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ABSTRACT

Volcanic Massive Sulphide (VMS) deposits are significant sources of Cu, Zn and, to a lesser extent, Pb, Ag, Au, Cd, Se, S, Bi and
minor amounts of other metals. VMS deposits are one of the most thoroughly researched deposit class and one of the few with an
active, modern analog. They form on, and immediately below the seafl oor, by the discharge of a high temperature, evolved, seawater-
dominated hydrothermal fluid during contemporaneous volcanism and/ or plutonism. The volcanic-hydrothermal model for VMS
deposits has continuously evolved and the combined geological, geophysical and geochemical exploration methods that result from
this evolution have added to the attractiveness of this deposit type as an economic target. However, many questions concerning VMS
genesis remain, such as the source of metals and gold, and prediction of the metal potential of a given belt. As exploration goes
deeper success will require a more sophisticated and predictive model that integrates geophysics, geochemistry and geology in 3D
Gl Sformatsto improve identification of the key elements of the VMS model that will lead to more subsurface discoveries.

INTRODUCTION

The acronym VMS refers collectively to volcanogenic (Franklin
et al., 2005), volcanic-associated (Franklin, 1995), and volcanic-
hosted (Large et al., 2001b) massive sulphide deposits. VMS
deposits are major sources of Cu and Zn and, to a lesser extent,
Pb, Ag, Au, Cd, Se, Sn, Bi and minor amounts of other metals,
such asindium (Franklin et al., 2005). The metal contents and
tonnage of VMS deposits are log normally distributed but, as
indicated by geometric means that range from 2.7 to 7.1 Mt
(depending on VMS deposit type; Franklin et al., 2005;
Sangster, 1977), they are relatively small exploration targets. As
a deposit type they contain some giant deposits that are
anomalous either because of their size (e.g., Rio Tinto, Leistel et
a., 1998), their size and base-metal content (e.g., Kidd Creek,
Hannington et al., 1999a; Neves Corvo, Relvas et al., 2002), or
their size and precious metal (Au, Ag) content (e.g., Horne, Kerr
and Gibson, 1993; LaRonde, Dube et al, 2007; Boliden, Allen et
a., 1996b, Bergman-Weihed et a., 1996). It is their high value
multi-metal character and concentrated value per tonne mined,
which continue to make VMS deposits an economically viable
exploration target. The ability to target this deposit type by a
combination of geological, geophysical and geochemical
methods adds to its attractiveness. However, the small size of
most VMS deposits, metallurgical challenges such asgrain size

and deleterious metal content, and potential environmental
impacts due to refining processes can detract from their
economic value as priority exploration targets.

In this paper we examine our current knowledge of VMS
deposit genesis, highlight aspects of the model that have
exploration significance, and discuss shortcomings of the model,
from both a scientific and exploration perspective. Geophysical
techniques and details of the petrochemical aspects of the VM S
model are not discussed, but are contained in the companion
papers by Boivin (2007) and Piercey (2007) in this volume.

THE VMSMODEL

VMS deposits are syngenetic, stratabound and in part stratiform
accumulations of massive to semi-massive sulphide. The
deposits consist of two parts: a concordant massive sulphide lens
(>60% sulphide minerals), and discordant vein-typesulphide
mineralization, commonly called the stringer or stockwork zone,

located within an envelope of altered footwall volcanic and or
sedimentary rocks (Figure 1). In some cases, the hanging-wall

sedimentary or volcanic rocks are aso altered. In some deposits
the stratiform massive sulphide lens comprises the entire
economic deposit, whereas in other deposits appreciable
quantities of ore are also mined from the stockwork zone.
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immediately below the seafloor, by the discharge of a high
temperature, evolved, seawater-dominated hydrothermal fluid
(Franklin et al., 1981; Lydon, 1984; 1988, Large et al., 2001a;
Franklin et al., 2005, and references therein) as shown in the
model presented in Figure 2. The model illustrates the six main
elements that are considered essential to the formation of VM S
hydrothermal systems, and these elements are described below
(modified from Franklin et al., 2005). Geological, geochemical
and geophysical criteria developed for the recognition of these
elements form an integral part of many exploration programs.
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DISCUSSION AND ASSESSMENT OF THE MODEL

Our assessment of the geological and geochemical attributes of
the VMS model and their applicability and significance to
exploration will start with large-scale features and progress to
features that characterize the immediate deposit environment.
First we address features indicative of afavorable geodynamic
environment; these are commonly the most difficult to relate
directly to VMS deposit genesis, but, because of their scale, are
generally the most important for area selection and greenfields
exploration. Secondly, we address features at the scale of the
volcano-sedimentary environment that have relevance to both
greenfields and brownfields exploration. Lastly, we discuss
features of the immediate deposit environment, which are most
relevant to property-scale, or brownfields exploration.

It is important to recognize that the essential elements of the
VMS model, which are illustrated in Figure 2, operateto a
variadble degree in all submarine volcano-sedimentary
hydrothermal systems regardless of whether they contain VM S
deposits or not. Therefore, two important questions to consider
within the context of the hydrothermal model are: 1) what
dements in themodel influence the efficiency and longevity
required of an ore-forming submarine hydrothermal system, and
2) are there elements missing from the current model whose
inclusion in a particular basin or all basins would result in VMS
formation (e.g., amagmatic contribution of metals)?

GEODYNAMICENVIRONMENT

There is growing consensus that VMS deposits preferentially
form during episodic rifting of oceanic and continental volcanic
arcs, fore arcs, and in back-arc extensional environments
(Figure 3; van Staal et a., 1995; Vearncombe and Kerrich, 1999;
Carvalho et al., 1999; Piercey et al., 2001; Allen et a., 2002;
Rogers and vanStaal, 2003; Rogers et a., 2003; Hart et al.,
2004; Hannington et al., 2005; Franklin et al., 2005,). Although
a large number of factors influence the formation and
preservation of VMS deposits, crustal thinning and rifting are
essential to the formation of a productive VMS hydrothermal
system (Figures 2 and 3). Extension and thinning of the crust
during rifting depressurizes the lithospheric mantle. The
resultant mantle melting and rift-related faulting focuses
magmatic activity at various levelsin the thinned crust (Figure
3). Mafic magmas pond near the base of the thinned crust and, if
rifting is long-lived, partial melting of the crust generates
rhyolitic melts. This combination of mafic mantle and felsic
crustal melts result in the typical bimodal volcanism of many rift
and VMS environments (Hart et a., 2004).

Thus, extension provides the localized, high level heat source
required to generate and sustain a hightemperature
hydrothermal system and it is the deep, cross-stratal structural
permeability afforded by faults developed and reactivated during
rifting that permit efficient hydrothermal circulation and
discharge; all are fundamental elements of a productive VMS
hydrothermal system. The role of extension and rifting in VMS
formation is recognized in the 5-fold lithotectonic classification
of VMS deposits proposed by Franklin et al., (2005), which

classifies VM S districts (not deposits) and is based on the entire
volcano-sedimentary assemblage within a district (Table 1). The
inclusion of a much larger, district-scale, stratigraphic interval,
rather than the immediate deposit host rocks, has the advantage
of more confidently relating the VMS district and the VMS
depositsto their geodynamic setting.
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Figure 3: Rifting of avolcanicarc showing: A) crustal thinning,
subsidence, and mantle upwelling; B) vol canism and theformation of
VMS deposits; and C) return to acompressive arc environment and
deformation of therift succession (from Allenet al., 2002)
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In greenfields exploration recognition of a rift environment
is essential to area selection. The first feature an explorationist
conducting a regional reconnaissance survey needs to observe is
the basic stratigraphy of an area, and in this regard it is
important to recognize that rifts are characterized by distinctive
rock associations and ateration, including: 1) a pre-rift volcanic,
volcano-sedimentary, or sedimentary succession, that could be
part of an ocean island, continental margin or epicontinental
sequence; 2) a syn-rift succession characterized by a bi-modal
volcanic or volcano-sedimentary complex that is dominated by
either basalts (or andesitic basalt) or rhyolitic volcanic rocks; 3)
in some cases (bimodal felsic and siliciclastic—felsic deposits), a
post-rift thermal subsidence succession characterized by well
stratified marine sedimentary rocks with or without volcanic
rocks or differentiated arc volcanic rocks indicative of a return
to a compressive arc tectonic regime; 4) evidence from
sedimentary structures volcanic facies and fossils of widespread
submarine environments and rapid subsidence from terrestrial or
shallow marine environment to deep marine environment (e.g.,
Sturgeon Lake VMS district, Morton et al., 1991; Hudak et al.,
2003l; Skellefte, Allen et a., 1996b; Bergslagen, Allen et al.,
19964a); 5) extensive synvolcanic dike swarms as evidence of
rifting and subsidence (e.g., Noranda District, Gibson et al.
1999, Flin Flon District, Gibson et al., 2003); 6) widespread
moderate to strong regional semiconfromable alteration and
local areas of strong hydrothermal ateration and metallic
mineraization (base and/or precious metal vein showings,
disseminated sulphide zones) within pre and syn-rift
successions;, and 7) the presence of high-level,comagmatic,
subvolcanic intrusions consisting of tonalite, trondhjemite,
quartz diorite and gabbro and whose felsic phases are
geochemically equivalent to associated felsic volcanicrocks
(e.g., Flavrian Pluton, Noranda; Beidelman Bay pluton,
Sturgeon Lake , Snow Lake; Goldie, 1976; Goldie et a., 1979;
Galley, 2003; Bailes and Galley, 1999).

Furthermore, subvolcanic intrusions are hypothesized to be
the source of heat that initiated and sustained a sub-seafloor
convective hydrothermal system that in some cases also supplied
metals to the ore-forming VMS hydrothermal system (e.g.,
Goldie, 1976; Campbell et al., 1981; Morton et al., 1991; Paradis
et a. 1993). However, recent geocchemical, and
geochronologica studies indicate that the most voluminous
phases of the subvolcanic intrusions were emplaced later than
the associated VMS deposits and their associated mafic and
felsic volcanics (Galley, 2003). The occurrence of these mullti-
phase subvol canic intrusions indicates the presence of long-lived
thermal corridors in which repeated rift-related volcanism and
intrusive activity provide suitable VMS environments (Galley et
al., 2000; Galley, 2003; Hart et al., 2004; Franklin et al., 2005).
These features can be readily observed during regiona
reconnaissance of a potential greenfields VMS exploration
target.

Syn-rift volcanic rocks can also be recognized, defined and
correlated by using lithogeochemistry to recognize
petrochemical assemblages of mafic and felsic volcanic rocks
that are distinctive of rifting and high temperature magmas
(Table 1; Piercey, 2007). For example, the composition of mafic
volcanic rocks, largely based on trace elements, enable
recognition of favorable, relatively primitive volcanic arc and
back arc environments versus more evolved and less prospective

ocean floor and ocean island environments (Gelinas et al.,
1984;Wyman et al., 1999; Crawford et al., 1992; Stolz, 1995;
Stolz et a., 1997; Syme et al., 1996; Piercey et al., this volume).
Petrochemical evidence for the presence of these primitive arc
environments may include the presence of boninites (Wyman,
2000; Piercey et a, 2001) and low-Ti basats and komatiites
(Barrie and Pattison, 1999, Wyman et a., 1999). These rock
types are the product of high volume melting of lithospheric
mantle during stages of nascent arc development and later arc
rifting. Another recently recognized and potentially significant
association is the occurrence of icelandite and/or high-Ti
andesites, in some VMS districts, particularly of the bimodal-
mafic type. Embley et al. (1988) and Perfit et al. (1999) first
described the relationship between high Fe and Ti andesite and
massive sulphide at the Galapagos Ridge. Icelandites and/or
high-Ti (Fe) andesites have also been recognized at Noranda
(Gibson, 1990), the San Nicolas deposit in Mexico (Johnson et
al., 2000), the Tambo Grande deposits in Peru (Tegart et al.,
2000), the Mattabi deposit (Franklin et al, 1975) and at Flin Flon
(Wyman, 2000). Based on petrogenetic evidence, Embley et al.
(1988) interpreted the andesites to be derived through
contamination of basaltic melt by a partial melt generated from
hydrated crust, indicating the presence of a high-level, crustal
magma chamber (i.e., a heat source) during basalt eruption and
VMS formation.

The composition of distinctive types of felsic volcanic rocks
that host many VMS deposits are adso used to identify
prospectivity (Piercey et al., 2001; 2003). Felsic volcanic rocks
associated with VMS deposits have specific compositions
referred to as FlI, and FlII by Lesher et al., 1986, Group Il and
Il by Barrie et al., 1993, as transitional and tholelitic by Barrett
and Mclean (1994), and as FII, FllI, FIV by Hart et a. (2004). In
eachcase these high slica rhyolite melts form a high
temperatures (800-10000C) from partial melting of the crust at
shallow (<15km) levels within rift environments (Sigurdsson,
1977; Sillitoe, 1982; Beard and Lofgren, 1991; Barrie, 1995;
Barrie and Pattison, 1999; Barrie et a., 1993;1999; Lentz, 1998;
Prior et al., 1999a, 1999b; Hart et al., 2004). Moreover, even
when a prospective volcanic arc succession has been identified,
specific basalt and rhyolite compositions (e.g., mid-oceanridge
basalt, boninite and high Si rhyolite) may be used to define
rifting events that bracket favorable ore intervals (horizons)
kilometers from any VMS deposit. Thus, the petrochemistry of
bimodal volcanic assemblages is used during regional
greenfields exploration to target rift successions and settings
permissive for VM S formation (Piercey and Gibson, 2005).

VMS-+FAVOURABLE VOLCANO-SEDIMENTARY
ENVIRONMENTS

A key characteristic of the VMS model is the diverse spectrum
of volcano-sedimentary environments that are permissive for
VMS formation (Large, 1992; Cas, 1992; Gibson et a., 1999;
Large et al., 2001b; Franklin et a., 2005). These environments
range from end members dominated by either flow,
volcaniclastic, and or sedimentary lithofacies (Figures 4a to 4f).
Although one of the end member lithofacies may be dominant
within a lithostratigraphic type or within a VMS district (Table
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1), it is not the characteristics of a specific lithofacies that is of characteristics to fundamental processes within the VMS
utmost importance to exploration. Rather, it is the characteristics hydrothermal system, and the geological/geochemical criteria
thatare common to the spectrum of volcano-sedimentary that allow recognition of these processes.

environments and, the relationship of these common key
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For example, exploration-relevant characteristics that are
common to al the prospective volcano-sedimentary
environmentsinclude:

1. Within al volcano-sedimentary environmentsVMS
deposits occur within the proximal or vent area of
volcanic centres. These proximal areas are recognized
and defined by the presence of felsic flows, domes,
and or cryptodomes and/or swarms of mafic and felsic
synvolcanic dikes and/or sills (Figure 5); recognition
of proxima volcanic facies in a mafic flow
environment are more difficult but the occurrence of
numerous mafic dikes and sillsis a good indicator of
vent proximity (Gibson et al., 1999). This spatial and
temporal association between proximal volcanic
centres and VMS deposits reflects their underlying
structural control where faults (fissures) that are
conduits for magma ascent are typically conduits for
ascending hydrothermal fluid (Figure 2).

At the deposit scale VMS deposits generally occur
withinfault-bounded basins, depressions or grabens
defined by abrupt changes in facies such as the
occurrence  of a thick ponded flow and/or
volcaniclastic facies (McPhie and Allen, 2003; Busby
et a., 2003). On a scale of 10’s of kilometers, small,

deposit-scale basins are part of larger extensiona
basins or vol cano-tectonic depressions (cauldrons) that
may include calderas (Figure 6). Large volcano-
tectonic subsidence structures are a sedfloor
manifestation of submarine rift environments and their
recognition would be most important at the greenfields
or regiona exploration stage, but they are very
difficult to recognize even in well-studiedVMS
districts. The presence of subvolcanic intrusionsis one
way to recognize central volcanic complexes, and
perhapsvol cano-tectonic subsidence structures. For
example, at Noranda (Figure 6) and Sturgeon Lake
synvolcanic, subvolcanic intrusions are interpreted to
be a product of resurgent magmatism that followed
collapse, and the intrusions themselves definethe
structural limits of the subsidence structures (Morton
et a., 1991; Gibson and Watkinson, 1990; Hudak et
al., 2003; Stix et a., 2003). The focusing of high
geothermal  gradients within these subsidence
structures results in the characteristic clustering of
VMS deposits. The presence of 14 VMS deposits
within the Noranda cauldron is an example of this
cluster effect (Sangster, 1977; Gibson and Watkinson,
1990), which makes this deposit types an even more
desirable exploration target.
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VMS deposits within a VM S district are distributed on
one or two stratigraphic intervals (Figure 7). The
favorable stratigraphic interval(s) marks a hiatusin
volcanism that may be defined by a thin clastic-
chemical sedimentary unit referred to as an exhalite,
and/or an abrupt change in lithofacies or in lithofacies
composition (petrochemical assemblages cited above).
The presence of exhalative units are used to define
prospective contacts, whereas the distribution and
tenor of their contained metals and other trace and
REE elements (e.g., Eu; Figure 8) have been used to
define exploration targets along these contacts (Peter
and Goodfellow, 1996; 2003)

Regional semiconfomable alteration zones are areas of
atered rock with tens of kilometers of strike length
that extend downwards from the paleosea-floor to the
subvolcanic intrusion (Gibson et al., 1983; Gibson,
1990; Galley, 1993; Gibson et a., 1999; Brauhart et
al., 1998; 2001; Hannington et ., 2003). They display

vertical mineralogical and compositional zonations
that, in successions that host mafic, pelitic-maficand
bimodal-mafic deposits, are divisible into an upper
(e.g., diagenetic-zealitic, carbonate, spilitic ateration)
and lower (eg., epidote-quartzalteration)

semiconformabl e alteration zones as shown in Figure
2. In mafic volcanic facies epidote-quartz alteration is
interpreted to represent, in part, the high temperature

A

reaction zone that may have provided the metals for
ore-forming VMS fluids (Hannington et al. 2003;
Franklin et a., 2005 and references therein). In highly
metamorphosed terranes the ateration zonation is
mineralogically enhanced through the development of
distinctive, coarse-grained metamorphic assemblages
(e.g. Bailesand Galley, 1999).

Semiconformable alteration mineral assemblages are
mappable and their distribution and development, in
part, is related to the primary permeability of the host
lithofacies. For example, in successions dominated by
flows the alteration assemblages preferentially develop
in facies with a significant proportion of glass and in
areas of higher permeability such as amygdule zones,
and along flow contacts, flow breccias and
synvolcanic faults (Gibson, 1990; Large et al., 2001b).
In successions dominated by volcaniclastic and
siliciclastic sedimentary facies the hydrothermal
ateration assemblages are more pervasive and occur
as a matrix cement and replacement of glassrich
clasts (Gifkins and Allen, 2001). However, alteration
mineral assemblages indicative of a high temperature
reaction zone (e.g., epidote quartz ateration in mafic
flow and volcaniclastic lithofacies) are not recognized
in environments dominated by a felsic volcaniclastic
or pelitic lithofacies (Franklin et al., 2005).

Rock Units
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Figure 8: &) Distribution of discordant footwall and hanging wall alteration zones; and b) geochemical and i sotopic characteristicsof footwall and
hanging wall alteration zoneswith distance from massive sulphide (modified after Largeet al., 2001a)
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VMSDEPOSIT ENVIRONMENTS

Features of the VMS deposit and the immediate ore environment
are well documented and understood. They are used in the direct
detection (discovery) of new deposits because the significance
of these features and the underlying processes responsible for
their development are most easily related to the VMS model
(refer to Large et a., 2001b, Franklin et al., 2005 and references
therein). Some of these key features are briefly described below:

1. Distinctive mineralogical (Date et al., 1983), isotopic
(Beaty and Taylor, 1982; Green et a., 1983; Cathles,
1993; Huston and Taylor, 1999) and wholerock
compositional changes (Riverin and Hodgson, 1980;
Barrett and McLean, 1999; Barrett and Sherlock,
1996a, 1996b; Barrett et al., 1991; 1992; 1993; 1996;
Gemmel and Fulton, 2001; Sharpe and Gemmel, 2001)
are associated with footwall and hanging wall
alteration. These alteration zones are formed by the
interaction between ascending high temperature
hydrothermal fluid, ambient seawater and mixtures of
the two with footwall and hanging wall strata
immediate to the VMS deposit (see references in
Large et al., 2001a and b; Franklin et al., 2005). The
mineralogical, geochemical and isotopic changes
associated with hydrothermal ateration have been
used extensively as vectors in exploration (Galley,
1993). A summary of the alteration zones and some of
the significant geochemical and isotopic changes
(vectors) that are associated with footwall and hanging
wall dteration areillustrated in Figure 8.

2. Differences in the primary permeability and porosity
of the footwall result in the variable morphology of
both footwall and hanging wall alteration zones
(Gibson, et al., 1999; Large et al., 2001b). For
example, where the discharge conduit transects
relatively impermeable strata (e.g., massive volcanic
flow lithofacies) the alteration is vertically extensive
but laterally restricted. Where the discharge conduit
transects permeable strata (e.g., Vvolcaniclastic
lithofacies) the alteration zone is commonly broad,
semiconformable and significantly larger than the
VMS deposit presenting a large exploration target, but
achallenge to vector within unless a mineralogical or
chemical zonation can be detected.

3. It is now recognized that many VMS deposits form
patly or entirely below the seafloor within
unconsolidated sedimentary and volcaniclastic
lithofacies through processes of infiltration,
precipitation of sulphide minerals within pore spaces,
and replacement (Kerr and Mason, 1990; Kerr and
Gibson, 1993; Galley et a., 1995; Allen et al., 1996a;
Hannington et al., 1999a; Doyle and Huston, 1999;
Doyle and Allen, 2003 and references therein).
Subsea-floor infiltration, precipitation and replacement
may provide a more efficient mechanism to trap a
higher proportion of metals as compared to sea-floor
venting and this has implications for deposit size and
therefore exploration (Doyle and Allen, 2003; Gibson,

1990). Subsea-floor replacement deposits may not be
associated with an exhaative unit and detailed
mapping is required to define and trace the ore-hosting
lithofacies.

“Zone refining” is the process that results in the metal
content and concentration essential to the formation of economic
deposits. Zone refining develops because of the large thermal
gradient, from hot at the base to cooler at the top, within a
growing sulphide lens (Eldridge et al, 1983). High temperature
fluids entering the base of the lens progressively deposit Cu
within the base and interior of the lens and re-dissolve Zn, Pb,
(+/-Au) and move them outward resulting in concentration of
Zn, Pb and Au at the top of the lens. Zone refining may reflect a
change in the temperature and composition of the hydrothermal
fluid with time due to a change in fluid source or less interaction
with cooler seawater due to self-sealing processes (Eldridge et
a., 1983; Lydon, 1988; Large et al., 1989; Doyle and Huston,
1999; Gibson, et al., 1999). Zonerefining is favored by along-
lived, high temperature hydrothermal system andis
characteristic of metal-rich deposits. However, in open-ended
hydrothermal systems that are characterized by the “black
smoker” vent systems documented in modern seafloor settings
zone refining can result in almost complete stripping of base and
precious metals, leaving behind a pyritic sulphide mound. A key
indicator of along-lived hydrothermal system is the continuation
of footwall hydrothermal ateration assemblages into the
hanging wall of afavorable stratigraphic interval or horizon.

TARGETING NEW AND UNDEVELOPED VMS
DISTRICTS

Extensive studies of many VMS districts world-wide and an
extensive inventory of mineralization on the modern sea floor
enable some predictive criteria for targeting clusters of deposits,
large deposits and polymetallic mineralization.

1. Deposits commonly occur in clusters that define VM S
districts. VMS districts occur within large volcanic
edifices, calderas and crusta structures. The Noranda
and Bathurst districts are two well documented
examples. Some “districts’ like Kidd Creek contain
only one main producer.

2. Large deposits, more than 50 or 100 million tones, are
uncommon. Some large deposits are associated with a
major long-lived crustal structure (i.e. Kidd Creek), or
with thick successions of volcaniclastic rocks (i.e.
Bathurst), or occur in more stable rifted continental
margin settings (i.e. lberian Pyrite Belt). The large
deposits tend to be associated with large, diffuse low
temperature  ateration systems and felsic
volcaniclastic and or siliciclastic lithofacies, including
thin, but laterally extensive Fe and Fe-Mn formations
(the notable exception is Kidd Creek).

3. Polymetallic and precious metal-rich deposits can be
related to specific regional, loca and compositional
characteristics. Deposits associated  withmafic
dominated terranes tend to be Cu and Cu-Zn endowed.
Large deposits such as Kidd Creek, Flin Flon and
Horne have exceptional endowments of Cu, Au and/or
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vaue-added metals (e.g., In and Sn at Kidd Creek).
Continental margin or successor rifted arc-hosted
deposits with felsic volcaniclastic-sedimentary host
rocks have a higher Pb-Zn endowment (e.g.
Zinkgruvan, Bergslagen) or Pb-Au-Ag concentrations
(Roseberry, Tasmania; Petiknas, Sweden; Eskay
Creek, Canada; Greens Creek, Alaska). The exception
being Neves Corvo, which has a large Cu-Sn
endowment, and coincidently is spatially associated
with FlI1 rhyolite extrusives.

Strongly metamorphosed deposits commonly found in
Archean or Proterozoic terranes tend to have coarser
grained sulphides and consequently metal recovery is
commonly better than for the finely crystalline
sulphides in some of the less metamorphosed districts.
Recrystallization can also complicate recoveries with
metal intergrowth and substitution of deleterious
metals, eg Se and TI, but can dso thermaly and
mechanically “purify” deposits of such metals as Hg,
Asand Sh.

SHORTCOMINGSOF THE VMSMODEL AND THE

IMPACT ON EXPLORATION

Some questions to consider in developing a more accurate and
therefore predictive VM S model include:

1

There is uncertainty as to the source of base and
precious metals in VMS deposits (deRonde, 1995;
Yang and Scott, 1996; 2002). Are the metals derived
entirely from leaching of the deep footwall rocks by
evolved seawater within high temperature reactions
zones or isthere a direct or indirect magmatic
contribution to the VMS hydrothermal system? If the
former process is favored more emphasis should be
placed on understanding, recognizing and defining
high temperature reaction zones. However, if the latter
process is favored a more thorough understanding of
the behavior of metals and sulphur during partial
melting, magmatic fractionation, and the evolution of
submarine volcanoes are required. Like many
problems, the solution probably lies along the
spectrum between the two end member metal sources
depending on how evolved and volatilerichthe
associated magmas are.

Why are some deposits Au-rich and others not? The
Au-rich character of VMS deposits has been attributed
to zone refining processes (Large et a., 1989), a
magmatic contribution (de Ronde, 1995; Hannington,
et al., 1999b; Hannington et a., 2005; Dube et al.,
2007), boiling and phase separation of ascending

hydrothermal fluids (Hannington et al., 1999b) and, in
some cases, overprinting by later hydrothermal and
tectonic events (Franklin et a., 2005) (Figure 3). If
boiling is critical, then water depth also becomes
critical as does the necessity to develop criteria to
distinguish between strata deposited in shallower
(above storm wave base) versus deeper water
environments. Clearly, Au enrichment in VMS
deposits is ill poorly understood and it is of
paramount importance to develop more robust
exploration criteria in order to better target this
economically attractive exploration deposit type.

3. Within the extensional tectonic regime, what specific
regiona tectonic and magmatic processes produce
VMS-mineralized volcanoes versus unmineralized
volcanoes, and how do we more consistently
recognize the former? This is particularly important,
as it is critical in exploration to confidently identify
“productive” versus “unproductive’ beltsif a company
is to devote the time and money to aggressively
explore prior to any discovery!

4. Why are the best VMS deposits in a particular district
(volcanic complex) most commonly distributed on just
one or two stratigraphic horizons (or intervals)? And
how do we confidently identify favourable ore
horizons several kilometers (distal) from ore, within
thefirst order basin?

5. Some VMSdistricts will only have one VMS deposit
whereas others will have a cluster of deposits. Why is
this so, and how do we identify those belts that have
the potential to contain a cluster of economically
viable VMS deposits?

GENERAL COMMENTSON THE IMPACT OF VMS
MODEL ON DESIGN OF GEOPHY SICS AND
GEOCHEMICAL SURVEYS

Combined airborne electromagnetic and magnetic surveys and
borehole TDEM surveys have been the primary tool in discovery
of most VMS deposits. Ground gravity surveys have been
successful in several camps for first detecting, then delineating
the shape and size of undiscovered orebodies. Airborne gravity
surveys are becoming more common as both a mapping and
direct detection tool. High resolution and deeply penetrating
surveys (eg. Megatem™, see Boivin, 2007) are presently used to
identify deeper targets while other nontraditional geophysical
techniques such as magnetotellurics and Titan 34 have shown
early promise as deep search techniques. Table 2 summarizes
applications for greenfields and brownfields exploration.
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Table 2: Exploration methodsfor VM S deposits

Geology

Geochemistry

Geophysics

Greenfields Exploration
(Objective — selection of afavourable area)

Compilation of existing geological data and maps.
Reconnai ssance mapping to identify rift successions,
subvolcanic intrusions, and to identify areas of
mineralization and alteration.

Characterize known mineralization

(1:10,000 — 1:20,000).

Sampling for petrochemistry (major, trace, rare earth
elements) to identify rift related volcanic and
intrusive rocks.
Sampling (major and trace elements plus metals and
oxygen isotopes) to characterize ateration and
mineralization.

Compilation of previous geophysical surveys.
Airborne geophysical surveys to support mapping
and for direct detection (MAG, EM, radiometric,

Brownfields Exploration
(Objective - discovery)

Detailed mapping to identify synvolcanic faults,
intrusions, and proxima volcanic environments
permissive for VMS formation (1:5000 to 1:2000).
Map limits of alteration and mineralogical zonation.
3-D GIS compilation and interpretation of all data.
Drilling to test targets (also must consider economic
parameters, i.e., size, in designing drill programs and
holes spacing.

Sampling to aid in rock type identification, and to
establish a chemostratigraphy that will aid
stratigraphic correlation of favorable stratigraphic
intervals and in the resolution of structural problems
(mgjors, trace and rare earth elements).

Systematic sampling of surface outcrops and core to
define, characterize and vector within ateration
(majors and trace eements, metas, and
mineralogical (XRD) and mineral chemical data).
Systematic soil, vegetation or water sampling where
appropriate.

Sampling to characterize mineraization (metals).
Ground and bore hole geophysical surveys (MAG,
EM, IP, gravity..dependant on style of mineralization

gravity?).

The advent of 3D GIS visualization and whole earth
modeling has resulted in the integration of high-resolution
magnetics, gravity, EM, resistivity, volcanic lithofacies
mapping, geochemistry and alteration indices in target
generation. Such modeling at Noranda identified the West Ansil
discovery in 2005 (Martin and Masson, 2005; Martin et al.,
2007, this volume). However, there is a lack of physical-rock-
property data for volcanic rocks, their altered equivalents and
the spectrum of VMS ore types. The integration of geophysics
with geology and geochemistry to develop a more predictive
model, one that approaches reality, will require the addition of
robust rock physical-rock-property data. In greenfields
exploration integrated geophysics and GIS have the potential to
map out dike systems, mafic lithofacies, faults, subvolcanic
intrusions and alteration (silicification, disseminated sulphide,
magnetite). Potential exists to map the framework of volcanic
edifices and larger regional structures. Digital elevation mapping
has become an important component in remote predictive
mapping, whereas airborne and space-based hyperspectral
surveys as VMS exploration tools are till in their infancy.

Rock geochemistry has traditionally been used to define,
map and vector within VMS alteration zones, to differentiate
volcanic rock types, and to develop a chemostratigraphy that
aids stratigraphic correlation and tracing of favorable ore-
hosting or bracketing units. In brownfields exploration
lithogeochemical samples of outcrop and core are collected
systematically (30 to 50m centres) in order to provide a 3-D
database for effective geochemical targeting. Soil (vegetation)
samples are collected to define targets in areas of thick cover. In
greenfields exploration lithogeochemical sampling is directed at

and deposit size — economic parameters).

recognizing extensional arc and back arc environments and
regional alteration; here the sampling is more widely spaced to
cover the magjor units and alteration types.

Despite the promise and success of various geochemical,
geophysical and GIS methods these should be considered
ancillary to acquiring the regional geological context, and
ensuring that staff can relate the characteristics defined by the
VMSmodel to empirical observations made on the ground.
Exploration geologists, geophysicists and geochemists should be
encouraged and supported to upgrade their knowledge of field
geology through the numerous field courses offered by
universities and professional associations.

CONCLUSIONS

VMS deposits are, perhaps, one of the most thoroughly
researched deposit types, and some fundamental questions
remain regarding their genesis that impact on exploration.
Although deposit scale studies remain essential, the answers to
many of these questions hinge upon research that seeks to
understand VMS deposits within the context of the tectonic-
magmatic evolution of their host volcanic complexes. VMS
deposits represent a spectrum of syngenetic deposit types that
form within a broad range of submarine volcanic extensiona
environments. The integration of careful geological observations
with geophysics and whole-rock geochemistry in 3D GIS
formats for regional and detailed exploration programs can
improve identification of the key elements of the VMS model
that will lead to more subsurface discoveries.
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