 

recent technique, independent components analysis (Comon, 
1994), is similar to the method of projection pursuit. 

Incorporation of the spatial association with multi-element 
geochemistry involves the computation of auto- and cross-
correlograms or co-variograms. This field of study falls into the 
realm of geostatistics, which is not covered in this contribution. A 
number of texts are available that provide details on geostatistics 
(Isaaks and Srivastava, 1989; Journel and Huijbregts, 1978; 
David, 1977, 1988).  

Grunsky (1986a) employed the use of principal components 
analysis and clustering methods to evaluate the lithogeochemistry 
of Archean volcanic terrains from which a number of geological 
processes were inferred, ranging from primary compositional 
variation to alteration and associated mineralization. This is 
discussed in greater detail below. 

Multivariate techniques that have been developed specifically 
for geochemistry include various empirical techniques such as the 
chalcophile and pegmatophile indices developed by Smith and 
Perdrix (1983), which were used to outline areas of potential base 
and precious metal mineralization in the Yilgarn craton o f  
Western Australia. 

 

Robust Estimation of Mean and Covariance Matrices 

 
Many multivariate methods require estimates of correlation or 
covariance so that interrelationships between the variables can be 
quantified. Estimates of correlation/covariance are sensitive to the 
presence of outliers in the data that can bias the results. The 
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influence of outliers can be reduced by applying robust 
methods to the estimation of the means, correlations and 
covariances between variables. In multivariate analysis, the 
distance of an observation to a centroid is estimated by the 
Mahalanobis distance which depends on an estimate of the 
multivariate mean and covariance. 
 
The Mahalanobis distance is defined as: 
 

D2 = [x  -`x]¢ C-1 [x  -`x] 
 
where  

x is a vector of variables for a given observations, 
`x is a vector of the group mean, 
C-1 is the inverse of the covariance matrix. 

There are many techniques for determining robust 
estimates of mean and variances for individual populations 
(Rock, 1987, 1988). Robust estimates can be determined for 
each individual variable or simultaneously for all variables.  
Multivariate estimates are affected by observations with 
missing values (no value) in any one of the individual 
variables. These must be discarded or have some suitable 
replacement value. Additionally observations that are censored 
(less than the detection limit) must have a proper replacement 
value as discussed previously. Campbell (1980) provided some 
early insight into the application of robust procedures in 
multivariate analysis. Venables and Ripley (2002, p. 336) 
provide a good discussion on robust estimation methods. 

Two methods can be used to obtain robust multivariate 
estimates of means and covariance: 

Minimum Volume Ellipsoid (MVE) - A multivariate 
method of determining means and correlations/covariances 
with minimal effect from outliers based on finding a 
hyperellipsoid that contains a subset of “good” observations 
that minimize the volume of the ellipsoid. A geochemical 
application of this method is given by Chork (1990). 

Minimum Covariance Determinant (MCD) Estimation 
– This method works by minimizing the determinant (a 
measure of ellipsoid volume) of the covariance matrix based on 
a symmetric Gaussian hyperellipsoid. The method is faster than 
the minimum volume ellipsoid but has a lower breakdown 
point (Rousseeuw and van Driessen, 1999). The determinant is 
based on a minimum number of “good” observations. As the 
determinant decreases, the dispersion of the ellipsoid decreases 
with a corresponding drop in the estimates of central values, 
resulting in a “robust” estimate. 

If there are many observations with values at the same 
detection limit, a condition of collinearity occurs, which has a 
direct effect on the covariance matrix. If there are too many 
identical observations, the method fails. However, by increasing 
the number of observations, the methods will generate less robust 
estimates. In the case of non-normal skewed distributions, the 
means and covariances will be affected. This type of problem is 
typically encountered when a percentage of the observations have 
elements with abundances below the detection limit (censored 
data) and increases the likelihood of collinearity problems. 

An example of applying multivariate robust estimates is 
shown in Table 3 where estimates of the mean for 12 elements 
are given for 825 lithogeochemical observations from the Ben 
Nevis Township lithogeochemical data set. In this table, only 
estimates of the mean are shown. Classical estimates of the mean, 
based on univariate statistics, multivariate classical estimate, 
minimum volume ellipsoid and minimum covariance determinant 
methods are shown. Compared with classical methods of 
estimation, the robust estimate tends to minimize the effect of 
those distributions that are skewed. 

For the minimum covariance determinant method, two 
estimates are shown based on two groups of “good” observations. 
The initial estimate for the MCD used 419 observations based on 
an initial starting formula of (825 observations + 12 variables + 
1)/2. Because of the large number of observations with values at 
the detection limit, the initial MCD estimate was singular. The 
MCD was applied using 540 and 800 observations. Table 3 shows 
that as the number of “good” observations increase, the mean 
value tends towards the standard estimate where the effect of the 
long tailed skewed distribution increases the estimate of the mean 
for several elements. 

PRINCIPAL COMPONENTS ANALYSIS 

 
The objective of principal components analysis (PCA) is to 
reduce the number of variables necessary to describe the observed 
variation within a dataset. This is achieved by forming linear 
combinations of the variables (components) that describe the 
distribution of the data. These linear combinations are derived 
from some measure of association (i.e. correlation or covariance 
matrix). Davis (2002, Chapter 6) gives a very readable account on 
the mathematics of principal components analysis. More 
complete discussions on the theory and application of principal 
components analysis can be found in in Jöreskog et al. (1976), 
Jolliffe (2002) and Jackson (2003). Grunsky (2006, Appendix 1) 
provides a simple geometric description of principal components 
analysis. 

 
Table 3: Robust and non-robust estimates of central values. Ben Nevis Township Lithogeochemistry. 

Table 3

Robust and non-Robust estimates of central values

Ben Nevis Township lithogeochemistry

Method Ba Co Cr Cu Li Ni Pb Zn Sr V Y Zr

Univariate Mean 208 23 83 56 17 78 17 89 135 132 24 132

Classical Robust Estimate 208 23 83 56 17 78 17 89 135 132 24 132

Univariate Median 170 24 68 42 14 85 5 74 120 150 21 130

Minimum Volume Ellipsoid 194 22 81 38 15 78 7 73 140 139 26 138

Minimum Covariance Determinant 800 observations 207 23 84 47 17 79 10 78 136 133 24 132

Minimum Covariance Determinant 540 observations 198 22 82 39 15 79 6 73 140 139 25 136

Measures shown in parts per million (ppm)  
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A method of principal components analysis known as 
simultaneous RQ-mode principal components analysis (Zhou et 
al., 1983) has the advantage of presenting the principal 
component scores of the observations and the variables 
(elements) at the same scale, which permits plots of the 
observations and variables on the same diagram. This method 
is similar to the biplot method of Gabriel (1971). The 
interpretation of the results of principal components is usually 
oriented on placing a geological/geochemical interpretation on 
the linear combinations of elements (loadings) that comprise 
the components. This method has been implemented in the S 
programming language (Grunsky, 2001). 

Ideally, each principal component might be interpreted as 
describing a geological process such as differentiation (partial 
melting, crystal fractionation, etc.), alteration/mineralization 
(carbonatization, silicification, alkali depletion, metal 
associations and enrichments, etc.), and weathering processes 
(bedrock-saprolite-laterite). In lithogeochemical, weathered 
profile, lake sediment and stream sediment surveys, the first 
and second components commonly reveal relationships of 
observations and variables that reflect underlying lithologic 
variation. In areas of thick overburden such as glacial till, 
alluvium or colluvium the linear combinations of variables and 
the plots of the loadings may not be so easy to interpret as they 
may reflect a mixture of several surficial processes. 

Maps of the principal component scores of the observations 
can be useful in understanding geochemical processes. If a 
component expresses underlying lithologies, then a map of that 
component will clearly outline the major lithological variation 
of the area Other components that outline other processes such 
as mineralization or alteration can also be clearly expressed on 
maps that display the component scores (e.g., Grunsky, 1986a). 

The measure of association, or metric, can have a 
significant effect on the derivation of principal components.  
Covariance relationships between the elements reflect the 
magnitude of the elements and thus elements with large values 
tend to dominate the variance-covariance matrix. This has the 
effect of increasing the significance of these elements in the 
results of the principal components analysis. The correlation 
matrix represents the inter-element correlations, which is 
actually the standardized equivalent of the variance-covariance 
matrix. Other metrics of association can be used and this is 
discussed by Davis (2002) and Jöreskog et al. (1976). If the 
distributions of the elements are non-normal or there is a 
presence of outliers the estimates of correlation/covariance may 
be affected and it may be necessary to apply robust procedures 
(Zhou, 1985, 1989). 

In situations where there are outliers or atypical 
observations, or where the marginal distributions are not 
normal a number of choices can be made: 

If the marginal distribution is censored, find a suitable 
replacement value so that the mean and variance is a good 
estimate of the population mean and variance. This can be 
done: 
· By assigning a replacement value that is around ½ to 1/3 

the censored value. 
· Use statistical procedures to estimate (impute) a 

replacement value based on the statistical characteristics 
of the un-censored portion of the data (i.e. the EM 
method) discussed previously. 

If there are outliers present: 

· Remove the outliers from the calculation for means and 
covariances, 

· Apply robust procedures that minimize or eliminate the 
effect of these values. 

Rare events, such as mineral occurrences or deposits, are 
usually under-represented in regional geochemical survey 
sampling schemes. A chemical signature that may be diagnostic 
of a unique geological event may show up as a linear combination 
of elements with a lesser principal component. Thus, it is 
important to scan all of the components to check for such 
features. 

The following examples illustrate the use of PCA from the 
Ben Nevis metavolcanic data (see Figure 1). As it is a 
“compositional” set of data, it sums to a constant (100%). The 
data were transformed using the log-centred transformation 
method described previously. The distributions for these 
transformed variables are shown in Figure 23. 

The results of the principal components analysis are shown in 
Table 4 where the eigenvalues, R-mode loadings, as well as the 
relative and actual contributions of the variables are presented. 
Results are shown for the first 7 components only, which 
accounts for more than 72% of the variation in the data. The 
accompanying screeplot displays the successive eigenvalues for 
all of the components. 

The R-mode loadings are the eigenvectors are scaled by 
multiplying, in order, each of the eigenvectors by the square root 
of the eigenvalues. The first component accounts for 34% of the 
overall variation of the data as shown by the eigenvalues. The 
relative and actual contributions shown in Table 4 provide details 
on the relative significance of the variables. The relative 
contribution is the contribution that a variable makes over all of  
the components. The actual contribution is the contribution that a 
variable makes within a given component.  

Examination of the relative contributions for the first 
component shows that elements such as Si, Al, Mg, K, Ba, Co, 
Cr, Ni, V and Zr are accounted for primarily by this component. 
The actual contribution shows that the variation is spread almost 
equally between Si, Mg, K, Ba, Co, Cr, Ni, V and Zr within the 
first component. A map of the first component (Figure 25) 
describes the compositional variation between the mafic and 
felsic metavolcanics. The relative contributions of the second 
component suggests alteration of the volcanic rocks with high 
loadings for CO2, S, Li, Sr, Ti, Na, Ca, Fe+3 and Al. The relative 
contributions of the third component suggest alteration associated 
with more mafic rocks as indicated by Fe+2, Mn, CO2, S, H2O

+, 
Cu and  Li. 

Biplots of PC1 vs.PC2 and PC1 vs. PC3 are shown in Figures 
24 and 25. The scores of the observations are shown as crosses 
and the scores of the elements are shown as their name. Figure 24 
(PC1 vs. PC2) shows that the mafic (Ni, Cr, Co, Mg, Fe) rocks 
plot on the positive side of PC1. Rocks reflecting felsic 
metavolcanics (Si, Zr, Ba, K, Y, Al) plot on the negative side of 
PC1. Observations with relative enrichment in CO2, S, Li, Pb and 
Cu, plot along the positive side of the C2 axis. Figure 25 is  a  
biplot of the first and third components where samples with 
relative enrichment in S and Cu plot along the negative side of 
the PC3 axis. 

Figures 24 and 25 show that there is a distinct break between 
the rocks of mafic volcanic origin from those felsic volcanic 
origin. This is reflected by the break in the cloud of points along 
the C1 axis of both figures. 
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Table 4: Principal Components Analysis of Ben Nevis Lithogeochemistry. Analysis carried out on Log-centered. 

Table 4

Eigenvalue

PC1 PC2 PC3 PC4 PC5 PC6 PC7

l 8.93 2.86 2.03 1.56 1.28 1.15 0.99

% 34.38 11.00 7.83 6.03 4.94 4.41 3.80

S% 34.38 45.38 53.22 59.24 64.18 68.59 72.39

R-Loadings Red values >0 Blue values <0

PC1 PC2 PC3 PC4 PC5 PC6 PC7

SiO2 -0.87 -0.26 0.03 -0.06 0.04 -0.06 0.11

Al2O3 -0.72 -0.48 -0.01 -0.07 0.18 -0.15 0.18

Fe2O3 0.17 -0.48 -0.16 -0.55 -0.01 -0.06 0.18

FeO 0.63 -0.15 0.46 -0.25 -0.03 0.03 0.11

MgO 0.86 -0.03 0.16 -0.09 0.19 0.14 0.02

CaO 0.40 -0.47 0.01 0.40 -0.25 -0.28 0.10

Na2O -0.36 -0.44 -0.06 0.40 0.15 0.15 0.04

K2O -0.69 0.19 -0.08 -0.03 0.34 -0.16 -0.27

TiO2 0.43 -0.60 0.02 -0.12 0.02 -0.14 -0.08

P2O5 -0.12 -0.29 0.10 -0.01 -0.14 0.79 -0.24

MnO 0.20 -0.25 0.57 -0.01 -0.47 -0.31 -0.07

CO2 -0.35 0.42 0.37 0.51 -0.24 -0.16 0.02

S -0.30 0.49 -0.41 -0.28 -0.37 0.07 0.07

H2Op 0.47 0.07 0.43 -0.38 0.27 -0.03 0.30

Ba -0.76 0.00 -0.06 -0.03 0.39 -0.16 -0.20

Co 0.88 -0.15 -0.11 0.03 0.05 -0.04 -0.05

Cr 0.86 0.03 -0.03 0.12 -0.02 0.20 -0.11

Cu 0.31 0.29 -0.55 -0.24 -0.18 -0.15 0.04

Li 0.06 0.49 0.56 0.10 0.39 0.09 0.20

Ni 0.92 0.04 -0.08 0.10 0.07 0.08 -0.05

Pb -0.47 0.33 0.04 -0.17 -0.14 0.12 0.44

Zn -0.16 0.01 0.31 -0.40 0.02 -0.16 -0.55

Sr -0.11 -0.53 -0.28 0.21 0.21 0.05 0.24

V 0.80 -0.07 -0.22 0.04 0.13 -0.13 -0.07

Y -0.67 -0.37 0.21 -0.13 -0.27 0.13 -0.02

Zr -0.80 -0.22 0.16 -0.13 -0.09 0.13 0.00

Relative Contributions Red Values>10 Blue values <10 Actual Contributions Red Values>10 Blue values <10

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC1 PC2 PC3 PC4 PC5 PC6 PC7

SiO2 76.63 6.93 0.11 0.42 0.16 0.38 1.13 SiO2 8.57 2.42 0.05 0.27 0.12 0.33 1.15

Al2O3 51.37 23.50 0.01 0.46 3.28 2.32 3.21 Al2O3 5.75 8.21 0.00 0.29 2.56 2.02 3.25

Fe2O3 2.82 22.97 2.57 30.83 0.02 0.41 3.21 Fe2O3 0.32 8.03 1.26 19.68 0.02 0.36 3.24

FeO 40.09 2.39 20.99 6.04 0.10 0.08 1.23 FeO 4.48 0.84 10.31 3.86 0.08 0.07 1.25

MgO 74.13 0.08 2.57 0.85 3.52 1.92 0.05 MgO 8.29 0.03 1.26 0.54 2.74 1.67 0.05

CaO 15.68 21.67 0.01 16.36 6.45 8.04 0.94 CaO 1.75 7.57 0.01 10.44 5.02 7.01 0.95

Na2O 13.08 18.99 0.42 16.27 2.17 2.15 0.19 Na2O 1.46 6.64 0.21 10.39 1.69 1.87 0.19

K2O 48.18 3.78 0.66 0.09 11.60 2.44 7.38 K2O 5.39 1.32 0.32 0.05 9.04 2.13 7.47

TiO2 18.84 35.64 0.03 1.51 0.05 1.87 0.60 TiO2 2.11 12.46 0.01 0.96 0.04 1.63 0.61

P2O5 1.53 8.51 1.03 0.01 1.89 62.58 5.68 P2O5 0.17 2.97 0.51 0.01 1.47 54.55 5.75

MnO 4.19 6.41 32.38 0.01 22.15 9.47 0.43 MnO 0.47 2.24 15.90 0.01 17.25 8.25 0.44

CO2 12.34 17.52 13.93 25.77 5.67 2.47 0.05 CO2 1.38 6.12 6.84 16.45 4.42 2.15 0.05

S 8.95 24.51 16.44 7.59 13.50 0.43 0.54 S 1.00 8.57 8.07 4.84 10.52 0.38 0.55

H2Op 21.91 0.53 18.59 14.41 7.24 0.07 8.99 H2Op 2.45 0.19 9.13 9.20 5.64 0.06 9.10

Ba 57.25 0.00 0.37 0.09 15.04 2.67 3.82 Ba 6.41 0.00 0.18 0.06 11.71 2.33 3.86

Co 78.41 2.27 1.10 0.06 0.24 0.14 0.24 Co 8.77 0.79 0.54 0.04 0.19 0.12 0.24

Cr 74.12 0.08 0.12 1.35 0.04 4.06 1.18 Cr 8.29 0.03 0.06 0.86 0.03 3.54 1.20

Cu 9.44 8.52 30.45 6.00 3.17 2.19 0.15 Cu 1.06 2.98 14.95 3.83 2.47 1.91 0.15

Li 0.38 23.88 31.60 0.97 15.43 0.79 4.04 Li 0.04 8.35 15.52 0.62 12.02 0.69 4.08

Ni 84.74 0.16 0.59 1.07 0.55 0.66 0.25 Ni 9.48 0.05 0.29 0.68 0.43 0.58 0.26

Pb 22.52 10.69 0.16 2.75 1.99 1.50 18.97 Pb 2.52 3.74 0.08 1.75 1.55 1.31 19.20

Zn 2.69 0.00 9.60 15.86 0.05 2.66 30.15 Zn 0.30 0.00 4.72 10.13 0.04 2.32 30.52

Sr 1.24 27.99 8.04 4.41 4.47 0.27 5.80 Sr 0.14 9.78 3.95 2.81 3.48 0.24 5.87

V 64.40 0.46 4.92 0.18 1.60 1.61 0.54 V 7.20 0.16 2.42 0.12 1.24 1.40 0.55

Y 45.31 13.64 4.50 1.62 7.16 1.74 0.04 Y 5.07 4.77 2.21 1.03 5.58 1.52 0.04

Zr 63.61 4.98 2.45 1.69 0.85 1.80 0.00 Zr 7.12 1.74 1.20 1.08 0.66 1.57 0.00

Principal Components Analysis of Ben Nevis Lithogeochemical data

Analysis carried out on Log-centered data.
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Figure 23:  Quantile-Quantile plots of log-centred major and trace elements for the Ben Nevis lithogeochemical data. 

 
The Q-mode scores were interpolated to a 100 meter resolution 

grid by kriging.. Figure 26 shows an interpolated image of the first 
principal component. The distinction between the mafic and felsic 
volcanic rocks is evident by the colour map of the image. Green 
and blue areas are associated with felsic rocks and red to yellow 
areas are associated with mafic rocks as shown in the relationships 
of the observations and elements in Figure 24. 

Figure 27 shows an image of the second principal component, 
which accounts for 11% of the variation in the data. The plot of 
PC1 vs. PC2 in Figure 24 shows that the second component has 
Cu, Li, S, Pb and CO2 are associated with positive values of PC2. 
The image of Figure 27 shows that areas in red-yellow correspond 
to the zones of carbonate alteration and mineralization that are 
present around the Canagau Mines deposit and the Croxall 
property. 

Figure 28 is an image of the third principal component (7.8% 
of the variation in the data). Areas associated with sulfur and Cu 
enrichment are evident, most notably around the Canagau Mines 
Cu-Au deposit in the eastern part of the image. These areas are 

also adjacent to areas of CO2, Li, and Zn enrichment, which 
represent altered and mineralized country rocks that surround the 
S-Cu zones of relative enrichment. 

Much more information can be obtained by examining all of 
the principal components. Other components exhibit zoning of Ca 
around the main zone of carbonate alteration and K has an 
association with S at the mineral occurrences. The fourth 
component highlights the relationship between Zn and S at both 
the Canagau and Croxall properties. However, the illustration of 
the first three components shows that PCA is an effective method 
for exploring the structure of the geochemical data and assisting in 
deriving models of geochemical processes by the use of graphics 
and geographic representation. 

Principal components analysis has many different uses in 
evaluating geochemical data, including the development of 
empirical indices for specific element targeting (see sections on 
Empirical Indices and Weighted Sums). 
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Figure 24: Biplot of the first two principal components for the Ben Nevis lithogeochemical log-centred data. 

 

 
Figure 25: Biplot of the first and third principal components for the Ben Nevis lithogeochemical log-centred data. 
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Figure 26: Image of the first principal component derived from the log-centred lithogeochemical data, Ben Nevis Township, Ontario. This image outlines 
the lithological variation. 

 

 
Figure 27: Image of the second principal component derived from the log-centred lithogeochemical data, Ben Nevis Township, Ontario. This image outlines 
the zones of carbonatization. 
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Figure 28: Image of the third principal component derived from the log-centred lithogeochemical data, Ben Nevis Township, Ontario. This image outlines 
the sulphide and mineralized occurrences. 

 

CLUSTER ANALYSIS METHODS 

 
Cluster analysis methods are useful as an exploratory tool for 
detecting groups of multi-element data that may not be readily 
observable in simple scatter plots or through the use of methods 
such as principal components analysis. The main objective of 
clustering algorithms is to identify distinct natural groupings 
within multidimensional data. Clustering methods can be 
broadly divided into hierarchical and non-hierarchical methods. 
The following example shows the use of k-means clustering as a 
method for partitioning multivariate geochemical data. Davis 
(2002) provides a good introductory review of clustering 
methods. Sinding-Larsen (1975) used clustering methods for the 
initial subdivision of a heterogeneous geochemical area. Jaquet 
et al. (1975) provides a detailed analysis of lake sediment 
geochemistry using clustering procedures. Howarth and Sinding 
-Larsen (1983) provide a general discussion of clustering 
methods applied to geochemical exploration. Grunsky (1986a) 
has shown how dynamic cluster analysis was used to detect 
different types of mineralization based on distinct geochemical 
differences between the mineral occurrences. The use of fuzzy 
clustering methods in geochemistry has been introduced 
(Bochang and Xuejing, 1985).  

Hierarchical clustering is based on the linking of variables 
(R-mode) or observations (Q-mode) through measures of 
similarity. The relationships between the variables or 
observations can be graphically expressed using a dendrogram. 
Individual clusters can be discriminated by choosing an 
appropriate value of linkage, which separates internally similar 
groups of objects into dissimilar groups. Hierarchical clustering 
assumes that all variables are linked at some level, which may 
not be a reasonable assumption in many instances. 

The correlation coefficient (R-mode) is the most common 
measure of similarity for clustering. For Q-mode analysis 

(similarities between the observations), the Euclidean distance 
can be used as a measure of proximity by which observations 
can be clustered. In the case of Q-mode analysis, the size of the 
similarity matrix that contains the measure of the distance metric 
between points can become so large that computation becomes 
intractable. 

Arbitrary Origin Methods are non-hierarchical and may 
offer some advantage over hierarchical methods since the 
clusters are formed based on multivariate similarities 
(proximities) rather than individual correlation coefficients. 
These methods start with an initial number of cluster centres that 
can be specified or randomly chosen. Each observation is 
allocated to one of the groups based on proximity to the group 
centres. The process is iterative and group centres change until a 
stable solution results. Methods such as K-means (McQueen, 
1967; Everitt, 1974, Hartigan, 1975) or dynamic cluster analysis 
(Diday, 1973) are examples of these techniques. Kaufman and 
Rousseeuw (1990) also describe a number of clustering 
methods. 

 

K-Means Clustering 

 
K-means cluster analysis is a method that starts with an initial 
“guess” of the cluster centers. The distance of each observation 
from each cluster center is measured and then provisionally 
assigned to the closest cluster center. A new cluster center is 
calculated based on the designated observations for each 
previous center. The process is iterative until it converges on 
stable centers. The method requires an initial choice of the 
number of cluster centers. If the number is too great, there will 
be small clusters that have few points. If the number of centers is 
too few, then the structure of the data may not be realized. A 
disadvantage of the procedure is that a less than optimal 
clustering may result if the initial cluster centres do not fall in 
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distinct clusters (Davis, 2002, p 500). Venables and Ripley 
(2002) provide a method by which a suitable number of starting 
clusters may be determined by using a combination of 
hierarchical clustering and principal components analysis. 

It is common to apply non-hierarchical clustering methods to 
principal component scores. If one or more principal 
components can be inferred to represent specific 
geological/geochemical processes, then the application of cluster 
analysis can provide further insight in how those processes may 
be related. Additionally, the component plots provide a reduced 
set of dimensions for viewing the multi-element associations of 
the data and thus provide additional visual assistance in 
examining grouped associations. 

K-means clustering was applied to the log-centred 
transformed Ben Nevis township metavolcanic data. The 
number of clusters was set at 10, based on the perceived 

variation in the rock types (felsic metavolcanics, mafic 
volcanics, mafic intrusions, granite) as well as the two known 
mineralization zones that have surrounding alteration. The 
results of the clustering are shown in Figure 29. Each 
observation is labeled with the group number to which it was 
assigned. Several clusters (Groups 1, 2, 5, 6, 8 and 10) are 
associated with the distinctions between mafic and felsic 
metavolcanics. Groups 3 and 9 are directly associated with 
mineralization. Observations that belong to these groups occur 
where there is known mineralization. There are also two clusters 
associated with carbonate alteration (Groups 4 and 7), which 
occur in the eastern part of the map-area. It is apparent that the 
observations assigned to each group not only share similar 
geochemical characteristics but also have close spatial 
associations, which is clearly shown in Figure 29. 

 

 
Figure 29: K-mean clustering of the log-centred lithogeochemical data, Ben Nevis Township, Ontario. Specific groups are associated with distinctive 
lithologies and zones of alteration and mineralization. 

 

Multivariate Ranking using the Mahalanobis Distance: A 
multivariate extension of Q-Q Plots 

 
The use of the covariance matrix as a tool for distinguishing 
background from anomalous populations is well established in 
geochemical research (Garrett, 1989b, 1990; Chork, 1990). 
Filzmoser et al. (2005) have written a library of routines 
(mvoutlier) that is available as part of the R environment 
( www.r-project.org/cran/). The covariance matrix contains 
information on the variability of the elements as well as their 
inter-relationships. The multi-element data constitute a hyper-
ellipsoid in multidimensional space. The mean value of each 
element defines the centroid of this hyper-ellipsoid and the 
distance from each observation point to the centroid is the 
Mahalanobis distance. In a multivariate normal population, most 
observations lie within an expected radius of the centroid and is, 
by definition, the background group of observations. However, 

if outliers are included in the data, the shape of the hyper-
ellipsoid will change. This resulting distortion affects the 
location of the centroid and thus affects the Mahalanobis 
distance for all of the observations. In such cases, the application 
of robust procedures is recommended. 

Outliers can be distinguished from the main background 
population by determining the Mahalanobis distance of each 
observation from the group centroid. The distances can be 
compared to the "expected" distances of a multivariate normal 
population (cumulative probability with the number of degrees 
of freedom defined as the number of variables) by the use of x2 
values as defined by Garrett (1989b). If the population is 
multivariate normal, then the plotted pairs form a straight line. If 
the population contains outliers, then the observed Mahalanobis 
distances are greater than the expected x2 quantiles and the plot 
becomes non-linear. However, the x2 distribution is long tailed 
near the extreme ends of the distribution and this property may 
mask outliers with large Mahalanobis distances. An alternative 
to the use of the x2 values is the cubed root of a normal 
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distribution, which does not have the long tail property of the x2  
distribution and thus less likely to mask outliers. 

The lake sediment survey data from the Batchawana area of 
Ontario was evaluated for the potential to host copper, zinc and 
precious metal deposits. A suite of elements (Cu, Zn, As, Sb and 
W) was chosen to test the possibility that these elements could 
identify potential mineral deposits. For these data, censored 
values were replaced with estimates from the EM method for 
determining replacement values for censored distributions. 
Because these data are compositional, they were normalized to a 
constant sum and then transformed using log-ratios. 

Figure 30 shows a series of ranked Mahalanobis distance 
plots versus the cubed root of a normal distribution for different 
degrees of trimming. The first figure shows a plot of all of the 
observations. The plot displays a curved line with several 
outliers at the positive end of the curve, suggesting that there are 
observations which are not part of a multivariate normal 
population. Each successive plot is the data with the outliers 
from the previous plot removed. For each plot, a new centroid 
and corresponding Mahalanobis distances were re-computed. 
Trimming of the data in the 7% to 10% range yields a 
reasonably straight curve which suggests that the trimmed 
observations could be considered atypical and warrant further 
investigation.  

The 10% of data that were trimmed data were then re-
inserted into the data matrix from which the D2 values were 
computed based on the covariance from the other 905 of the data 
The ranked multivariate distance values are plotted on the map 
and graph in Figure 31.. Observations with high D2 values are 
locales of interest and warrant further investigation.  Note that 
observations, which are atypical, are not necessarily 
geochemically “anomalous”. No multivariate equivalent of a 
threshold was established, although the 10% trim could be used 
as an initial starting point in establishing the threshold. 

 

 
Figure 30: Mahalanobis distance (D2) plots of a multi-element suite (Cu, 
Zn, As, Sb, W) of lake sediment data. Successive trimming of the 
outliers defines a homogeneous background population. The deleted 
outliers are then follow-up for their potential as sites of mineralization. 

 

 
Figure 31: Plot of D2 scores on the geological map. Sites highlighted in red indicate a significant departure from background and warrant further 
evaluation.
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The Use of Empirical Indices 

 
The existence of pathfinder elements has prompted the use of 
several numerical procedures through which selected elements 
can be used in an exploration program by creating 
mineralization potential indices based on the weighted sum 
scores of the pathfinder elements. Empirical indices can be 
determined from selected elements that are associated with 
specified geochemical processes. The techniques used in this 
approach are described by Garrett(1991), Garrett et al. (1980), 
Smith and Perdrix (1983), Smith et al. (1987), and Chaffee 
(1983). Garrett and Grunsky (2001) have reviewed objective 
comparisons of various weighting schemes used to highlight 
observations defined by pathfinder elements. 

In many geochemical studies, several pathfinder elements 
may be identified for defining target areas (mineralization, 
anthropogenic sources). These pathfinder elements may be 
chosen based on geological/geochemical knowledge of the 
processes of interest. Combining these pathfinder elements 
together through a multivariate ranking scheme is a potentially 
useful tool for defining multi-element anomalies. Defining the 
pathfinder elements can be based on geological knowledge or 
through the use of data analysis/discovery procedures discussed 
previously, such as principal components and cluster analysis. 
These methods can reveal relationships in the data that may be 
directly related to underlying lithologies or processes of interest 
(mineralization, anthropogenic effects) from which pathfinder 
elements can be determined. Methods such as principal 
components analysis can help determine which elements are 
positively /negatively associated with an element of interest and 
can be a starting point for developing an empirical index. 

Chaffee (1983) developed a method of scoring observations 
for anomaly potential. Each element is evaluated such that the 
range of values are subdivided into 4 groups, by thresholds, with 
corresponding scores that represent background (0), weakly 
anomalous (1), moderately anomalous (2), and strongly 
anomalous (3). These ranges are derived from orientation studies 
over areas where the range of values and underlying 
geochemical distributions are reasonably well understood. Each 
is then assessed with respect to each element. Observations with 
the highest scores are considered anomalous and are targeted for 
further follow-up.  

Smith et al. (1987), Smith and Perdrix (1983) and Smith et 
al. (1989) made use of three indices derived from geochemical 
trends that were noted in the laterite geochemistry of the Yilgarn 
Block of Western Australia.. A group of pathfinder elements, 
As, Sb, Bi, Mo, Ag, Sn, and W form the basis of these empirical 
indices known as, CHI-6*X, NUMCHI, and PEG-4. These 
indices show elevated values of these pathfinder elements in 
lateritic materials associated with greenstone belts, shear zones, 
base metal and precious metal deposits (CHI-6*X and PEG-4). 
These indices are based on simple equations as follows: 

The coefficients provide weighting to the elements such that 
observations with elevated chalcophile values have high CHI-
6*X or PEG-4  indices. These coefficients were derived for 
lateritic materials only. The coefficients must be altered for 
other materials. The CHI-6*X index is suited more to isolating 
observations with elements associated with precious metal 

deposits, while the PEG-4  i n d ex is suited for isolating 
observations with element associated with pegmatophile 
environments, such as Sn deposits within granitoid terrains. 

The NUMCHI index is a score of the number of elements 
that exceed the threshold for each element. Thus for a given 
specimen, if nine elements exceed their respective thresholds, 
then the NUMCHI index will have a value of 9. As discussed 
previously, threshold values are chosen from visual inspection of 
summary tables, order statistics, Q-Q plots etc.  
 

Weighted Sum Index  

 
Garrett et al. (1980, p.144) have suggested the use of a linear 
combination of a group of indicator elements that give a 
weighted sum. In a multi-element survey, those elements, which 
are considered pathfinders are given more weight than elements 
which may be more diagnostic of background. The choice of 
weights may be based on the knowledge of the investigator. 
Alternatively, principal component loadings may be used as a 
starting point. Examples of the use of this index are given by 
Garrett et al. (1980), and Garrett and Grunsky (2001). 
 

INTEGRATION OF MULTI-ELEMENT 
GEOCHEMISTRY AND DIGITAL TOPOGRAPHY 

 
Modern methods of data management including the use of 
desktop database management systems (DBMS) combined with 
Geographical Information Systems (GIS) that can produce 
images of multiple datasets simultaneously provide significant 
assistance in the management and presentation of geochemical 
data. In many areas of the world digital base maps can be 
acquired from local governments that typically include lakes, 
rivers, streams, road networks and other topographic information 
that is useful in the orientation and interpretation of geochemical 
data. In addition, digital topography is often available that 
provides a topographic relief backdrop for the interpretation of 
geochemical data. Digital geological maps are now routinely 
provided by many Geological Surveys, together with mineral 
occurrence inventory databases that have been accumulated 
from Geological Survey and private company data. 

Digital topography offers a unique view of data in that it 
provides a "real world view" of the data over the terrain. When 
digital air photos or satellite imagery are integrated with digital 
topography and viewed using image processing systems with 
three dimensional rendering ability, the viewer gets a sense of 
looking at the terrain from an aircraft. Interpolated geochemical 
images can often be interpreted more effectively when merged 
with digital topography and viewed in a similar manner. 
Grunsky and Smee (1999) demonstrated the usefulness of 
integrating digital elevation data with multi-element 
geochemistry. Geochemical patterns, that were otherwise 
obscure, became meaningful when multi-element patterns were 
draped over the digital elevation model for the study area. 

As an example, the Campo Morado mining camp in the 
Guerrero state of Mexico hosts seven precious metal bearing 
volcanogenic massive sulphide deposits in the complexly folded 
and faulted Guerrero terrain (Oliver, et al., 1996, Rebagliati, 
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1999). Approximately 29, 221 samples were collected over a 
soil grid comprised of 25 meter sample interval along lines and 
spaced 100m apart. The field samples were analyzed for: Al, Fe, 
Ca, K, Mg, Na, Ti, Au, Ag, As, Ba, Cd, Co, Cr, Cu, Hg, Mn, 
Mo, Ni, P, Pb, Sc, Sr, V, W and Zn using aqua regia digestion 
and ICP-ES finish. A DEM was created at 25 metre resolution. 
Principal components analysis was carried out on the data and 
revealed several significant patterns related to lithological 
variation and mineralization. Because of the high topographic 
relief in the area, the problem of transported material from 
weathering has the potential to result in “false anomalies” that 
are often due to hydromorphic dispersion and down-slope creep. 
When the results of the principal components analysis are 
draped over the topography, there is an increased ability to 
distinguish anomalies associated with hydromorphic dispersion 
from those associated with a bedrock source. 

Figure 32 shows a planimetric image of the second principal 
component over a shaded relief image of the DEM. Felsic 

volcanic rocks (red and yellow) are distinguished from mafic 
volcanic rocks (blue). Felsic rocks show relative enrichment in 
K, and Na while the mafic rocks show relative enrichment in Fe, 
Co, Ti, Mg, Cr, Al, Sc, and V. The areas highlighted in green 
represent lithologies of intermediate compositions and are 
mostly mudstones, argillites and sandstones. These are the host 
rocks for several of the mineral deposits in the Campo Morado 
area. The first principal component highlights areas of relative 
enrichment of Ag, Zn, Au, As, Pb, Hg, Sb and Cu. These areas, 
shown in red and yellow, are potential sites of mineralization 
(Figure 33). This image is a three dimensional rendering over 
the DEM. Examination of these areas in conjunction with the 
DEM assists in setting priorities for follow-up. Anomalies that 
lie along riverbeds or show significant dispersion must be 
treated with caution due to the effects of hydromorphic and 
downslope creep dispersion effects. 

 

 
Figure 32: Plot of the interpolated PC1 scores over the digital terrain 
model in the Campo Morado area, Mexico. Areas highlighted in red are 
elevated in Au,Cu,  Ag, Pb and Zn values. The image is termed as an 
“index of mineralization”. 

 

 
Figure 33: The same image as Figure 32, however the index of 
mineralization is draped over the digital terrain model and rendered in 
2.5D. This enhances the interpretation of mineralization with respect to 
the terrain variation. 
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SUGGESTED SEQUENCE OF DATA ANALYSIS 

 
The following list of suggested ways to evaluate data should be 
considered in any investigation. Of course, not all steps are 
necessary or appropriate, but should serve as a guideline for a 
thorough investigation of geochemical data. 
 

Preliminary Data Analysis 

 
· Know your data! There is no substitute for spending time 

by evaluating the data using a wide variety of procedures so 
that associations and structures in the data can be identified. 

· Examine each element with histograms, boxplots, Q-Q 
plots, scatter plot matrix and summary tables. 

· Use bubble or symbol maps to show the range and spatial 
variability of the elements of interest. Interpolated images 
can be used where appropriate. 

· Trim the distribution of each element of gross outliers. 
· Investigate outliers for each element; analytical error, or 

atypical value? 
· Adjust data for censored values if required. 
· Consider the application of log-ratio transformations 

(logcentred, isometric logratio) so that compositional data 
can be evaluated without the effect of “closure”. This is 
necessary if measures of association are required 
(correlation, covariance). 

· Apply measures of association using standard measures as 
well as robust procedures. Examine the differences and 
scrutinize the outliers. 

· Test the data to see if the identification of patterns and 
outliers are improved by the use of transformations. Apply 
Box-Cox power transformations using observations below 
the  95 th -98th percentile to determine the optimal 
transformation. The choice of transform parameters can be 
chosen visually (q-q  p lo ts, boxplots, histograms) or by 
semi-automatic means. 

· Examine scatter plots, and quantile-quantile plots for the 
presence of multiple populations. 

· If assembling datasets, examine the requirement for 
leveling. 

 

Exploratory Multivariate Data Analysis 

 
A summary of exploratory multivariate techniques follows: 
· Create a scatter plot matrix of the raw data and transformed 

(logcentred ratios, isometric logratios) data. Look for 
trends/associations. 

· Use robust estimates to compute means and covariances to 
enhance the detection of outliers. 

· Apply dimension reducing techniques such as principal 
components analysis to identify patterns and trends in the 
data. Other methods such as non-linear mapping, multi-
dimensional scaling and self-organizing maps may help 
discover structure in the data. 

· Use geographic maps of the component scores to assist in 
identifying spatially based geochemical processes. 

· Apply methods such as cluster analysis to isolate groups of 
observations with similar characteristics and atypical 
observations. Specific groups of interest can often be 
isolated using these methods. Maps of the locations of the 
groups can help to examine the spatial continuity of the 
groups. 

· Use robust Mahalanobis distance plots (D2) applied to 
transformed data to assist in isolating outliers based on a 
selected number of elements of interest. Maps of large 
distances (>95th percentile) can assist in identifying 
observations or groups of observations of interest. 

· Calculate specifically tailored empirical indices in areas 
where multi-element associations are well understood. The 
indices are based on a linear combination of pathfinder 
elements with coefficients that are selected for each area 
and commodity being sought. Observations with high 
indices can be investigated for mineralization potential. 

 

CONCLUDING COMMENTS AND FUTURE 
DIRECTIONS 

 
Garrett (1989c) stated that the power of computers and 
capability of software would continue to grow along with a 
corresponding decrease in price. Almost 20 years later, that 
prediction still holds. Computers are not only more powerful, 
but they are more portable, which permits the most sophisticated 
processing even in the most remote parts of the planet. 
Developments in software, in terms of the amount of data 
capacity, developments in visualization and statistical methods 
have made enormous contributions to the way that exploration 
geochemists can evaluate and integrate all types of geoscience 
data. The rapid expansion of the internet has allowed new 
statistical communities to grow, such as the R project ( www.r-
project.org) in which thousands of statisticians and users 
throughout the world develop and contribute to an open source 
statistical software environment. Recent developments in freely 
available software (Grunsky, 2002b) will make it easier to 
integrate geochemical data with geospatial data In the R 
community, new statistical developments can be available to 
users within weeks and to anyone who has internet access. There 
is no doubt that this type of cooperative approach to the sharing 
of knowledge will increase the ability of geoscientists to extract 
as much information from their data as possible. 

Another factor that has contributed to very significant 
advancements in evaluating regional geochemical data is the 
ubiquitous development of internet resources for geochemical 
data availability. In addition, internet resources have contributed 
significantly to information on how to evaluate geochemical 
data. The internet itself is one of the first places one starts to 
“mine” for data. 

Discussions on the application of transformations of 
geochemical data have traditionally been based on raw 
analytical values and the potential problems associated with 
closure have not been taken into account. Further research is  
required in this field. There is ongoing research at the University 
of Girona, Spain, where the issues of evaluating compositional 
data is being addressed. Emphasis is being placed on research 
and on the development of tools for the user. 
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Surprisingly, the scientific literature on leveling 
geochemical data is sparse. Levelling is routinely carried out in 
geophysical and geochemical programs, however a formal 
review of procedures has not yet been published. A full review 
of leveling methods applied to geochemical survey data is due. 

Integrating spatially referenced data together with 
multivariate observations is an area that is undergoing many 
interesting developments. The use of fractals has been shown to 
highlight different spatial patterns that are attached to 
multivariate patterns and trends (e.g. Cheng and Agterberg, 
1994). Similarly the integration of multivariate statistics with 
geostatistical analysis is developing and will lead to new 
methods for extracting spatially-dependent multivariate patterns 
and trends. 

Current implementations of statistics with geographical 
information systems are not fully integrated and spatial statistics 
that are employed by geographic information systems or image 
analysis systems offer limited analytical and developmental 
capability. Increased integration of multivariate methods 
together with spatial analysis will provide a comprehensive 
approach to assessing all spatially reference multivariate data. 
Multivariate geostatistics, which incorporates both the spatial 
and inter-element relationships, has been studied by only a few. 
Grunsky and Agterberg (1988, 1992), Grunsky (1990) and 
Wackernagel and Butenuth (1989) discuss two approaches to 
multivariate geostatistics. Bailey and Krzanowski (2000), 
Christensen and Amemiya, (2003) and Krzanowski and Bailey 
(2007) discuss approaches to “spatial factor” methods. Spatial 
factor methods will permit the simultaneous evaluation of 
geochemical processes within the geochemical and geospatial 
domain. The long term benefit of this will be to identify 
geochemical processes as a function of spatial scale (sampling 
density) and will permit further discrimination between 
geochemical background and mineralization. 

ACKNOWLEDGMENTS 

 
The author wishes to acknowledge helpful discussions with 
colleagues at CSIRO, Australia and the Geological Survey of 
Canada, most notably, Frits Agterberg, Graeme Bonham-Carter, 
Bob Garrett, Norm Campbell, Harri Kiiveri, Jeremy Wallace and 
Ray Smith. This manuscript has also benefited from reviews by 
Robert Jackson, David Lawie and Graham Closs. 

The author wishes to acknowledge thanks to the following 
for permission to use their data: 
· Ontario Geological Survey and the Ontario Ministry of 

Natural Resources for the provision of the digital elevation 
data for the Ben Nevis area of Ontario.  

· Mark Rebagliati of Hunter Dickinson Inc., Vancouver, for 
permission to present the results of the Campo Morado 
geochemical study. 

 

REFERENCES 

 

Aitchison, J., 1986, The Statistical Analysis of Compositional Data, 
Methuen Inc. 

 Aitchison, J., 1990, Relative Variation Diagrams for Describing 
Patterns of Compositional Variability, Mathematical Geology, 22, 
487-511. 

Aitchison J., 1997, The one-hour course in compositional data analysis 
or compositional data analysis is simple. V. Pawlowsky-Glahn, 
ed., in: Proceedings of IAMG '97, the Third annual conference of 
the International Association for Mathematical Geology, 3-35. 

Aucott, J.W., 1987, Workshop 5. Geochemical Anomaly Recognition, 
Journal of Geochemical Exploration, 29, 375-376. 

Bailey, T.C. and Krzanowski, W.J., 2000, Extensions to Spatial Factor 
Methods with an Illustration in Geochemistry, Mathematical 
Geology, 32, 657-682. 

Barcelo C, Pawlowsky V., Grunsky E., 1995, Classification problems of 
samples of finite mixtures of compositions. Mathematical 
Geology, 27, 129-148. 

Barcelo C., Pawlowsky V., Grunsky E., 1996, Some aspects of 
transformations of compositional data and the identification of 
outliers. in R. A. Olea, ed., Geostatistics. Mathematical Geology. 
28, 501-518. 

Barcelo-Vidal C, Pawlowsky-Glahn V., Grunsky E.C., 1997, A critical 
approach to the Jensen diagram for the classification of a volcanic 
sequence. In, V. Pawlowsky-Glahn, ed., Proceedings of IAMG 
'97, the Third annual conference of the International Association 
for Mathematical Geology, 117-122. 

Bloom, L., 1997, The Critical Importance of Monitoring Chemical 
Analyses in Frontier Exploration, in A.G. Gubins, ed., 
Proceedings of Exploration 97: Fourth Decennial International 
Conference on Mineral Exploration, 295-300. 

Bochang, Y. and Xuejing, X., 1985, Fuzzy cluster analysis in 
geochemical exploration, Journal of Geochemical Exploration, 
23, 281-292. 

Bølviken, B. and Gleeson, C.F., 1979, Focus on the Use of Soils for 
Geochemical Exploration in Glaciated Terrane, in Geophysics 
and Geochemistry in the Search for Metallic Ores, Proceedings of 
Exploration 77 – an international symposium held in Ottawa, 
Canada in October 1977, Geological Survey of Canada Economic 
Geology Report 31, .295-326. 

Bonham-Carter, G.F., 1989a, Integrating Global Databases with a 
Raster-Based Geographic Information System, in J.N. Van Driel 
and J.C. Davis, eds., Digital Geologic and Geographic 
Information Systems, American Geophysical Union Short Course 
in Geology, 10, 1-13. 

Bonham-Carter, G.F., 1989b, Comparison of Image Analysis and 
Geographic Information Systems for Integrating Geoscientific 
Maps, G.F. Bonham-Carter and F.P. Agterberg, eds., in: 
Statistical Applications in the Earth Sciences, Geological Survey 
of Canada Paper 89-9, 141-155. 

Bonham-Carter, G.F., 1994, Geographic Information Systems for 
Geoscientists, Modelling with GIS, Volume 13, Computer 
Methods in the Geosciences, Pergammon Press. 

Bonham-Carter, G. F., 1997, GIS Methods for Integrating Exploration 
Data Sets, in A.G. Gubins, ed., Proceedings of Exploration 97: 
Fourth Decennial International Conference on Mineral 
Exploration, 59-64. 

Boyle, R.W., 1979, Geochemistry Overview in Geophysics and 
Geochemistry in the Search for Metallic Ores, Proceedings of 
Exploration 77 – an international symposium held in Ottawa, 

175Grunsky, E.C.                                                   The Interpretation of Regional Geochemical Survey Data  
__________________________________________________________________________________________



Canada in October 1977, Geological Survey of Canada Economic 
Geology Report 31, 25-31. 

Box, G.E.P., and Cox, D.R., 1964, An Analysis of Transformations, 
Journal of the Royal Statistical Society, Series B, 26, 211-252. 

Bradshaw, P.M.D. and Thomson, I., 1979, The Application of Soil 
Sampling to Geochemical Exploration in Nonglaciated Regions of 
the World, in Geophysics and Geochemistry in the Search for 
Metallic Ores, Proceedings of Exploration 77 – an international 
symposium held in Ottawa, Canada in October 1977, Geological 
Survey of Canada Economic Geology Report 31, 327-338. 

Bridges, N.J., and McCammon, R.B., 1980, Discrim. A computer 
program using an interactive approach to dissect a mixture of 
normal or lognormal distributions, Computers & Geosciences, 6, 
361-396. 

Brooks, R.R., 1979, Advances in Botanical Methods of Prospecting for 
Minerals Part1 – Advances in Biogeochemical Methods of 
Prospecting in Geophysics and Geochemistry in the Search for 
Metallic Ores, Proceedings of Exploration 77 – an international 
symposium held in Ottawa, Canada in October 1977, Geological 
Survey of Canada Economic Geology Report 31, 397-410. 

Buccianti, A., Mateu-Figueras, G. and Pawlowsky-Glahn, V. (eds), 
2006, Compositional Data Analysis in the Geosciences: From 
Theory to Practice, Geological Society, London, Special 
Publications, 264, 212p. 

Butt, C.R.M., 1989, Geomorphology and Climatic History – Keys to 
Understanding Geochemical Dispersion in Deeply Weathered 
Terrains, Exemplified by Gold, in G.D. Garland, ed., Proceedings 
of Exploration ’87: Third Decennial International Conference on 
Geophysical and Geochemical Exploration for Minerals and 
Groundwater, Ontario Geological Survey, Special Volume 3, 323-
334. 

Campbell, A.N., 1989, Putting Expert System Technology to Work, p. 
825, in G.D. Garland, ed., Proceedings of Exploration ’87: Third 
Decennial International Conference on Geophysical and 
Geochemical Exploration for Minerals and Groundwater, Ontario 
Geological Survey, Special Volume 3, 825. 

Campbell, N.A., 1980, Robust procedures in multivariate analysis. I 
Robust covariance estimation. Applied Statistics, 29, 231-237. 

Campbell, N.A., 1986, A General Introduction to a Suite of Multivariate 
Programs, CSIRO Division of Mathematics and Statistics, 
unpaginated unpublished report. 

Cannon, H., 1979, Advances in Botanical Methods of Prospecting for 
Minerals Part1 – Advances in Geobotanical Methods in 
Geophysics and Geochemistry in the Search for Metallic Ores, 
Proceedings of Exploration 77 – an international symposium held 
in Ottawa, Canada in October 1977, Geological Survey of Canada 
Economic Geology Report 31, 385-396. 

Carr, J.R. 1994, Numerical Analysis for the Geological Sciences, 
Prentice Hall. 

Chaffee, M. A., 1983, Scoresum- A Technique for Displaying and 
Evaluating Multi-Element Geochemical Information, With 
Examples of its use in Regional Mineral Assessment Programs, 
Journal of Geochemical Exploration, 19, 361-381. 

Cheng, Q., 2006. GIS-based multifractal anomaly analysis for prediction 
of mineralization and mineral deposits, in J. Harris, ed., GIS for 
the Earth Sciences, Geological Association of Canada Special 
Publication 44, 285-297. 

Cheng, Q., and Agterberg, F.P., 1994, The separation of geochemical 
anomalies from background by fractal methods, Journal of 
Geochemical Exploration, 51, 109-130. 

Cheng, Q., Xu, Y. and Grunsky, E.C., 2000, Integrated Spatial and 
Spectrum Analysis for Geochemical Anomaly Separation, Natural 
Resources Research, 9, 43-51. 

Chork, C.Y., 1990, Unmasking multivariate anomalous observations in 
exploration geochemical data from sheeted-ve in  t in  
mineralization near Emmaville, N.S.W., Journal of Geochemical 
Exploration, 37, 205-223. 

Christensen, W.F., Amemiya, Y., 2003, Modeling and prediction for 
multivariate spatial factor analysis, Journal of Statistical Planning 
and Inference, 115, 543-564. 

Chung, C.F., 1985, Statistical treatment of geochemical data with 
observations below the detection limit; in Current Research, Part 
B, Geological Survey of Canada, Paper 85-1B, 141-150. 

Chung, C.F., 1988, Statistical analysis of truncated data in geosciences, 
in Sciences. de la Terre, Series. Inf., Nancy, 27, 157-180. 

Chung, C.F., 1989, FORTRAN 77 program for constructing and plotting 
confidence bands for the distribution and quantile functions for 
truncated data, Computers & Geosciences, 15, 625-643. 

Cleveland, W.S., 1993, Visualizing Data, Hobart Press. 

Coker, W.B. and DiLabio, R.N.W., 1989, Geochemical Exploration in 
Glaciated Terrain: Geochemical Responses, in G.D. Garland, ed., 
Proceedings of Exploration ’87: Third Decennial International 
Conference on Geophysical and Geochemical Exploration for 
Minerals and Groundwater, Ontario Geological Survey, Special 
Volume 3, 336-383. 

Coker, W.B., Hornbrook, E.H.W. and Cameron, E.H., 1979, Lake 
Sediment Geochemistry in Geophysics and Geochemistry, in the 
Search for Metallic Ores, Proceedings of Exploration 77 – an 
international symposium held in Ottawa, Canada in October 1977, 
Geological Survey of Canada Economic Geology Report 31, 385-
396. 

Coope, J.A. and Davidson, M.J., 1979, Same Aspects of Integrated 
Exploration, in the Search for Metallic Ores, Proceedings of 
Exploration 77 – an international symposium held in Ottawa, 
Canada in October 1977, Geological Survey of Canada Economic 
Geology Report 31, 575-592. 

Comon, P., 1994. Independent component analysis. A new concept?, 
Signal Processing, 36, 287-314. 

Cox, S., 1997, Delivering Exploration Information On-line Using the 
WWW: Challenges, and an Australian Experience, in A.G. 
Gubins, ed., Proceedings of Exploration 97: Fourth Decennial 
International Conference on Mineral Exploration, 135-143. 

Closs, L.G., 1997, Exploration Geochemistry: Expanding contributions 
to Mineral Exploration, in A.G. Gubins, ed., Proceedings of 
Exploration 97: Fourth Decennial International Conference on 
Mineral Exploration, 3–8. 

CRAN, 1999, The Comprehensive R Network, http://cran.r–project.org. 

Daneshfar, B. and Cameron, E., 1998, Levelling Geochemical Data 
Between Map Sheets, Journal of Geochemical Exploration, 63, 
189-201. 

Darnley, A.G., Bjorklund, A., Bolviken, B., Gustavsson, N., Koval, 
P.V., Plant, J.A., Steenfelt, A., Tauchid, M. and Xie Xuejing, 
1995, A Global Geochemical Database for Envrionmental and 
Resource Management, Recommendations for International 

176            Advances in Regional-Scale Geochemical Methods
_________________________________________________________________________________________



Geochemical Mapping, Final Report of IGCP 259, with 
contributions by R.G. Garrett and G.E.M. Hall, Earth Sciences 
Report 19, UNESCO Publishing. 

Daszykowski,M., Kaczmarek, K., Vander Heyden, Y., and Walczak, B., 
2007, Robust statistics in data analysis - A review: Basic 
concepts, Chemometrics and Intelligent Laboratory Systems, 85, 
203-219. 

Davenport, P.H., Kilfoil, G.J., Colman-Sadd, S.P. and Nolan, L.W., 
1997, Towards Comprehensive Digital Geoscience Data 
Coverages for Newfoundland and Labrador, in A.G. Gubins, ed., 
Proceedings of Exploration 97: Fourth Decennial International 
Conference on Mineral Exploration, 161-164. 

David, M. 1977, Geostatistical Ore Reserve Estimation, Elsevier 
Scientific Publishing Company. 

David, M. 1988, Handbook of Applied Advanced Geostatistical Ore 
Reserve Estimation, Elsevier. 

Davis, J.C., 2002, Statistics and Data Analysis in Geology, John Wiley 
& Sons Inc., third edition. 

de Kemp, E.A. and Desnoyers, D.W., 1997, 3-D Visualization of 
Structural Field Data and Regional Sub-Surface Modelling for 
Mineral Exploration, in A.G. Gubins, ed., Proceedings of 
Exploration 97: Fourth Decennial International Conference on 
Mineral Exploration, 157-160. 

Dempster, A.P., Laird, N.M., and Rubin, D.B., 1977, Maximum 
Likelihood from Incomplete Data via the EM Algorithm, Journal 
of the Royal Statistical Society, Series B, 39, 1-38. 

Deutsch, C.V. and Journel, A.G., 1997, GSLIB: Geostatistical Software 
Library and Users Guide, Oxford University Press, second 
edition. 

Diday, E., 1973, The dynamic clusters method in non-hierarchical 
clustering, International Journal of Computer Informatics, 2, 61-
88. 

Dickson, B.L. and Giblin, A.M., 2007, An evaluation of methods for 
imputation of missing trace element data in groundwaters, 
Geochemistry: Exploration, Environment, Analysis, 7, .173-178. 

Dunn, C.E., 1989, Developments in Biogeochmical Exploration, in G.D. 
Garland, ed., Proceedings of Exploration ’87: Third Decennial 
International Conference on Geophysical and Geochemical 
Exploration for Minerals and Groundwater, Ontario Geological 
Survey, Special Volume 3, 417-438. 

Davenport, P.H., Friske, P.W.B., and Beaumier, M., 1997, The 
Application of Lake Sediment Geochemistry to Mineral 
Exploration: Recent Advances and Examples From Canada, in 
A.G. Gubins, ed., Proceedings of Exploration 97: Fourth 
Decennial International Conference on Mineral Exploration, 261-
270. 

Everitt, B., 1974, Cluster Analysis, Heinemann, London, 122, 2nd 
Edition, 1980. 

Egozcue, J.J., Pawlowsky-Glahn, V., Mateu-Figueras G and Barceló-
Vidal, C., 2003: Isometric logratio transformations for 
compositional data analysis. Mathematical Geology 35, 279-300. 

Filzmoser, P., Garrett, R.G., Reimann, C., 2505, Multivariate outlier 
detection in exploration geochemistry, Computers & Geosciences, 
31, 579-587.  

Fletcher, W.K., 1997, Stream Sediment Geochemistry in Today’s 
Exploration World, in A.G. Gubins, ed., Proceedings of 

Exploration 97: Fourth Decennial International Conference on 
Mineral Exploration, 249-260. 

Franklin, J.M., 1997, Lithogeochemical and Mineralogical Methods for 
Base Metal and Gold Exploration, in A.G. Gubins, ed., 
Proceedings of Exploration 97: Fourth Decennial International 
Conference on Mineral Exploration, 191-208. 

Friske, P.W.B., 1997, Putting It All Together— Surficial Geochemistry 
Maps for Large Areas of Canada, in A.G. Gubins, ed., 
Proceedings of Exploration 97: Fourth Decennial International 
Conference on Mineral Exploration, 363. 

Fortescue, J.A.C. and Vida, E.A., 1989, Geochemical Survey of the 
Trout Lake Area; Ontario Geological Survey, Map 80803. 

Fortescue, J.A.C. and Vida, E.A., 1990, Geochemical Survey, Hanes 
Lake Area; Ontario Geological Survey, Map 80806. 

Fortescue, J.A.C. and Vida, E.A., 1991a, Geochemical Survey, Montreal 
River Area; Ontario Geological Survey, Map 80808. 

Fortescue, J.A.C. and Vida, E.A., 1991b, Geochemical Survey, Pancake 
Lake Area; Ontario Geological Survey, Map 80807. 

Fortescue, J.A.C., 1992, Landscape geochemistry: retrospect and 
prospect - 1990. Applied Geochemistry, 7, 1-53. 

Friedman, J.H., 1987, Exploratory Projection Pursuit, Journal of the 
American Statistical Association, 82, 249-266. 

Gaál, G. (Editor), 1988, Exploration target selection by integration of 
geodata using statistical and image processing techniques: an 
example from Central Finland. Geological Survey of Finland, 
Report of Investigation 80, Part 1, Text, 156 pages, 109 figures, 
18 tables.  

Gabriel, K.R., 1971, The biplot graphical display of matrics with 
application to principal component analysis, Biometrika 58, 453-
467. 

Garrett R.G., 1983, Sampling Methodology, Chapter 4, Statistics and 
Data Analysis in Geochemical Prospecting, edited by R.J. 
Howarth, 2, in Handbook of Exploration Geochemistry, edited by 
G.J.S. Govett. 

Garrett, R.G., 1984, Workshop 5. Thresholds and Anomaly 
Interpretation, Journal of Geochemical Exploration, 21, 137-142. 

Garrett, R.G., 1988, IDEAS: an interactive computer graphics tool to 
assist the exploration geochemist, in Current Research, Part F, 
Geological Survey of Canada, Paper 88-1F, 1-13. 

Garrett R.G., 1989a, A Cry from the Heart, Explore, Newsletter of the 
Association of Exploration Geochemists, 66, 18-20. 

Garrett, R.G., 1989b, The chi-square plot. a tool for multivariate outlier 
detection, Journal of Geochemical Exploration, 32, 319-41. 

Garertt, R.G., 1989c. The Role of Computers in Exploration 
Geochemistry, in G.D. Garland, ed., Proceedings of Exploration 
’87: Third Decennial International Conference on Geophysical 
and Geochemical Exploration for Minerals and Groundwater, 
Ontario Geological Survey, Special Volume 3, 586-608. 

Garrett, R.G., 1990, A Robust Multivariate Procedure with Applications 
to Geochemical Data. in F.P. Agterberg  and G.F. Bonham-Carter, 
eds., Statistical Applications in the Earth Sciences, Geological 
Survey of Canada Paper 89-9, 309-318. 

Garrett, R.G., 1991, The management, analysis and display of 
exploration geochemical data. in Exploration Geochemistry 

177Grunsky, E.C.                                                   The Interpretation of Regional Geochemical Survey Data  
__________________________________________________________________________________________



Workshop, Geological Survey of Canada, Open File 2390, 9.1-
9.41. 

Garrett, R.G., and Grunsky, E.C., 2001, Weighted sums – knowledge 
based empirical indices for use in exploration geochemistry. 
Geochemistry, Exploration, Environment, Analysis, 1, 135-141. 

Garrett. R.G., and Grunsky, E.C., 2003, S and R functions for the 
display of Thompson-Howarth plots, Computers & Geosciences, 
29, 239-242. 

Garrett, R.G., Kane, V.E., Zeigler, R.K., 1980, The Management and 
Analysis of Regional Geochemical Data, Journal of Geochemical 
Exploration, 13, 113-152. 

George, H. and Bonham-Carter, G.F., 1989, An example of spatial 
modelling of geological data for gold exploration Star Lake area, 
in F.P. Agterberg  and G.F. Bonham-Carter, eds., Statistical 
Applications in the Earth Sciences. Geological Survey of Canada, 
Paper 89-9, 171-183. 

Govett, G.J.S. and Nichol, I., 1979, Lithogeochemistry in Mineral 
Exploration in Geophysics and Geochemistry in the Search for 
Metallic Ores, Proceedings of Exploration 77 – an international 
symposium held in Ottawa, Canada in October 1977, Geological 
Survey of Canada Economic Geology Report 31, 339-362. 

Govett, G.J.S., 1989, Bedrock Geochemistry in Mineral Exploration, in 
G.D. Garland, ed., Proceedings of Exploration ’87: Third 
Decennial International Conference on Geophysical and 
Geochemical Exploration for Minerals and Groundwater, Ontario 
Geological Survey, Special Volume 3, 273-200. 

Grunsky, E.C., 1986a. Recognition of Alteration in Volcanic Rocks 
Using Statistical Analysis of Lithogeochemical Data, Journal of 
Geochemical Exploration, 25, 157-183. 

Grunsky, E.C., 1986b, Recognition of Alteration and Compositional 
Variation Patterns in Volcanic Rocks Using Statistical Analysis of 
Lithogeochemical Data, Ben Nevis Township Area, District of 
Cochrane, Ontario; Ontario Geological Survey, Open File Report 
5628. 

Grunsky, E.C., 1990, Spatial Factor Analysis: A Technique to Assess the 
Spatial Relationships of Multivariate Data, in F.P. Agterberg and 
G.F. Bonham-Carter, eds., Statistical Applications in the Earth 
Sciences, , Geological Survey of Canada Paper 89-9, 329-347. 

Grunsky, E.C., 1991, Geology of the Batchawana Area, District of 
Algoma; Ontario Geological Survey, Open File Report 5791. 

Grunsky, E.C., 2000, Strategies and Methods for the Interpretation of 
Geochemical Data in Exploration Geochemistry in Today's 
World, Queen's University, Kingston, 11-17 March, 2000. 

Grunsky, E.C., 2001, A Program for Computing RQ-Mode Principal 
Components Analysis for S-Plus and R, Computers & 
Geosciences, 27, 229-235. 

Grunsky, E.C., 2002a, R: a data analysis and statistical programming 
environment – an emerging tool for the geosciences, Computers 
& Geosciences, 28, 1219-1222. 

Grunsky, E.C., 2002b, Shareware and freeware in the Geosciences II. A 
special issue in honour of John Butler, E.C. Grunsky, ed., 
Computers & Geosciences, 28. 

Grunsky, E.C., 2006, The evaluation of geochemical survey data: Data 
analysis and statistical methods using Geographic Information 
Systems, in J. Harris, ed., GIS for the Earth Sciences, Geological 
Association of Canada Special Publication 44, 229-283 

Grunsky, E.C. and Agterberg, F.P., 1988, Spatial and multivariate 
analysis of geochemical data from metavolcanic rocks in the Ben 
Nevis area, Ontario. Mathematical Geology, 20, 825-861. 

Grunsky, E.C. and Agterberg, F.P., 1992, Spatial Relationships of 
Multivariate Data, Mathematical Geology, 24, 731-758. 

Grunsky, E.C., Easton, R.M., Thurston, P.C., and Jensen, L.S., 1992, A 
Statistical Approach to the Characterization and Classification of 
Archean Volcanics Rocks of the Superior Province, Geology of 
Ontario, Ontario Geological Survey Special 4, Part 2, 1397-1438. 

Grunsky, E.C. and Smee, B.W., 1999, The differentiation of soil types 
and mineralization from multi-element geochemistry using 
multivariate methods and digital topography, Journal of 
Geochemical Exploration, 67, 287-299. 

Gupta, R.P., 1991, Remote Sensing Geology, Springer-Verlag, 

Hall, G.E.M., 1997, Recent Advances in Geoanalysis and Their 
Implications, in A.G. Gubins, ed., Proceedings of Exploration 97: 
Fourth Decennial International Conference on Mineral 
Exploration, 293-294. 

Hamilton, S., 1995, Lake Sediment Geochemistry of the Cow River 
Area, Ontario Geological Survey, Open File Report 5917. 

Harman, P.G., Bye, S.M., and Munro, A.G., 1989, Image Processing of 
Geophysical and Geochemical Exploration Data Sets, in G.D. 
Garland, ed., Proceedings of Exploration ’87: Third Decennial 
International Conference on Geophysical and Geochemical 
Exploration for Minerals and Groundwater, Ontario Geological 
Survey, Special Volume 3, 822. 

Harris, J.R. Grunsky, E.C., Wilkinson, L., 1997, Developments in the 
Effective Use of Lithogeochemistry in Regional Exploration 
Programs: Application of GIS Technology, in A.G. Gubins, ed., 
Proceedings of Exploration ’97: Fourth Decennial International 
Conference on Mineral Exploration, 285-292.  

Harris J.R., Wilkinson, L., Grunsky, E.C., Heather, K. and Ayer, J., 
1999, Techniques for analysis and visualization of 
lithogeochemical data with applications to the Swayze greenstone 
belt, Ontario. Journal of Geochemical Exploration, 67, 301-334. 

Harris J.R., Grunsky, G., Wilkinson, L., 2000, Effective use and 
interpretation of lithogeochemical data in regional mineral 
exploration programs: Application of Geographic Information 
System (GIS) technology, Ore Geology Reviews. 16, 107-143. 

Harris, J.R., 2006a. Statistical, mathematical and geostatistical methods 
for dealing with glacial dispersal: Application of GIS technology 
to till data from the Swayze greenstone belt and Cape Breton 
Island, in J. Harris, ed., GIS for the Earth Sciences, Geological 
Association of Canada Special Publication 44, 317-368. 

Harris, J.R., 2006b. Integration of geoscience data for mapping potassic 
alteration, Swayze greenstone belt, Ontario, Canada, in J. Harris, 
ed., GIS for the Earth Sciences, Geological Association of Canada 
Special Publication 44, 369-396. 

Hartigan, J.A., 1975, Clustering Algorithms, Wiley. 

Hausberger, G., 1989, GIS and Computer-Mapping Aspects of the 
Austrian Stream-Sediment Geochemical Sampling Project. in J.N. 
Van Driel, and J.C. Davis, eds., Digital Geologic and Geographic 
Information Systems, American Geophysical Union Short Course 
in Geology, 10, 25-45. 

Hawkes, H.E. and Webb, J.S., 1962, Geochemistry in Mineral 
Exploration, First Edition, Harper and Row. 

178            Advances in Regional-Scale Geochemical Methods
_________________________________________________________________________________________



Helsel, D.R., 1990, Less than obvious: Statistical treatment of data 
below the detection limit, Environmental Science and 
Technology, 24, 1766-1774.  

Holroyd, M.T., 1989, The Relevance of Data Base Technology to 
Resource Exploration Data, in G.D. Garland, ed., Proceedings of 
Exploration ’87: Third Decennial International Conference on 
Geophysical and Geochemical Exploration for Minerals and 
Groundwater, Ontario Geological Survey, Special Volume 3, 811-
821. 

Hornbrook, E.H., 1989, Lake Sediment Geochemistry: Canadian 
Applications in the Eighties, in G.D. Garland, ed., Proceedings of 
Exploration ’87: Third Decennial International Conference on 
Geophysical and Geochemical Exploration for Minerals and 
Groundwater, Ontario Geological Survey, Special Volume 3, 405-
416. 

Howarth, R.J., 1983, Mapping, Chapter 5, Statistics and Data Analysis 
in R.J. Howarth, ed., Geochemical Prospecting, 2, in G.J.S. 
Govett, ed., Handbook of Exploration Geochemistry, Elsevier, 
111-205. 

Howarth, R.J. and Earle, S.A.M., 1979, Application of a Generalized 
Power Transformation to Geochemical Data, Mathematical 
Geology, 11, 45-62. 

Howarth, R.J. and Martin, L., 1979, Computer-based Techniques in the 
Compilation, Mapping and Interpretation of Exploration 
Geochemical Data, Geophysics and Geochemistry in the Search 
for Metallic Ores, Proceedings of Exploration 77 – an  
international symposium held in Ottawa, Canada in October 1977, 
Geological Survey of Canada Economic Geology Report 31, 544-
574. 

Howarth, R.J. and Sinding-Larsen, R., 1983, Multivariate Analysis, 
Chapter 6, Statistics and Data Analysis in R.J. Howarth, ed., 
Geochemical Prospecting, 2, in G.J.S. Govett, ed., Handbook of 
Exploration Geochemistry, Elsevier. 207-289. 

Isaaks, E,H., and Srivastava, R.M., 1989, An Introduction to Applied 
Geostatistics, Oxford University Press. 

Jaquet, J.-M., Froidevaux, F., Bernet, J.-P., 1975, Comparison of 
Automatic Classification Methods Applied to Lake Geochemical 
s, Mathematical Geology, 7, 237-266. 

Jackson, J.E., 2003, A User’s Guide to Principal Components, Wiley-
Interscience. 

Jolliffe, I.T., 2002, Principal Components Analysis, 2nd edition, 
Springer. 

Jöreskog, K.G., Klovan, J.E. and Reyment, R.A., 1976, Geological 
Factor Analysis. Elsevier Scientific Publishing Company. 

Journel, A.G. and Huijbregts, C.J., 1978,: Mining Geostatistics, 
Academic Press. 

Joyce, A.S., 1984, Geochemical Exploration, The Australian Mineral 
Foundation Inc. 

Kaufman, L, Rousseeuw, P.J., 1990, Finding Groups in Data, An 
Introduction to Cluster Analysis. John Wiley. 

Klassen, R.A., 1997, Glacial History and Ice Flow Dynamics Applied to 
Drift Prospecting and Geochemical Exploration, in A.G. Gubins, 
ed., Proceedings of Exploration 97: Fourth Decennial 
International Conference on Mineral Exploration, 221-231. 

Kohonen, T., 1995, Self-Organizing Maps, Springer-Verlag. 

Kuosmanen, V. (Editor), 1988, Exploration target selection by 
integration of geodata using statistical and image processing 
techniques: an example from Central Finland. Geological Survey 
of Finland, Report of Investigation 84, Part 2, Atlas, 47 pages, 5 
figures, 1 table and 40 plates.  

Kürzl, H, 1988, Exploratory data analysis: recent advances for the 
interpretation of geochemical data, Journal of Geochemical 
Exploration, 20, 309-322. 

Kruskal, J.B., 1964, Multidimensional scaling by optimising goodness of 
fit to non-metric hypothesis, Psychometrika, 29, 1-27. 

Krzanowski, W.J., 1988, Principles of Multivariate Analysis, A User's 
Perspective, Clarendon, Press. 

Krzanowski, W.J. and Bailey, T.C., 2007, Extraction of Spatial Features 
Using Factor Methodss Illustrated on Stream Sediment Data, 
Mathematical Geology, 39, 69-85. 

Lee, L., and Helsel, D., 2005, Statistical analysis of water-quality data 
containing multiple detection limits: S-language software for 
regression on order statistics, Computers & Geosciences, 31, 
1241-1248. 

Lee, L., and Helsel, D., 2007, Statistical analysis of water-quality data 
containing multiple detection limits II: S-language software for 
nonparametric distribution modeling and hypothesis testing, 
Computers & Geosciences, 33, 696-704. 

Levinson, A.A., 1980, Introduction of Exploration Geochemistry, 
Second Edition, Applied Publishing. 

Lindqvist, L., 1976, SELLO, A Fortran IV program fo the 
transformation of skewed distributions to normality, Computers & 
Geosciences, 1, 129-145. 

Link, R.F., and Koch, G.S., 1975, Some consequences of applying 
lognormal theory to pseudolognormal distributions, Mathematical 
Geology, 7, .117-128. 

Martin, L., 1989, Expert Systems and Their Use as Exploration 
Assistants, in G.D. Garland, ed., Proceedings of Exploration ’87: 
Third Decennial International Conference on Geophysical and 
Geochemical Exploration for Minerals and Groundwater, Ontario 
Geological Survey, Special Volume 3, 826-834. 

Martin-Fernandez, J.A., Barcelo-Vidal, C., and Pawlowsky-Glahn, V., 
1998, A critical approach to non-parametric classification of 
compositional data, in A. Rizzi, M. Vichi, and H.H. Bock, eds., 
Advances in data science and classification, Springer, 49-56. 

Martin-Fernandez, J.A., Barcelo-Vidal, C., and Pawlowsky-Glahn, V., 
2000, Zero replacement in compositional datasets, in H. Kiers, J. 
Rasson, P. Groenen, and M. Shader, eds., Studies in classification, 
data analysis, and knowledge organization: Spriner, Berlin(D), 
155-160. 

Mazzucchelli, R.H., 1989, Exploration Geochemistry in Areas of Deeply 
Weathered Terrain: Weathered Bedrock Geochemistry, in G.D. 
Garland, ed., Proceedings of Exploration ’87: Third Decennial 
International Conference on Geophysical and Geochemical 
Exploration for Minerals and Groundwater, Ontario Geological 
Survey, Special Volume 3, 300-311. 

Mazzucchelli, R.H., 1997, Geochemical Exploration in Areas Affected 
by Tropical Weathering—An Industry Perspective, in A.G. 
Gubins, ed., Proceedings of Exploration 97: Fourth Decennial 
International Conference on Mineral Exploration, 315-322. 

McClenaghan, M.B., Thorleifson, L.H., and DiLabio, R.N.W., 1997, Till 
Geochemical and Indicator Mineral Methods in Mineral 

179Grunsky, E.C.                                                   The Interpretation of Regional Geochemical Survey Data  
__________________________________________________________________________________________



Exploration, in A.G. Gubins, ed., Proceedings of Exploration 97: 
Fourth Decennial International Conference on Mineral 
Exploration, 233-247. 

McQueen, J., 1967, Some methods for classification and analysis of 
multivariate observations, 5th Berkeley Symposium on 
Mathematics, Statistics, and Probability, 1, 281-298. 

Mellinger, M. 1987, Multivariate Data Analysis. Its Methods, 
Chemometrics and Intelligent Laboratory Systems, 2, 29-36. 

Mellinger, M., 1989, Computer tools for the integrative interpretation of 
geoscience spatial data in mineral exploration. In Statistical 
Applications in the Earth Sciences. Bonham-Carter, G.F. and 
Agterberg, F.P. (Editors). Geological Survey of Canada Paper 89-
9, 135-139. 

Mellinger, M., Chork, S.C.Y., Dijkstra, S., Esbensen, K.H., Kürzl, H., 
Lindqvist, L., Saheurs, J.-P., Schermann, O., Siewers, U., and 
Westerberg, K., 1984, The Multivariate Chemical Space, and the 
Integration of the Chemical, Geographical, and Geophysical 
Spaces, Journal of Geochemical Exploration, 21, 143-148. 

Meyer, W.T., Tehobald, Jr., P.K., and Bloom, H., 1979, Stream 
Sediment Geochemistry in Geophysics and Geochemistry in the 
Search for Metallic Ores, Proceedings of Exploration 77 – an 
international symposium held in Ottawa, Canada in October 1977, 
Geological Survey of Canada Economic Geology Report 31, 411-
434. 

Oliver, J., Payne, J, and Regabliati, M., 1996: Precious-metal-bearing 
Volcanogenic Massive Sulfide Deposits, Campo Morado, 
Guerrero, Mexico, Exploration Mining Geology, 6, 119-128. 

Pawlowsky, V., 1989, Cokriging of Regionalized Compositions, 
Mathematical Geology, 21, 513-521. 

Pawlowsky-Glahn V. and Buccianti A., 2002, Visualization and 
modeling of sub-populations of compositional data; statistical 
methods illustrated by means of geochemical data from fumarolic 
fluids. International Journal of Earth Sciences. 91, 357-368.  

Pawlowsky-Glahn, V. and Egozcue, J.J, 2006, Compositional data and 
their analysis, in A. Buccianti, G. Mateu-Figueras, and V. 
Pawlowsky-Glahn, eds., Compositional Data Analysis in the 
Geosciences: From Theory to Practice, Geological Society, 
London, Special Publications, 264, 1-10. 

Pebesma, E.J., 2004, Multivarilabe geostatistics in S: the gstat package, 
Computers & Geosicences, 30, 683-691. 

Pieters, C.M. and Englert, P.A.J., 1993, Remote Geochemical Analysis: 
Elemental and Mineralogical Composition, Cambridge University 
Press. 

Plant, J.A., Hales, M. and Ridgway, J. 1989, Regional Geochemistry 
Based on Stream Sediment Sampling, in G.D. Garland, ed., 
Proceedings of Exploration ’87: Third Decennial International 
Conference on Geophysical and Geochemical Exploration for 
Minerals and Groundwater, Ontario Geological Survey, Special 
Volume 3, 384-404. 

Rebagliati, M., 1999: Applied Exploration Geochemistry: Campo 
Morado Precious-Metal-Bearing Volcanogenic Massive Sulphide 
District, Guerrero, Mexico, 19th International Geochemical 
Exploration Symposium, Vancouver, British Columbia, Canada, 
April 10-16, 1999, Abstract. 

Reimann, C., Filzmoser, P., Garrett, R.G., 2005. Background and 
threshold: Critical comparison of methods of determination, 
Science of the Total Environment, 346, 1-16. 

Rencz, A.N., 1999, Remote Sensing for the Earth Sciences, in A.N. 
Rencz, ed., Volume 3 in R.A. Ryerson, ed., Manual of Remote 
Sensing, Third Edition, John Wiley & Sons. 

Reyment, R.A. and Jöreskog, K.G., 1993, Applied Factor Analysis in the 
Natural Sciences, Cambridge University Press. 

Richards, J.A. and Jia, X., 1999, Remote sensing digital image analysis, 
An Introduction. Third, Revised and Enlarged Edition, Springer-
Verlag. 

Rock, N.M.S., 1987, Robust, An Interactive Fortran-77 Package for 
Exploratory Data Analysis using Parametric, Robust and 
Nonparametric Location and Scale Estimates, Data 
Transformations, Normality Tests, and Outlier Assessment, 
Computers & Geosciences, 13, 463-494. 

Rock, N.M.S., 1988, Numerical Geology, A Source Guide, Glossary and 
Selective Bibliography to Geological Uses of Computers and 
Statistics, Lecture Notes in, S. Bhattacharji, G. Friedman, H.J.. 
Neugebauer and A. Seilacher, Earth Sciences, 18, Springer-
Verlag. 

Rousseeuw, P. J. and van Driessen, K., 1999, A fast algorithm for the 
minimum covariance determinant estimator. Technometrics 41, 
212-223. 

Rose, A.W., Hawkes, H.E., and Webb, J.S. 1979, Geochemistry in 
Mineral Exploration, Second Edition, Academic Press. 

Sammon, J.W., 1969, A non-linear mapping for data structure analysis. 
IEEE Transactions in Computing, C18, 401-409. 

Sanford, R.F, Pierson, C.T., and Crovelli, R.A., 1993, An Objective 
Replacement Method for Censored Geochemical Data, 
Mathematical Geology, 25, 59-80. 

Shaw, J., 1989, Geochemical Exploration in Areas of Glaciated Terrain: 
Geological Processes, in G.D. Garland, ed., Proceedings of 
Exploration ’87: Third Decennial International Conference on 
Geophysical and Geochemical Exploration for Minerals and 
Groundwater, Ontario Geological Survey, Special Volume 3, 335. 

Sinding-Larsen, R., 1975, A computer method for dividing a regional 
geochemical survey area into homogeneous subareas prior to 
statistical interpretation. in I.L, Elliott and W.K. Fletcher eds., 
Geochemical Exploration 1974, Elsevier, 191-217. 

Sinclair, A.J., 1976, Application of Probability Plots in Mineral 
Exploration, Association of Exploration Geochemists Special 
Publication 4. 

Smee, B.W., 1997, The Formation of Surficial Geochemical Patterns 
Over Buried Epithermal Gold Deposits in Desert Environments: 
Results of a Test of Partial Extraction Techniques, in A.G. 
Gubins, ed., Proceedings of Exploration 97: Fourth Decennial 
International Conference on Mineral Exploration, 301-314. 

Smith, R.E., 1989, Using Lateritic Surfaces to Advantage in Mineral 
Exploration, in G.D. Garland, ed., Proceedings of Exploration 
’87: Third Decennial International Conference on Geophysical 
and Geochemical Exploration for Minerals and Groundwater, 
Ontario Geological Survey, Special Volume 3,. 312-322. 

Smith, R.E., Anand, R.R., and Alley, N.F., 1997, Use and Implications 
of Paleoweathering Surfaces in Mineral Exploration, in A.G. 
Gubins, ed., Proceedings of Exploration 97: Fourth Decennial 
International Conference on Mineral Exploration, p. 335-346. 

Smith, R.E., Birrell, R.D., and Brigden, J.F., 1989, The implications to 
exploration of chalcophile corridors in the Archaean Yilgarn 

180            Advances in Regional-Scale Geochemical Methods
_________________________________________________________________________________________



Block, Western Australia, as revealed by laterite geochemistry, 
Journal of Geochemical Exploration, 32, 169-184. 

Smith, R.E. and Perdrix, J.L. 1983, Pisolitic laterite geochemistry in the 
Golden Grove massive sulphide district, Western Australia, 
Journal of Geochemical Exploration, 18, 131-164. 

Smith, R.E., Perdrix, J.L., Davis, J.M., 1987, Dispersion into Pisolitic 
Laterite from the Greenbushes Mineralized Sn-Ta Pegmatite 
System, Western Australia, Journal of Geochemical Exploration, 
28, 251-265. 

Stanley, C.R. 1987, PROBPLOT, An Interactive Computer Program to 
Fit Mixture of Normal (or Log normal) Distribution with 
Maximum Likelihood Optimization Procedures, Association of 
Exploration Geochemists Special Volume 14, 1 diskette. 

Stanley, C.R., 2003, THPLOT.M: a MATLAB function to implement 
generalized Thompson–Howarth error analysis using replicate 
data. Computers & Geosciences, 29, 225-237. 

Stanley, C.R. 2006, On the special application of Thompson-Howarth 
error analysis to geochemical variables exhibiting a nugget effect 
Geochemistry: Exploration, Environment, Analysis, 6, 357-368. 

Stanley, C.R. and Sinclair, A.J., 1987, Anomaly recognition for multi-
element geochemical data- A background characterization 
approach. Journal of Geochemical Exploration, 29, 333-53. 

Stanley, C.R. and Sinclair, A.J., 1989, Comparison of probability plots 
and the gap statistic in the selection of thresholds for exploration 
geochemistry data. Journal of Geochemical Exploration, 32, 355-
357. 

Thompson, M. and Howarth, R.J., 1973, The rapid estimation and 
control of precision by duplicate determinations. The Analyst 98, 
pp. 153–160. 

Thompson, M. and Howarth, R.J., 1976a, Duplicate analysis in practice–
–Part 1. Theoretical approach and estimation of analytical 
reproducibility. The Analyst 101, 690–698. 

Thompson, M. and Howarth, R.J., 1976b, Duplicate analysis in practice–
–Part 2. Examination of proposed methods and examples of its 
use. The Analyst 101, 699–709. 

Thompson, M. and Howarth, R.J., 1978, A New Approach to the 
Estimation of Analytical Precision, Journal of Geochemical 
Exploration, 9, 23-30. 

Trépanier, S., 2006, Identifcation de domains géochemiques à partier des 
levés régionaux de sediments de fond de lacs, Projt 2004-09, 
Consortium de recherche en exploration minérale, Presentation. 

Tukey, J.W., 1977, Exploratory Data Analysis, Addison-Wesley. 

Venables, W.N., and Ripley, B.D., 2002, Modern Applied Statistics with 
S, fourth Edition Springer-Verlag. 

Vincent, R.K., 1997, Fundamentals of Geological and Environmental 
Remote Sensing, Prentice Hall. 

van den Boogaart, K.G. and R. Tolosana-Delgado, R., in press.: 
"compositions": a unified R package to analyze compositional 
data, Computers & Geosciences. doi:10.1016/j.cageo.2006.11.017 

von Eynatten, H., Pawlowsky-Glahn, and Egozcue, J.J., 2002, 
Understanding perturbation on the simplex: A simple method to 
better visualize and interpret compositional data in ternary 
diagrams, Mathematical Geology, 34, 249-258. 

Von Eynatten H., Barcelo-Vidal C., Pawlowsky-Glahn V., 2003, 
Composition and discrimination of sandstones; a statistical 

evaluation of different analytical methods. Journal of Sedimentary 
Research, 73, 47-57. 

Wackernagel, H, and Butennuth, C., 1989, Caractérisation d’anomialies 
géochemiques par la géostatistique multivariable, Jouranl of 
Geochemical Exploration, 32, 437-444. 

Wilkinson, L., Harris, J.R. and Grunsky, E.C., 1999, Building a 
Lithogeochemical Database for GIS Analysis; Methodology, 
Problems and Solutions, Geological Survey of Canada Open File 
3788. 

Wilkinson, L., Harris, J.F., Kjarsgaard, B.K., and McClenaghan, 2006, 
Till geochemistry for kimberlite exploration: Using GIS to 
visualize, analyze and decide, 297-316, in J. Harris, ed., GIS for 
the Earth Sciences, Geological Association of Canada Special 
Publication 44, 297-316. 

Zhou, D., 1985, Adjustment of geochemical background by robust 
multivariate methods, Journal of Geochemical Exploration, 24, 
207-222. 

Zhou, D., ROPCA, 1989, A Fortran Program for Robust Principal 
Components Analysis, Computers & Geosciences, 15, 59-78. 

Zhou, D., Chang, T. and Davis, J.C., 1983, Dual Extraction of R-Mode 
and Q-Mode Factor Solutions, Mathematical Geology, 15, 581-
606. 

APPENDIX 1  

 

Logratios and Compositional Data 

 
Compositional data should be adjusted by the use of log-ratios. 
A compositional vector x defined by D component variables 
(elements). By definition, this vector will sum to a constant 
(100%) and as a result, the composition can be described by D-1 
of the variables. A composition x can be transformed by 
 

yi = log(xi/xD)  (i = 1, …, D-1) 
 

There is no loss of information by choosing one of the 
variables as a divisor. This transformation is known as the 
additive log-ratio (alr). The resulting logratio coordinates cannot 
be projected onto orthogonal axes because the axes are at 60º 
(Pawlowsky-Glahn and Egozcue, 2006) and creates difficulties 
when comparing compositions using different denominators. In 
particular, measures of distances between alr-transformed 
observations are not equal when using different denominators 
and the angles between vectors cannot be computed using a 
standard Euclidean inner product. 

An alternative way of transforming a compositional vector is 
by applying the log-centered ratio, namely: 
 

zi = log(x i/g(xD))  (i = 1, …, D), 
 
where g(xD) is the geometric mean of the composition The log-
centered ratio (clr) is useful because it preserves all of the 
variables in the composition. However, the inverse of the 
covariance matrix for this transform is singular, which requires a 
special generalized inverse procedure for computation. 
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An important aspect of assessing compositions is the 
calculation of an adequate measure of variability. This is done 
by the creation of a variation matrix, T defined by: 
 

tij = var{log(xi/xj)} (i=1,…,d ; j=i+1,…,D) 
 
and the mean, E, is expressed as: 
 

xij = E{log(xi/xj)} (i=1,…,d; j=i+1,…,D) 
 

The variability matrix T summarizes the contribution that 
any pair of variables makes in a sub-compositional analysis. For 
example, consider a major element oxide composition consisting 
of SiO2, Al2O3, MgO, FeO, CaO, Na2O, K2O, TiO2, and MnO. 
A  s u b -composition may be interested in examining the 
relationships of MgO, FeO and Na2O. The amount of 
compositional variability that these elements will account for 

can be expressed by the sum of (tMgO,FeO, tMgO,Na2O, tFeO,Na2O). 
This is an important concept in understanding the significance of 
sub-compositional data which will never fully explain the 
overall variation of the data. 

More recent developments by Egozcue et al. (2003) have 
identified the isometric logratio (ilr), which is a transformation 
that defines compositional vectors in an orthonormal basis.  A 
very simple explanation of this transformation is described in 
Pawlowsky-Glahn and Egozcue (2006). The application of the 
ilr transform requires the construction of “balances”, which are 
ratios of selected variables into groups (i.e. elements associated 
with a fractionation process versus elements associated with 
alteration). These balances are used to construct new variables 
that exist in an orthonormal base from which standard Euclidean 
measures can be calculated (mean, variance, etc.). 
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