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ABSTRACT

A test of the ability of a probabilistic neural network to classify deposits into types based on a simple representation of min-
eralogy and six broad rock types is conducted here. The purpose is to examine whether this kind of system might serve as
a basis for integrating geoscience information available in large mineral databases to classify sites by deposit type. Benefits
of proper classification of many sites in large regions are identification of terranes permissive for deposit types and recog-
nition that a few specific sites might be worth exploring extensively.

Probabilistic neural networks can provide mathematically sound confidence measures based on Bayes theorem and are rel-
atively insensitive to outliers. Founded on Parzen density estimation, they require no assumptions about distributions of
random variables used for classification, even handling multimodal distributions. They train quickly and work as well as,
or better than, multiple-layer feedforward networks. Tests were performed with a probabilistic neural network employing
a Gaussian kernel and separate sigma weights for each class and each variable.

Ore and alteration mineralogy and six rock types in 28 well-typed deposits were used to train the network. To reduce the
number of minerals considered, analyzed data were restricted to minerals present in at least 50% of at least one deposit type.
The training set was reduced to the presence or absence of 58 reported minerals and six generalized rock types from a total
of 1005 deposits.

Two kinds of independent tests are performed with 2751 deposits and occurrences from Nevada, U.S.A., that were not used
in the training set. The first test is a deposit-type by deposit-type comparison of the neural network’s classification of
989 deposits with that of experts. Overall, the 53% agreement between the experts and the neural network is quite low com-
pared to the 98% success reported in other studies.

In the other kind of test, deposit types identified by the neural network are grouped and plotted into terranes determined
by experts to be permissive for the grouped deposit types. Comparison of the spatial distribution of the neural network’s esti-
mated deposit classes and permissive tracts determined by experts show that the probabilistic neural network is able to per-
form well at generalization. Classifying correctly over 98% of the sites in a large mineral database into the broad pluton-
related and epithermal classes suggests that the probabilistic neural network can efficiently identify terranes permissive for
grouped deposit classes.

INTRODUCTION

In exploration or mineral–resource assessments of large areas, the fun-
damental problem is to integrate information about geology, geochem-
istry, geophysics, and exploration history, as well as the known deposits
and occurrences. The purpose of this integration is to determine what
kinds of deposits might exist in some parcel of land or to determine the
probability that some specific deposit type exists at some specific site.

The problem can be reformed into distinguishing whether mineralized
rocks of some kind could exist in some parcel of land or determining
what type of mineralization does exist at a specific site. Thus in the first
situation, the determination is one of whether there is any possibility of
any deposit type existing, whereas in the second situation it is to deter-
mine the probability of a specific type of mineralization, given that min-
eralization already is known to exist. There is a parallel distinction of
these two situations in that the first typically must deal with making
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128 Integrated Exploration Information Management
estimates for polygons whereas in the second, the estimates are typically
for a specific site. Knowing the kinds of mineralization at discovered
mineral occurrences provides information about the specific sites con-
sidered and about the types of mineralization possible in the broader
geologic setting of the occurrences. Knowledge of deposit types would
benefit exploration in the identification of specific sites of interest and
the possibilities of associated deposit types. In addition, classification of
deposit types in a region aids in the identification of permissive terranes
for specific and related deposit types.

If it were possible to classify correctly a large proportion of deposits
and occurrences into deposit types based on the kinds of information
frequently available in the geologic literature, then perhaps a system
could be built that would automatically screen large data files. In such a
system, the necessary and sufficient information would exist to discrim-
inate among deposit types. Extensions to this kind of system might serve
as a basis for integrating geological, geophysical, and geochemical infor-
mation for estimating and managing risk. The key issue is how should
these diverse kinds of information be combined.

Barton (1986) provided estimates of the frequency of mineral occur-
rence by deposit type. His subjective estimates for over 150 minerals in
about 80 deposit types were used by McCammon (1992) in conjunction
with subjective estimates of frequencies of rock types, ages, alteration,
geophysical and geochemical signatures in an attempt to classify depos-
its with a system called Prospector II. McCammon’s test of this system
(1992) resulted in 83% of 124 Alaskan deposits correctly classed.

In expert systems like Prospector II, a human expert’s knowledge, in
the form of qualitative principles as perceived by the expert, is encoded.
Performance of these systems depends on the quality of the expert’s
knowledge and the care taken in the representation of that knowledge.
Such expert systems are desirable where the underlying model relations
or information are not known. Expert systems have difficulties where the
experts are internally inconsistent or rely on inconsistent information.

Where information is available, inductive learning systems exist that
can use pre-classified samples as a training set to learn the appropriate
classification rule. These learning systems can be successful at classify-
ing previously unseen samples, that is, at generalization. Examples of

inductive learning systems are decision trees (Quinlan, 1986), artificial
neural networks (Masters, 1995), and statistical pattern recognition
(Fukunaga, 1990). Features of statistical pattern recognition such as
probabilistic estimates of class membership and ability to handle con-
tradictory examples are integral to probabilistic neural networks.

The correct classification of 98% of 267 mineral deposits into eight
deposit types using mineralogy and two rock types by Singer and Kouda
(1997) suggested that a probabilistic neural network might do an excel-
lent job of integrating the diverse geoscience information. To test the
ability of a probabilistic neural network to classify deposits into types
based on a simple representation of mineralogy and six broad rock types
is conducted here. The nature and sources of data are discussed first.
Following this, probabilistic neural networks and their implementation
in this study are discussed. Classification of deposits into types by the
neural network is tested in the next section with data in a large database
containing deposits typed by experts and with a comparison of three
classes of deposit types to tracts of land delineated by experts as permis-
sive for these types in Nevada. Finally, classification errors are examined
and possible improvements identified.

TRAINING DATA

Initially, it might appear that geochemical and geophysical data would
be ideal for geoscience information integration projects because they are
so numerous. However, the probabilistic neural network needs many
examples from each group to be classed in order to reflect the variability
within each group. It is not clear that the large effort required to find and
record such geochemical or geophysical information, if it exists for more
than a few deposit types, would be fruitful. A more tractable problem is
to try to integrate mineralogy and a few rock types as reported in large
mineral databases; this is the approach taken here.

 Information on the mineralogy of mineral deposits varies widely in
quantity and quality. Depending on the purpose of a study and its
researcher’s interest, a report on a mineral deposit might contain a
detailed list of alteration minerals and a mention of unnamed sulphide

Table 1: Minerals used in the training and validation data.
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and sulphosalt minerals, a detailed list of ore minerals and mention of
alteration in broad terms, a complete list of all minerals, or a sparse list
of minerals. In some studies, the author attempted to list the relative or
absolute amounts of each mineral. Unfortunately, these attempts were
not common and frequently not comparable with many other reports
because of different standards. Thus, it was decided to use only the pres-
ence or absence of minerals in our study.

Both ore and alteration minerals were recorded for this study. Rock-
forming minerals such as varieties of quartz and feldspars (except adu-
laria) were not recorded, even if they locally represent alteration.
General statements about mineralogy such as “clays”, “carbonates”, or
“phyllic alteration” present were ignored because multiple minerals
were possible. These decisions were made to keep minerals not related to
the mineral deposit type out of the analysis, to reduce the number of
minerals considered, and to keep the data objective. Even with these
restrictions and the exclusion of clearly single-case listings, the presence
or absence of 155 minerals was recorded. Closely related minerals such
as the tellurides, manganese oxide minerals, anhydrite-gypsum, and
enargite-luzonite were combined to further reduce the number of min-
erals to 119. To further reduce the number of minerals considered, the
analyzed data were restricted to minerals present in at least 50% of at
least one deposit type used in the study. An advantage of this restriction
is that rare occurrences of minerals cannot dominate the results. The
data were reduced to the presence or absence of 58 reported minerals
(Table 1) in 28 deposit types (Table 2). Deposit types are classed based
on the models in U.S. Geological Survey Bulletins 1693 (Cox and Singer,
1986), 2004 (Bliss, 1992), and 1811 (Mosier and Page, 1988).

Also coded into presence or absence were six rock-type categories.
The broad types, marine felsic to intermediate volcanic, marine mafic
volcanic, granitoid, subareal felsic to intermediate volcanic, subareal
mafic volcanic, and carbonate rocks are intended to capture informa-
tion about many geologic settings. Rocks not represented would be
coded as the absence of all six types. These rock types and the 58 min-
erals were coded for each of the 28 deposit types (Table 2 ) to train the
neural network to recognize the different deposit types. The number of
deposits available for training varied by deposit type. Some deposit
types, like tungsten veins, only had 12 deposits for training due to the
difficulty of obtaining data. For other types, such as porphyry copper,
the authors limited the training to 75 deposits to reduce the size of the
problem for the neural network. Some types varied so little, such as rhy-
olite-hosted tin, that only 50 deposits were used for training. A total of
1005 deposits were used in the training of the neural network.

PROBABILISTIC NEURAL NETWORK

The goal here is to be able to make an estimate of the probability that an
unknown mineral deposit belongs to a given deposit type. Standard sta-
tistical classification methods assume some knowledge of the distribu-
tion of the variables used to classify. Typically a multivariate normal
distribution is assumed and the training data are used to estimate the
means and variances. Large deviations from normality or multimodal
distributions cause these methods to fail. Neural networks can typically
handle complex distributions. The three-layer feedforward network
(Singer and Kouda, 1996) is an excellent classifier (Masters, 1995); how-
ever, it trains slowly and does not produce probabilities.

Probabilistic neural networks were designed to be classifiers. If we
know the true probability density function, fk(x), for all populations,
then there is a Bayes optimal decision rule for classifying unknown
sample x into population i:

pi ci fi(x) > pj cj fj(x) [1]

for all populations j not equal to i. Generalizing, pk is the prior probabil-
ity of the general class k, and ck is the cost associated with misclassifica-
tion of population k. Under these conditions, a Bayes decision rule will
minimize the expected cost of misclassification. The problem is that we
do not know the true probability density function, fk(x). Standard
statistical classification methods, such as discriminant analysis, typi-
cally assume that the variables follow a multivariate normal distribution

Table 2: Deposit types and number of deposits used in 
training.

Deposit type number of deposits

Bedded barite 19

Besshi massive sulphide 12

Cu skarn 16

Cyprus massive sulphide 49

Distal disseminated Ag–Au 10

Epithermal Mn 21

Epithermal quartz alunite Au–Ag 32

Epithermal quartz-adularia Au–Ag 75

Fe skarn 50

Franciscan Mn 50

Hot–spring Au–Ag 12

Hot–spring Hg 39

Kuroko massive sulphide 50

Low–sulphide Au–quartz vein 75

Polymetallic replacement 25

Polymetallic veins 48

Porphyry Cu 75

Porphyry Mo, low–F 25

Replacement Mn 21

Rhyolite–hosted Sn 50

Sediment–hosted Au 27

Sedimentary exhalative Zn–Pb 36

Silica–carbonate Hg 50

Simple Sb 50

Volcanic–hosted magnetite 22

W skarn 28

W veins 12

Zn-Pb skarn 26

TOTAL 1005
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or that the nearest neighbor is the appropriate class regardless of the
density of other samples near the unknown.

The development by Parzen (1962) of a general way to estimate a
univariate probability density function from a random sample, even
when the parent density function is unknown, provides a necessary tool
to free us from these constraints. Parzen’s estimator is essentially a
sphere-of-influence weighting function, frequently termed a kernel, and
the scaling weight, σ, controls the width of the area of influence. The
weighting function has its largest values at sample points and decreases
toward zero as the distance increases.

For this study separate weights (σ) were used for each class and each
variable and a Gaussian kernel was used for the weighting (W) function
(Masters, 1995). The choice of the Gaussian function is based on its
excellent performance and has nothing to do with assumptions of nor-
mal distributions. Specht (1990) constructed a neural network form of
Parzen’s estimation procedure. In the present study, the algorithms for a
probabilistic neural network developed by Masters (1995) were
employed. Masters’ algorithms find the scale weights, σ, that minimize

the error of misclassification of the training data using the standard sta-
tistical technique called jackknifing in which every case is sequentially
held back from training.

Probabilistic neural networks require no assumptions about distri-
butions of random variables used to classify; they even can handle mul-
timodal distributions. They train quickly and as well as, or better than,
multiple-layer feedforward networks. They have the ability to provide
mathematically sound confidence levels and are relatively insensitive to
outliers. Mathematically sound Bayesian confidence levels require that
the classes are mutually exclusive and exhaustive (i.e., no case can pos-
sibly fall into more than one population and the training set encom-
passes all populations fairly). When these conditions exist, Bayes’
Theorem can be used to compute the probability that an observation, x,
was the member of a population. Each density estimate could be multi-
plied by prior probabilities and cost constants, if desired. These features
are not used in this study, however.

In many practical situations, the mutually exclusive and exhaustive
class conditions might not exist. The unknown sample used in testing

Table 3: Confusion matrix showing the number of mineral deposits correctly (in bold) and incorrectly classified from the 
validation set.
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Bedded barite 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Besshi massive sulfide 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cu skarn 0 1 13 0 0 1 1 5 15 0 0 1 4 2 1 0 0 0 3 0 1 1 0
Cyprus massive sulfide 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
Distal disseminated Ag-Au 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0
Epithermal Mn 1 0 0 0 0 5 0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0
Epith. qtz.-adularia Au-Ag 2 0 0 0 0 18 153 0 0 1 6 0 9 0 5 0 0 1 1 0 0 2 0
Fe skarn 0 0 0 0 0 0 0 9 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0
Franciscan Mn 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Hot-spring Hg 1 0 0 0 0 2 0 0 0 63 0 0 0 0 0 0 0 0 0 0 0 0 0
Hot-spring Au-Ag 0 0 0 0 0 0 4 0 0 1 2 0 1 0 0 0 0 0 1 0 0 0 0
Kuroko massive sulfide 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
Low-sulfide Au-qtz. vein 0 0 0 0 0 0 2 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0
Polymetallic replacement 7 0 0 0 1 0 0 1 16 1 0 0 1 3 51 0 0 0 7 0 8 2 0
Polymetallic vein 4 0 0 2 0 0 7 1 6 0 0 0 17 0 82 18 0 0 6 0 4 3 1
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Porphyry Mo, low-F 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 6 1 0 0 0 0 0 0
Porphyry Cu 0 0 1 0 0 0 0 0 1 0 0 0 0 2 1 1 0 0 0 0 0 0 0
Epith. quartz-alunite Au-Ag 0 1 0 0 0 0 3 0 0 0 2 2 0 0 0 0 0 10 0 0 0 0 0
Replacement Mn 1 0 0 0 0 5 0 0 2 0 0 0 0 0 0 0 0 0 2 0 0 0 0
Rhyolite-hosted Sn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0
Sediment-hosted Au 0 0 0 0 0 0 0 0 0 0 0 0 11 0 1 0 0 0 0 0 0 24 0
Simple Sb 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
Volcanic-hosted magnetite 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
W skarn 0 0 0 0 0 0 4 2 11 1 0 0 1 0 21 8 0 0 0 0 0 0 0
W vein 0 0 0 0 0 0 0 0 2 0 0 0 1 0 2 0 0 0 0 0 0 0 0
Zn-Pb skarn 0 0 0 0 0 0 0 1 1 0 0 0 0 1 8 1 0 0 1 0 0 0 0
Total by network 17 2 14 4 1 31 184 20 61 67 10 5 49 8 175 35 1 11 23 4 15 34 1
Percent agreement 6 0 93 0 0 16 83 45 8 94 20 20 4 38 47 17 0 91 9 100 0 71 0
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might be from a population different from any of the training classes.
For example, if the mineralogy of a carbonatite deposit were tested in the
network developed in this study, Bayesian confidence estimates could
not be computed properly. The neural network program will estimate
the probabilities that the unknown deposit belongs to the deposit classes
it has been taught; thus, careless use of a neural network could lead to
mistaken classifications.

TESTING THE NEURAL NETWORK

Because of the ability of neural networks to learn the training data well,
validation data, not used in any training, is the proper data set to test the
efficiency of classification. A data set large enough to test the ability of a
probabilistic neural network to classify many different deposit types is
reported in recent papers on Nevada’s resources by Sherlock et al. (1996)
and Cox et al. (1996). Approximately 1400 metallic and nonmetallic
mineral locations in Nevada were classed into mineral deposit types

(Sherlock et al., 1996) following Cox and Singer (1986). These typed
locations and many untyped mineral sites are available in the Mineral
Resources Data System, which contains over 6100 entries for mineral
sites throughout Nevada (Sherlock and Tingley, 1985).

After removal of both nonmetallic and duplicate entries, and entries
without at least one rock and one of the 58 reduced set of minerals or two
of the 58 minerals, the remaining 2751 sites were prepared for testing in
two different kinds of tests. One kind of test is a deposit-type by deposit-
type comparison of the neural network’s classification of a set of deposits
with that of experts. In the other kind of test, deposit types identified by
the neural network are grouped and plotted into terranes determined by
experts to be permissive for the grouped deposit types and the excep-
tions are counted.

To make the comparison with an expert classification, the neural net-
work was trained to recognize the 28 deposit types in Table 2 using the
minerals in Table 1 and the six rock types discussed earlier. Two of the
deposit types used in training, sedimentary exhalative Zn–Pb and silica–
carbonate Hg, are not known to exist in Nevada but were added to the
training set to make the test more realistic. The test data were the Mineral
Resources Data System sites from Nevada that contained at least the min-
imum number of minerals and that had been classed by Sherlock et al.
(1996) into one of the deposit types used in training the neural network.

 Results of the test on the 989 mineral sites in Nevada that had been
classed by the experts and had the required minerals in the data file are
reported in Table 3. The table can be used to examine how well the neu-
ral network agrees with the experts for each deposit type by the number
of deposits in bold and by the percent agreement in the last column. If
the neural network and the experts were in complete agreement, all of
the deposits would be counted in the bold positions only. For example,
in the epithermal quartz–adularia Au–Ag row, 153 of the 206 deposits
(or 74%) that the experts classed as epithermal quartz-adularia Au–Ag
were also classed as epithermal quartz-adularia Au–Ag by the neural
network (Table 3). The table also shows that 18 of the epithermal quartz–
adularia Au–Ag deposits according to the experts were classed as epith-
ermal Mn deposits by the network. The largest number of classification
errors are polymetallic replacements classed by the neural network as
polymetallic veins. Overall, the 53% agreement between the experts and
the neural network is quite low compared to the 98% success reported by
Singer and Kouda (1997).

There are several possible reasons for the relatively low success rate
of correct classification reported in Table 3. Data used in the training are
typically reported in scientific studies conducted on large deposits,
whereas information in large regional databases are dominated by small
unstudied occurrences. The 98% success rate reported in an earlier
study (Singer and Kouda, 1997) was for a situation where the training
and validation data were predominantly from scientific studies. Few
minerals are reported and alteration minerals are rarely reported in
regional mineral deposit databases. Unfortunately, this problem cannot
be easily fixed because the sparse information on most occurrences also
prevents them being used for training because there is not enough infor-
mation to class them confidently. Another possible reason is that experts
use data not in the database. A third possible reason for the low success
rate is that experts use more information than the neural network was
given. For example, experts frequently plot occurrences on geologic
maps which provides information about geologic settings and relation-
ships to other possible nearby mineral deposits. Related to this problem
is the different nature of data for some deposit types. For example, the
polymetallic replacements training data really represent districts

Table 3: Confusion matrix (continued).
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Besshi massive sulfide 0 0 0 0 0 2 0
Cu skarn 0 0 3 0 0 52 25
Cyprus massive sulfide 0 0 0 0 0 1 0
Distal disseminated Ag-Au 0 0 0 0 0 3 0
Epithermal Mn 0 0 0 0 0 10 50
Epith. qtz.-adularia Au-Ag 7 0 0 0 1 206 74
Fe skarn 0 0 0 0 0 12 75
Franciscan Mn 0 0 0 0 0 5 100
Hot-spring Hg 3 0 0 0 0 69 91
Hot-spring Au-Ag 0 0 0 0 0 9 22
Kuroko massive sulfide 0 0 0 0 0 2 50
Low-sulfide Au-qtz. vein 0 0 0 0 0 5 40
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Porphyry Mo, low-F 0 0 0 0 0 9 67
Porphyry Cu 0 0 0 0 1 7 0
Epith. quartz-alunite Au-Ag 0 0 0 0 0 18 56
Replacement Mn 0 0 0 0 0 10 20
Rhyolite-hosted Sn 0 0 0 0 0 4 100
Sediment-hosted Au 1 0 0 0 0 37 65
Simple Sb 54 0 0 0 0 55 98
Volcanic-hosted magnetite 0 1 0 0 0 11 9
W skarn 0 0 66 8 0 122 54
W vein 0 0 0 16 0 21 76
Zn-Pb skarn 0 0 0 1 3 17 18
Total by network 110 2 71 29 5 989 53
Percent agreement 49 50 93 55 60 53
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whereas the entries used in testing represent individual sites and
occurrences. Thus, the training data can represent minerals from many
nearby sites whereas the test data represent only one site. With some care
in design, it might be possible to incorporate this kind of information in
a neural network. A fourth possible reason for the low success rate is that
the experts might have made mistakes and the neural network correctly
classed deposits. This reason probably only accounts for some of the
neural network’s apparent misclassifications.

For comparison of the distribution of estimated deposit classes and
permissive tracts, the same training set used in the expert comparison
was used. The test data consists of all 2751 entries available, including
the sites typed by experts. Deposits classed as the following types are
considered epithermal: epithermal Mn, epithermal quartz–alunite Au–
Ag, epithermal quartz–adularia Au–Ag, hot–spring Au–Ag, hot–spring
Hg, rhyolite-hosted Sn, and silica–carbonate Hg deposits. Deposits
classed as the following types are considered pluton-related: Cu skarn,
distal disseminated Ag–Au, Fe skarn, polymetallic replacement, poly-
metallic veins, porphyry Cu, porphyry Mo, low–F, replacement Mn,
W skarn, W veins, and Zn–Pb skarn deposits.

Most deposits not within a tract delineated as permissive for pluton-
related deposits by Cox et al. (1996), such as the deposits in southeast
Nevada (Figure 1), are correctly classed as replacement Mn or W vein
deposits. However, these were not delineated by Cox et al. (1996)
because they were either not economically important or were associated
with Proterozoic plutons. A few deposits apparently outside delineated
tracts, such as the one in northeast Nevada, are within tracts too small
to be seen at the scale of the figures. When these apparent errors are
properly counted, the probabilistic neural network successfully classi-
fied 99% of the 907 deposits and occurrences grouped as pluton-related
in Cox et al. (1996).

The neural network put 112 deposits and (or) occurrences into the
sediment-hosted gold (also known as Carlin-type) class. About 96% of
these deposits plot (Figure 2) within the tracts designated permissive for
sediment-hosted gold by Cox et al. (1996). The majority of deposits
classed as sediment-hosted gold in southwestern Nevada have not gen-
erally been recognized as Carlin-like. Given that the information avail-
able to the neural network for these deposits was typically gold in
carbonate rocks, the classification makes sense.

Figure 1: Tracts permissive for pluton related deposits with deposits
classed as pluton-related.

Figure 2: Tracts permissive for sedmiment-hosted Au deposits with
deposits classed as sediment hosted (Carlin type)
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Over 98% of the 825 deposits classed as epithermal by the neural
network fall within the epithermal permissive tracts (Figure 3) of Cox et
al. (1996). At least one of the occurrences plotted outside permissive
tracts is clearly epithermal and must either have the wrong location in
the database or must be misclassified by the experts.

Based on these tests on both pluton-related deposits and epithermal
deposits, the probabilistic neural network is able is perform well at gen-
eralization. The neural network’s error rates are probably no worse, and
may be better, than experts’ for classifying such large data sets into the
broad classes.

CONCLUSIONS

From previous studies we know that it is possible to classify correctly a
large proportion of deposits and occurrences into eight deposit types
based on the kinds of information frequently available in the scientific
literature. Here we examine whether this kind of system might serve as
a basis for integrating geoscience information available in large mineral
databases to classify these sites by deposit type. In well–explored
regions, a large proportion of such sites are occurrences. The benefits of
proper classification of many sites in these regions are the identification
of terranes permissive for deposit types, and the recognition that a few
specific sites might be worth exploring extensively.

Comparison of the spatial distribution of the neural network’s esti-
mated deposit classes and permissive tracts determined by experts
shows that the probabilistic neural network is able is perform well at
generalization. Classifying correctly over 98% of the sites in a large min-
eral database into the broad pluton-related and epithermal classes sug-
gests that the probabilistic neural network can efficiently identify
terranes permissive for grouped deposit classes.

The 53% agreement between the experts and the neural network on
specific deposit types is low compared to the 98% success reported by
Singer and Kouda (1997). The primary reason for the different out-
comes lies in the differences between economic deposits and mineral
occurrences. It is the economic deposits that receive detailed study and,
therefore, we feel confident in classifying. Typically, few minerals are
reported in and alteration minerals rarely are reported in regional min-
eral deposit databases that are dominated by non–economic occur-
rences. Another reason for the low success rate is that experts use more
information than the neural network was given, such as geologic
settings and relationships to other possible nearby mineral deposits, as
well as personal knowledge. Related to this problem is that for some
deposit types, training data really represent districts whereas entries used
in testing represent individual sites and occurrences. Thus, the training
data can represent minerals from many nearby sites and the test data only
one site. With some care in design, however, it should be possible to
incorporate many of these kinds of information in neural networks.
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