A prospective sector in the Tethyan Metallogenic Belt: Geology and geochronology of mineral deposits in the Biga Peninsula, NW Turkey

Ozcan Yigit *

Department of Geological Engineering, Canakkale Onsekiz Mart University, Canakkale 17020, Turkey

ARTICLE INFO

Article history:
Received 18 December 2010
Received in revised form 2 June 2011
Accepted 29 September 2011
Available online xxxx

Keywords:
Turkey
Biga Peninsula
Geochronology
Tethyan metallogeny
Porphyry Au–Cu–Mo
Skarn
Mineral exploration

ABSTRACT

The Tethyan Metallogenic Belt (TMB), extending from Europe through Anatolia to Iran, is one of the world’s major metal producing belts, and consists of many sectors. Mineral deposits of the Biga Peninsula in northwestern Turkey exhibit, in many ways, the characteristics of mineral deposits found throughout the belt. Biga Peninsula tectonically forms the westernmost part of the Sakarya Zone and easternmost part of the Rhodope Zone at the intersection of Gondwana and Laurasia.

The Biga Peninsula metallogeny research and exploration project created a GIS inventory of mineral deposits and prospects, and classified them genetically to evaluate the mineral deposit potential using genetic models based on descriptive data. The GIS database, consisting of 128 deposits or prospects, helped to generate new prospects and potential prospects. This field-based study indicated that the Biga Peninsula forms a prime target for gold–copper exploration not only in Turkey but in the world.

The current economically significant mineral deposits of the Biga Peninsula were shaped by Cenozoic calc-alkaline magmatism, ranging between 52 and 18 Ma, and related to mainly collisional and post-collisional tectonic regime. Epithermal Au–Ag deposits including high-(HS), low-(LS) and intermediate-sulfidation (IS) styles, porphyry Au–Cu–Mo and base-metal skarn systems are economically the most important. Though there are no currently economic examples of some of them in the Biga Peninsula, other deposit types include Carlin-like distal disseminated Au–Ag, orogenic Au, especially listwanite hosted, volcanic-hosted Mn and U, lateritic (ferricrete) Fe deposits, carbonate replacement (CR) and placers.

Several active metal mines, such as Balya, Arapucandere and Koru, are operating in the Biga Peninsula. Kucukdere Au–Ag deposit in Balikesir is the only gold mine in the Biga Peninsula, except for by-product gold produced from base-metal deposits. Results of the study show current total gold endowment of the Biga Peninsula including reserves and/or resources is 9.18 Moz gold [284.2 t] contained in twelve different deposits. Of these only 6 contain significant gold [>0.3 Moz or 10 t]. Hallilaga porphyry and Agi Dagi and Kirazi HS epithermal systems have an ongoing resource estimate, and Hallilaga is a candidate to be one of the largest Cu–Au deposits not only in the Biga Peninsula, but in Turkey. Currently newly discovered Tepeoba is the largest porphyry Cu–Mo–Au deposit with known resources in the Biga Peninsula.

Here, the first 39Ar/39Ar step-heating age data conducted on some of the major HS epithermal gold deposits and causative intrusives in the Biga Peninsula are reported. Geochronological results from this project, evaluated with previous studies, indicate at least 3 phases of porphyry and 2 phases of high-sulfidation epithermal gold mineralization in the Biga Peninsula. The most important mineralizing phases and related host rocks for gold mineralization range from 38 to 22 Ma. The Oligocene is especially important for economic epithermal and porphyry systems in the Biga Peninsula, which is comparable to deposits in the Oligo-Miocene Serbomacedonian-Rhodope metallogenic belt of the Balkan Peninsula in SE Europe.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

“...In the Troad, above the territory of Abydos is Astyra, which now belongs to the Abrydeni, a city in ruins, but it was formerly an independent place, and had gold-mines, which are now nearly exhausted, like those in Mount Tmolus near the Pactolus.”

Strabo, Geography Book XIII

Turkey is an emerging mining country within the Tethyan Metallogenic Belt (TMB) on the doorstep of Europe. Though the country is long known for its industrial minerals and dimension stones, the precious- and base-metal endowment of the country is now appreciated; gold is the new paradigm. Recently Turkey has become a world-class gold mining and exploration country. Commercial production...
started in the Övacık gold mine in 2001, in Kısıldag gold mine in 2006, as well as other new gold mines including Kucukdere, Mastra, Copler, Cukuralan, Efemcukuru, Kaymaz and Gıcık. Annual gold production in the country has now reached 0.5 Moz and will continue to increase from new mines and increasing production from the existing mines.

The Biga Peninsula, historically known as Troas or the Troad after the ancient city of Troy, is located in the farthest NW of the Turkish Peninsula, also known as Anatolia or Asia Minor. Mining in the Biga Peninsula goes back to ancient times. Present day Havran in Balikesir was known as Aureline or Aureclane, land of gold, in ancient times. According to Frank Calvert, initial discoverer of the site of Troy, the surface and underground gold mines in present day Kartaldağ and Madendag, worked before Strabo's time, are the site of the ancient city Astyra, and they were the source of the gold for Priam's Treasure (Allen, 1999). Gold mines in the Kartaldağ and Madendag area were operated by a British company, Astyra Gold Mining Co., during WWI years (Molly, 1958). Balya, with ancient and historical mining between 1839–1849 and 1892–1940 by a French company, was the first large scale underground mine in the district.

Though industrial minerals, dimension stones and energy raw materials, such as clays, silex, marbles, limestone, and lignite deposits of the Can Basin in the Biga Peninsula are long-time appreciated commodities, base- and precious metal potential of the district is newly recognized, especially in terms of Au–Cu. Modern mineral exploration in the last decades revealed the true metal potential of the district with the discovery of gold–copper systems, e.g., Agi Dagi, Kirazli, Hallağa and Kucukdere. Most of the mining operations have been small scale in the Biga Peninsula, with the exception of Balya mine, and they have mainly concentrated on base-metals, mostly Pb–Zn with by product Ag-Au, and some Sb workings. Currently several active metal mines are operating in the Biga Peninsula, though some of them have intermittent production, e.g., Balya, Kucukdere, Arapucan dere, Koru, Yenicice district, Cataltepe, Kocayayla, and Egмир deposits. Biga Peninsula is one of the focal points of current mineral exploration in Turkey.

This paper is an outgrowth of a field-based study evaluating gold–copper metallogeny of the Biga Peninsula using a GIS database compilation to determine exploration potential as well as metal endowment, which is a part of the authors Turkish Mineral Deposit Exploration (TMD) study. The purpose of this paper is to evaluate metal endowment and exploration potential of the mainly metallic mineral deposits of the prolific Biga Peninsula within the metallogenic framework of Turkey as well as TMB. Many new prospects and potential prospects were generated using a combination of geology, structure, geochemistry, and satellite imagery, mainly LandsAT 7ETM + and ASTER. Geochronological studies were employed to determine spatial and temporal relations between magmatic activity and mineralization–hydrothermal alteration events. Some of the deposits are dated for the first time in this study using 40Ar/39Ar age dating. This paper also addresses some metallogenic correlations of the mineral deposits and prospects in the Biga Peninsula with mineral deposits in SE Europe based on the geochronological studies. Finally, implications for future mineral exploration are given based on recent discoveries and exploration trends. In spite of many published inventories and local deposit based studies, with the exception of Yigit (2006, 2009), no paper has yet presented mineral deposits and prospects of the Biga Peninsula, let alone Turkey, in a detailed genetic framework. This field based geological, GIS and geochemical study aims to fill that gap.

2. Geologic and tectonic setting

Biga Peninsula constitutes the northwestern tip of the Turkish Peninsula (Fig. 1), tectonically forming the westernmost part of the Sakarya Zone of the Pontides at the intersection of Gondwana and Laurasia. Thus it illustrates much of the complicated geologic and tectonic history of Turkey in a small area.

Convergence between Gondwana and Laurasia, especially in Paleozoic and Mesozoic times, resulted in collision of continental fragments and amalgamation. East-trending orogenic belts in Turkey were first recognized by Ketin (1986); from north to south, there are Pontides (Laurasian realm), Anatolides, Taurides and Border Folds (Gondwana realm; Fig. 1, small inset). These fourfold tectonic units of Turkey have been modified by many later workers (Gorur, 1998; Okay and Tuysuz, 1999; Sengor, 1984; Sengor and Yilmaz, 1981; Sengor et al., 1980, 1984; Stampfli, 2000) and have been subdivided into many different tectonic zones or micro terranes in later studies (i.e., Moix et al., 2008) (Fig. 1). However, age, stratigraphic relations, tectonic positions and regional correlation of these terranes remains ambiguous. These inherited geological problems emerge in Biga Peninsula as well; for example origin of some of the orogenic rocks within Sakarya zone, i.e., Karakaya Complex (Okay and Goncuoglu, 2004) and Cetmi Ophiolitic Melange (Beccaleatto, 2004) is unclear. Izmir–Ankara–Erzincan suture, separating the Pontides in the north from the Anatolide–Tauride platform to the south, and the Bitlis suture, marking the northern edge of the Arabian plate in southeast Turkey, are the most prominent tectonic features of Turkey. In other words, these two sutures divide Turkey into three geologically distinct domains (Fig. 1).

Biga Peninsula is tectonically subdivided into two zones that are Rhodope-Strandja in the west and Sakarya in the east (Fig. 1). Though four northeast-trending Pre-Cenozoic tectonic zones were defined in some studies (i.e., Okay et al., 1990), relationships between these zones, as well as origin and boundaries, could not be clarified, i.e., relationship between the Cetmi Ophiolitic Melange or the Denizgoren Ophiolite and the Intra-Pontide suture and Neoeteythn Izmir–Ankara–Erzincan suture. Nor is the relationship between Cetmi Ophiolitic Melange and the melanges in eastern Rhodope clear, though recent studies indicate that Cetmi Ophiolitic Melange shows some similarities to melanges in the Rhodope Massif (Beccaleatto et al., 2005). By the same token determination of age relationships of orogenic rocks within Karakaya Complex as well as corresponding oceanic basins and suture zones, and distribution and origin of these zones in relation to Paleotethys are not fully understood (Okay and Goncuoglu, 2004).

Metamorphic rocks of the Kazdag Group in the Sakarya Zone and rocks in Camlica Metamorphics in Rhodope Zone form the crystalline basement in the Biga Peninsula (Figs. 2 and 3). Permio-Triasic Karakaya Complex in Sakarya Zone and rocks of the Ezine Group in Rhodope Zone, Cetmi Ophiolitic Melange and Denizgoren Ophiolite of Cretaceous age form the other prominent Pre-Cenozoic geological features in the Biga Peninsula. Cenozoic volcano-plutonic rocks, covering extensive areas, dominate the geology of the Biga Peninsula (Aldanmaz et al.,
2.1. Metamorphic rocks

In a broad sense, metamorphic rocks in the Biga Peninsula can be presented in 2 main NE-trending zones, which are the Kazdag Group and Karakaya Complex zone in the SE and the Ezine zone with Camlica Metamorphics in the NW (Fig. 3). These two zones form the basement of Sakarya and Rhodope Zones respectively.

High-grade metamorphic rocks of the Kazdag Group constitute a structural high, forming a NE-trending, double-plunging anticlinorium. This structure tectonically is overlain by Permo-Triassic Karakaya Complex in the east and Cretaceous Cetmi Ophiolitic Melange in the west and north (Fig. 3). Base of the Kazdag Group is not exposed at surface in Biga Peninsula. Gneiss, amphibolite and marble are the main lithologies forming the core of the Kazdag Mountains known as the Kazdag Group (Bingol et al., 1975). Recent studies have subdivided the metamorphic rocks of the Kazdag Group into, from bottom to top, Findikli Formation, Tozlu Formation, Sarikiz Marble and Sutuven Formation (Duru et al., 2004) (Fig. 2).

Paleozoic continental metamorphic rocks in the Biga Peninsula present a complex thermo-tectonic history; Middle Carboniferous (Hercynian = Variscan), Late Triassic (Cimmeride) and Oligo-Miocene (Alpine) thermal events. Hercynian high-grade metamorphic basement of Kazdag gives radiometric ages of Carboniferous: 308±16 Ma, Middle Pennsylvanian, Pb isotope ages in zircons from gneisses (Okay et al., 1996), and 319.2±1.5 to 329±5 Ma, Middle to Late Mississippian, zircon ages from amphibolites (Okay et al., 2006). These radiometric ages can be assigned to high-grade metamorphism and related deformation in the Kazdag Group. Muscovite and biotite in the gneisses give average ages of 19 Ma and 22 Ma Rb/Sr respectively, and it may reflect the last high-temperature metamorphic event in Latest...
Oligocene times causing formation of the Kazdag Metamorphic Core Complex (Okay and Satir, 2000a). However, current studies using apatite fission-track ages suggest that Kazdag Massif was exhumed between 20 and 10 Ma (Early-Middle Miocene), ages clustering between 17 and 14 Ma (Cavazza et al., 2009).

Extensive metasedimentary rock exposures in the northeast of Ezine and west of Karabiga are called the Camlica Metamorphics (Okay et al., 1990) and form the basement of the Rhodope Zone (Fig. 3). Relics of eclogites in the Camlica Metamorphics indicate a HP–LT metamorphism and three muscovite samples from quartz-mica schists give 69 to 65 Ma Rb/Sr age intervals (Okay and Satir, 2000b). These radiometric ages indicate a regional metamorphism of Maastrichtian age. Though these metamorphic rocks were interpreted as cover rocks of the Kazdag Massif (Kalafatcioglu, 1963), it is thought that the origin as well as evolution of the Camlica Metamorphics are related to Rhodope-SerboMacedonian Massif (Okay and Satir, 2000b; Okay et al., 2001).

North-trending green-schist facies metamorphic rocks, outcropping northwest and east of Ezine, are called the Ezine Group, and consist of Permo-Triassic epicontinental sedimentary rocks, mainly carbonates (Beccaletto and Jenny, 2004) (Karadag Units of Okay et al., 1990). Ezine Group is subdivided into three formations, which are, from bottom to top, Geyikli, Karadag, and Camkoy Formations. It is suggested that Ezine Group rocks are a product of Permo-Triassic rifting in the north of Maliac/Meliata Ocean and they represent Rhodopian passive margin (Beccaletto and Jenny, 2004).

The other important Permo-Triassic age orogenic rocks, consisting of partly metamorphosed, strongly deformed, clastic and volcanic rocks, in the Biga Peninsula are called Karakaya Complex (Tekeli, 1981) (Karakaya Formation of Bingol et al., 1975). Rocks Metamorphics are related to Rhodope-SerboMacedonian Massif (Okay and Satir, 2000b; Okay et al., 2001).

North-trending green-schist facies metamorphic rocks, outcropping northwest and east of Ezine, are called the Ezine Group, and consist of Permo-Triassic epicontinental sedimentary rocks, mainly carbonates (Beccaletto and Jenny, 2004) (Karadag Units of Okay et al., 1990). Ezine Group is subdivided into three formations, which are, from bottom to top, Geyikli, Karadag, and Camkoy Formations. It is suggested that Ezine Group rocks are a product of Permo-Triassic rifting in the north of Maliac/Meliata Ocean and they represent Rhodopian passive margin (Beccaletto and Jenny, 2004).

The other important Permo-Triassic age orogenic rocks, consisting of partly metamorphosed, strongly deformed, clastic and volcanic rocks, in the Biga Peninsula are called Karakaya Complex (Tekeli, 1981) (Karakaya Formation of Bingol et al., 1975). Rocks Metamorphics are related to Rhodope-SerboMacedonian Massif (Okay and Satir, 2000b; Okay et al., 2001).
of the Karakaya Complex are exposed in the Kazdag Mountains and extend northeast (Figs. 3 and 4), crosscutting the Biga Peninsula. Karakaya Complex rocks represent a subduction–accretion process.

Karakaya Complex in Biga Peninsula consists of four tectonostratigraphic units, reflecting a formation of similar age but different depositional basin environments, which are Nilufer Unit, Hodul Unit, Orhanlar Graywacke and Cal Unit (Fig. 2) (Okay et al., 1990). Though some of the most studied rocks in Turkey, origin of the Karakaya Complex is the least understood and differentiation of the units within the complex and their correlation within the Sakarya Zone remain inadequate (Okay and Goncuoglu, 2004). Karakaya Complex is subdivided into only Lower and Upper Units in recent studies (Okay and Altiner, 2004; Okay and Goncuoglu, 2004).

Camlik Metagranodiorite, outcropping north of the town of Havran, intruded into quartz-feldspar schists and phyllites of the Kalabak Formation. Two zircon grains from Camlik Metagranodiorite, one of a few radiometrically dated Pre-Cenozoic intrusives, were dated as 397.5±1.4 Ma, Early Devonian (Okay et al., 2006) using stepwise 207Pb/206Pb evaporation method, confirming the earlier less precise age of 399±13 Ma (Okay et al., 1996). Yolindi Metagranodiorite in the southeast of the Biga Peninsula is the other Pre-Cenozoic granitoid in the Biga Peninsula (Fig. 3) (Okay et al., 1990).

2.2. Ophiolitic rocks

Ophiolitic rocks of the Biga Peninsula, except metaophiolites in the Kazdag Group and melanges in Hodul unit of the Karakaya Complex, are exposed in the Kazdag Mountains and extend northeast (Figs. 3 and 4), crosscutting the Biga Peninsula. Camlik Metagranodiorite, outcropping north of the town of Havran, intruded into quartz-feldspar schists and phyllites of the Kalabak Formation. Two zircon grains from Camlik Metagranodiorite, one of a few radiometrically dated Pre-Cenozoic intrusives, were dated as 397.5±1.4 Ma, Early Devonian (Okay et al., 2006) using stepwise 207Pb/206Pb evaporation method, confirming the earlier less precise age of 399±13 Ma (Okay et al., 1996). Yolindi Metagranodiorite in the southeast of the Biga Peninsula is the other Pre-Cenozoic granitoid in the Biga Peninsula (Fig. 3) (Okay et al., 1990).
are represented by two major tectono-stratigraphic units; Cetmi Ophiolitic Melange and Denizgoren Ophiolite. Cetmi Ophiolitic Melange is exposed in the southern Biga Peninsula, west of the Kazdag Group and north of the town of Kucukkuyu, and in the northern Biga Peninsula, northwest of the town of Biga (Figs. 2, 3 and 4).

Cetmi Ophiolitic Melange has a tectonic contact with the Camlica Metamorphics in the northern part of the Biga Peninsula, and it also has a faulted contact with underlying high-grade metamorphic rocks of the Kazdag Group and is unconformably overlain by various sedimentary and volcano-sedimentary rocks of Neogene age in the southern part of the Peninsula. Recent biostratigraphic studies suggest that geodynamic evolution of the melange was completed in the Mid-Cretaceous (Beccaletto et al., 2005), not in the Paleogene (Okay et al., 1990). Cetmi Ophiolitic Melange does not have many common characteristics with other melanges in northwestern Turkey, i.e., in the Izmir–Ankara and Intra-Pontide sutures; and therefore there is no direct correlation between them. However, it has several similarities to melanges in Rhodope Zone of Bulgaria and Greece.

Fig. 4. Distribution of the sedimentary rocks in the Biga Peninsula. Modified from MTA (2001).
Thus, it is suggested that Cetmi Ophiolitic Melange in the Biga Peninsula may represent an isolated fragment of the Rhodope Zone (Becceletto et al., 2005).

Denizgoren Ophiolite, forming a northeast-trending belt starting from north of the town of Ezine, consists of partly serpentinitized harzburgite (Okay et al., 1990). Denizgoren Ophiolite tectonically overlies the Permo-Triassic sedimentary rocks of the Ezone Group in the west, along the Camköy Thrust, and the Camlica Metamorphics in the east, along the Ovacık Thrust (Fig. 3). Amphibolites taken from the base of the Denizgoren Ophiolite give Ar/Ar radiometric ages of 117 ± 1.5 Ma and 118.3 ± 3.1 Ma (Okay et al., 1996) and 125 ± 2 Ma (Becceletto and Jenny, 2004). These radiometric ages most probably indicate the initiation of the obduction process. There is a 100 Ma time-gap between Lower Cretaceous (Barremian) age metamorphosed base of the Denizgoren Ophiolite and the underlying Triassic (Carnian) Camköy Formation (Fig. 5).

2.3. Sedimentary rocks

Mainly carbonate and clastic rocks of Permian and Triassic age in the Karakaya Complex are the oldest non-metamorphosed sedimentary rocks in the Biga Peninsula. Mid-Triassic to Jurassic neritic limestones of the Cetmi Ophiolitic Melange are the other Pre-Cenozoic sedimentary rocks (Fig. 4). Most of the non-metamorphosed and non-deformed Jurassic and younger sedimentary rock series are relatively well studied in the east of the Biga Peninsula, Bursa-Bilecik area, and therefore the sedimentary rocks in the Biga Peninsula are correlated with them and the same nomenclature is used, i.e., Bayırköy Formation, Bilecik Limestone and Vezirhan Formation (Fig. 2) (Okay et al., 1990). Bayırköy Formation in the Biga Peninsula, also named the Kirazlı Conglomerate, though it is not well recognized due to pervasive silicification in places.

Cenozoic sedimentary rocks have extensive exposures in the western and northwest of the Biga Peninsula, generally northeast-trending exposures on both sides of the strait of Dardanelles (Fig. 4). Eocene carbonate and clastic rocks, trending northeast, are concentrated in the Gallipoli Peninsula and Gökçeada Island. Miocene continental clastic rocks and neritic limestone have exposures along the Dardanelles strait and southwest of the Bayramic Graben (Fig. 4). Cenozoic sedimentary rocks in the Biga Peninsula can be evaluated in four time-intervals, along the Camköy Thrust, and the Camlica Metamorphics in the east, along the Ovacık Thrust (Fig. 3). These radiometric ages most probably indicate the initiation of the obduction process. There is a 100 Ma time-gap between Lower Cretaceous (Barremian) age metamorphosed base of the Denizgoren Ophiolite and the underlying Triassic (Carnian) Camköy Formation (Fig. 5). Sevketiya Pluton, the only known example of a Pre-Cenozoic granitoid in the Biga Peninsula, is located east of the town of Sevketiya (Fig. 5). A K/Ar date from muscovite gives a Late Cretaceous age of 71.9 ± 1.8 Ma (Delaloye and Bingöl, 2000). The main Cenozoic intrusions in the Biga Peninsula show calc-alkaline character and are represented by, from east to west, Kestanbol, Kusçayır, Evciler, Dikmen, Yenice, Eybek and Sarioluk Plutons in the south and center of the peninsula and Karabiga and Kapidag Plutons in the north (Fig. 5). Well-studied plutons indicate compositions ranging from granite to quartz diorite, for example Kestanbol Pluton is mainly granite and quartz monzonite and Evciler (Karaköy) Pluton is granite, quartz monzonite and quartz monzodiorite (Birkle and Satir, 1995; Yilmaz et al., 2001). Young granitoids in the Biga Peninsula generally are the products of Eocene to Oligo-Miocene plutonism. Compilation of the radiometric ages in the Biga Peninsula indicates that Dikmen, Karabiga, Kapidag and Kusçayır Plutons are Eocene in age. Evciler is a product of Oligocene plutonism and Eybek, Kestanbol and Yenice are the products of Oligo-Miocene age magmatic activity (Fig. 6), only one outlier from the Yenice Pluton gives an Eocene age. The oldest radiometric age from Cenozoic intrusions of 52.7 ± 1.9 Ma comes from Karabiga Pluton and the youngest radiometric age of 18.8 ± 1.3 Ma comes from Yenice Pluton (Fig. 6 and references therein). All dated samples from plutonic rocks suggest a younging age from north to south for plutonism in the Biga Peninsula, from Late Cretaceous to Early Miocene (Fig. 5).

2.4.2. Volcanic rocks

Volcanic rocks of the Biga Peninsula were mainly formed by Cenozoic volcanism and are evaluated in two broad categories, Pre-Cenozoic and Cenozoic (Fig. 5). Basic volcanic rocks, i.e., basalts and spilites, associated with the Karakaya Complex or ophiolitic melanges characterize Pre-Cenozoic volcanic rocks in the Biga Peninsula (Fig. 5). Volcanic rocks related to Karakaya Complex are most probably Triassic in age.

Cenozoic volcanism in the Biga Peninsula started in the Eocene in extensive areas with mainly andesitic and dacitic, calc-alkaline character and continued to basaltic alkaline volcanism through Late Miocene (Yilmaz, 1990). Sensu lato volcanism in the Biga Peninsula initiates with Middle Eocene medium-K calc-alkaline and continues through Oligocene with high-K calc-alkaline character. Early Miocene volcanism is characterized by high-K to shoshonitic volcanism and continued to basaltic alkaline character. Geochemistry of the volcanic rocks suggests increasing amounts of crustal contamination with decreasing subduction signature during the evolution of magmas from the Eocene through the Early Miocene. Middle to Late Miocene volcanism gives geochemical signatures indicating decreasing crustal component with an enriched asthenospheric mantle-derived melt (Altunkaynak and Genc, 2008).

Cenozoic calc-alkaline volcanism hosts many important economic deposits of metallic and industrial minerals. Though volcanic rocks dominate the geology of the Biga Peninsula, they are not well correlated, and therefore the same volcanic rocks are called by different names, i.e., Ezine Volcanics, Ezine Basalt, Tastepa Basalt and Ayvazik Volcanics refer to the same lithology. Furthermore, lack of sufficient radiometric age dates makes differentiation of the many phases of volcanism difficult. For example, radiometric age for Can Volcanics (Ercan et al., 1995) comes...
Attempts at correlation of the volcanic rocks as well as volcanic facies (Ercan et al., 1990, 1995, 1998) did not create detailed maps for volcanic rocks, not even at a scale of 1:25,000. Compilation of the radio metric ages (Fig. 6 and references therein) with mainly K/Ar and some Ar/Ar suggests that calc-alkaline volcanism in the Biga Peninsula started in Late Eocene with Baliklicesme Volcanics and continued extensively in Oligocene with Can Volcanics (named as Balcilar, Sapci and Kirazli Volcanics in some areas), and ceased in Early Miocene with Behram Volcanics (named as Doyran Volcanics in some areas). It is assumed that alkaline volcanism in the Biga Peninsula started in Late Miocene, as in western Anatolia, with basaltic alkaline Ezine Volcanics (Yilmaz, 1990; Yilmaz et al., 2001). However, trachyandesitic and basaltic Oligocene Kirazli and Early Miocene Huseyinfaki Volcanics show alkali character in some areas (Ercan et al., 1995) and they might be precursors of the alkaline volcanism in the peninsula (Fig. 6).

3. Structural setting

Structural geology of the Biga Peninsula is intricate; there are no available palinspastic reconstruction maps of any scale. Pre-Cenozoic structures are dominated by thrust faults associated with ophiolite obductions. The oldest thrust faults are related to metaophiolites in the Kazdag Group and melanges in Hodul unit of the Karakaya Complex. Emplacement of the Denizgoren and Cetmi Ophiolites are mainly Late Cretaceous in age, and formed NE- and N-trending thrust zones respectively (Fig. 3). Cenozoic structural features are characterized by detachment-faulting related to exhumation and core-complex development of Kazdag Massif in Oligo-Miocene, and strike-slip faulting started in Early Miocene related to development of the North Anatolian Fault Zone (NAFZ). Neotectonics of the area are subject to dextral-strike slip faulting as well as N-trending continental extension with rotations, causing challenging kinematic analysis of faults with not only strike-slip but also oblique and dip-slip components. E-trending principal...
The LANDSAT and ASTER data overlain with DEM images indicates the presence of many circular volcanic structures, e.g., calderas and nested-calderas, associated with Cenozoic volcanic landforms. Most of these circular structures are spatially and temporally related to epithermal mineralization, such as Kizalı Caldera. However, true nature and volcanic facies of these circular structures need further clarification.

4. Mineral deposits and prospects

Mineral deposits of the Biga Peninsula are dominated by volcanic intrusion-related hydrothermal systems, which is a natural corollary of the preeminent geology. The database compilation extracted from the TMDD indicated that 67 deposits and prospects are epithermal type, out of a known 128 mineral deposits and prospects in the Biga Peninsula. Porphyry and skarns have 12 and 24 known deposits and prospects respectively.

4.1. Porphyry/skarn/carbonate replacement deposits

Known porphyry, skarn and CR deposits of the Biga Peninsula are associated with volcano-plutonic complexes of ages ranging from Eocene to Early Miocene (Fig. 7). Regional distribution of the intrusion related deposits is controlled by two NE-trending, parallel linear belts, reflecting major tectonic grain of the Biga Peninsula, which is...
not consistent with the ENE-trend of the causative intrusive rocks across the whole country (Yigit, 2006, 2009). With the exception of Balya and a few others, skarn deposits and prospects such as Yenice and Ezine, are also located SE of the NE-trending porphyry–epithermal belt (Fig. 7). Lack of predominant coeval volcanic rocks in the Yenice skarn belt with the existence of surrounding Upper Paleozoic to Triassic metamorphic rocks may indicate deeper erosional levels, and thus, higher uplifting rates that could be related to the Oligo-Miocene core complex formation that resulted in exhumation of Kazdag Massif. Within Triassic assemblages carbonate rocks are especially favorable loci for younger skarn mineralization (Figs. 3 and 7).

4.1.1. Porphyry

Though a limited number of porphyry prospects have been discovered in the Biga Peninsula, their economic importance makes them appealing exploration targets, i.e., recently discovered Halilaga prospect. Tepeoba is the only porphyry Cu–Mo–Au prospect with calculated reserve data albeit it is not compliant to international reserve/resource reporting codes. Recent work on the porphyry prospects proved the predisposition of the geology for the formation of this type of deposit in the Biga Peninsula. Some of the porphyry prospects in the Biga Peninsula have spatial, temporal and genetic relations to known HS epithermal prospects, i.e., Aladag, Halilaga. Furthermore, porphyry potential of the many known skarn deposits and prospects remains untested along with that of some CR deposits with possible indication of porphyry environment.

Halilaga, discovered in 2007 with ongoing feasibility studies, consists of a main Kestane porphyry Cu–Au zone, Bakirkil skarn Au–Ag +/−base metal zone and related Kunk Hill and Kumlugedik HS epithermal zone forming lithocaps. The main Cu–Au porphyry mineralization, hosted by quartz, feldspar-hornblende porphyries, andesitic flows and tuffs of probably Oligocene age, contains pyrite, magnetite, chalcopyrite with minor chalcocite and molybdenite with visible disseminated Cu in drill holes (Grieve, 2009). Porphyry related alteration covers an area of more than 4 km long and 2 km wide, though the mineralized central zone of the porphyry system exposes over an area of 0.4 km long and 0.3 km wide. Majority of the stockwork and disseminated mineralization is related to potassic alteration assemblages overprinted by phyllic alteration. Density of the stockwork quartz veins can reach up to 35 to 50% in drill holes. Secondary Cu enrichment zones can contain up to 2.15% Cu and 0.93 g/t Au over a thickness of 25.8 m (e.g., discovery drill hole HD-01). HD-01 penetrated 298.2 m of mineralization grading at 0.50 g/t Au, 0.53% Cu, including over 105.4 m at 1.03 g/t Au and 1.03% Cu. Other important intervals include 267.3 m of mineralization grading at 0.50 g/t Au, 0.26% Cu in drill hole HD-08, and 241.2 m of mineralization grading at 0.30 g/t Au, 0.22% Cu in drill hole HD-07A. The copper-bearing garnet skarn mineralization at Bakirkil is associated with granodiorite intruded into gray limestone, recrystallized marble and schists. Whether this spatially related skarn mineralization is genetically and temporally related to main porphyry system at Kestane remains to be determined.

Tepeoba porphyry Cu–Mo–Au deposit was discovered by Turkish Geological Survey (MTA) in 2001, though long time known W and
Mo mineralization exist in the district. Porphyry mineralization is related to Late Oligocene granodioritic and granitic porphyries intruded into metasomatic zone with breccia. A skarn zone with hornfels developed at the contact between granodiorite and schist is located approximately 0.5 km NW of the mineralized breccia zone. In the breccia-centered mineralization with surrounding veins and veinlets, pyrite, chalcopyrite, molybdenite, gold, bornite, malachite, magnetite, hematite and Fe-oxides are common minerals in drill cores, but rare on outcrops. Minerals in the alteration assemblages are controlled by host lithologies, potassic alteration is mainly related to granitic intrusions and phyllic alteration is mainly in the Pre-Jurassic metabasic rocks and schists. Potassic alteration zone with biotite and quartz is mainly concentrated on the breccia zone at the center, which is surrounded by an alteration zone containing sericite, tourmaline, epidote, chlorite and calcite. Though gold content is not included in ore reserve estimation, some of the mineralized zones in drill cores contain average 1 g/t gold with average 1% Cu and 0.05% Mo, up to 10 g/t gold values in some zones.

Dikmen porphyry Au–Mo–Cu mineralization, discovered by a joint venture between MTA and Mining Metal Agency of Japan (MMAJ) as a result of a 1988–91 exploration campaign in the Biga Peninsula, is associated with quartz–feldspar porphyry, granodiorite and aplite dikes of Eocene age intruded into metasedimentary and metavolcanic rocks including marble of Triassic age. Two mineralized zones, namely Sigiregrep Stream in the SW and Domuzdami Stream in the NE, are located within approximately 3 km long and up to 0.5 km wide, NE-trending mineralized and altered zones. The porphyry system has associated skarn mineralization in the Sigiregrep Stream area at the contact between quartz–feldspar porphyry and marbles, forming a NE-trending zone of approximately 1.5 km long and 0.15 km wide, parallel to the trend of the main mineralized system. Porphyry mineralization occurs as stockworks, sheeted veins (Fig. 8A, B), veinlets and disseminations. Pyrite, molybdenite (Fig. 8C), chalcopyrite and supergene Cu minerals including brochantite are mainly associated with quartz–sericite–pyrite (QSP) alteration zones as well as advanced argillic and argillic alteration zones with kaolinite and dickite. Early geochemical work in the prospect indicated high-grade gold values compared to other porphyry deposits with > 10 g/t Au in rock-chip samples. A total of 9 grab and rock-chip samples in this study have values up 4.230 g/t Au, 2.44 g/t Ag, 1380 ppm Ba, 674 ppm Cu, 1260 ppm Mo, 1720 ppm Pb and 2330 ppm Zn.

Palamutoba is one of the most well-exposed porphyry prospects in the Biga Peninsula. Multiple phases of granodiorite, quartz–feldspar porphyry and feldspar porphyry of probably Late Eocene age are intruded into schists of Paleozoic age. Caustive granodiorite intrusives contain common zoned plagioclase, but unusually primary biotite locally contains plagioclase inclusions (Fig. 8D and E). Prospect consists of two mineralized and altered zones, namely Magara Tepe and Maden Tepe (Fig. 8F), each of which is approximately 2 km long and 0.7–0.8 km wide. The prospect has well developed sheeted veins and stockworks in the QSP alteration zone (Fig. 8G), especially in the Magara Tepe Zone. Iron-oxide filled fractures, dominantly goethite and jarosite, are dominant in the Maden Tepe Zone. Leach cap of the system has goethite and jarosite with minor hematite in Magara Tepe Zone and goethite and hematite with minor jarosite in Maden Tepe Zone. NE-trending alteration zone in Magara Tepe and NW-trending alteration zone in Maden Tepe contain predominantly NE- and ENE-trending sheeted veins in stockworks. Reconnaissance rock-chip samples have values up to 0.215 g/t Au, 1.02 g/t Ag, 240 ppm Ba, 291 ppm Cu, 106.5 ppm Mo and 114.5 ppm Pb. Gold has positive correlation with Cu and Fe. Porphyry mineralization in the prospect is disguised by post-mineral porphyries in many areas, and therefore, makes exploration targeting difficult.

Tongurlu porphyry prospect is associated with granitic intrusions cut by aplite dikes. Fracture-controlled stockwork zones in the prospect contain up to 13.60% Mo (Erdem, 1976). Andesite lavas and pyroclastic rocks in a flow-dome setting have HS epithermal potential.

Reconnaissance sampling of the porphyry systems, generated in this study, of Cinarpinar, Aladag, Kocayayla North and Cakirli prospects indicated that geology and geochemistry of the mineralized systems are promising for porphyry type ore formation. Cinarpinar prospect has showings of porphyry-style stockworks in the oxidized outcrops (Fig. 8H). Unlike other prospects, Cinarpinar shows enrichment of REE and Th. Whole-rock analysis from the prospect indicated high concentration of Ce, La, P, Th and Y, suggesting existence of the REE mineral monazite. Porphyry style stockwork zones at the Aladag prospect (Fig. 8I) are contemplated to be related to Kirazli HS system. A total of 10 geochemical rock-chip samples collected in this study give up to 0.129 g/t Au, 2.68 g/t Ag, 1680 ppm As, 2020 ppm Ba, 712 ppm Cu, 105 ppm Mo, 247 ppm Pb and 19.8 ppm Sn values. Kocayayla district with known base metal deposits contains anomalous stockwork zones indicative of porphyry systems (Fig. 8J). Cakirli prospect in the northernmost Biga Peninsula is a candidate to form a new district for porphyry and related mineralization. At Cakirli, conspicuous high erosional rates with low-relief regional surfaces form a penepane on the granitic rocks. Absence of the shallow features of the porphyry environment, e.g., preservation of the lithocap as well as lack of coeval volcanic rocks, indicates that a deeper part of the porphyry systems is exposed without known related epithermal systems. Taztepe and Tepekoy are examples of other porphyry prospects. Copper-molybdenum mineralization at the Camyurt prospect in the northern Biga Peninsula with ancient workings, associated with quartz diorite intrusives of probably Eocene age, could be another potential porphyry/skarn prospect.

4.1.2. Skarn

Skarn deposits and prospects, dominated by base metals with a few notable exceptions which include Au–Cu and W–Mo rich systems, are clustered in the SE part of the peninsula, mainly in Venice district. The only outliers are Cataltepe and Haciedetepe in the N and Bakırtiktepe in the W of the Biga Peninsula (Fig. 7). Asar Tepe with high gold grades is the only authenticated Au–Cu skarn in the Biga Peninsula. Cakiroba, Tahtalidagi and Sofular are examples of the W–Mo rich systems and could be related to porphyry systems. Balya is historically classified as a skarn, but contains carbonate replacement and epithermal zones, indicating multiple hydrothermal events and related mineralization. Though classically called a skarn with inferred causative intrusion, Papazlik, with intermittent past production has similarities to carbonate replacement deposits. Yaser skarn deposit also contains carbonate replacement zones.

Ancient and historical Balya mining district with past production of 4 Mt ore containing 400 kt Pb, 400 kt Zn, 3 t Au and 1 kt Ag has the largest base-metal reserve and resources in the Biga Peninsula. Historical underground mining concentrated in Sarisu, Ari and Orta orebodies, and the other mineralized zones are Hastane Tepe, Koca and Karaca located to the north. Modern underground mining started in 2009 where the historical workings are, and there is an ongoing feasibility study in the Hastane Tepe zone which is planned for production. Triassic age Karakaya Complex consisting of conglomerate, sandstone and shale as well as blocks of limestones of Permian age and dacite and andesitic lava, and subvolcanic intrusions are the predominant lithologies in the district. Known orebodies are preferentially located at the limestone contact with dacite or andesite as irregular bodies, within dacite as disseminations, and within lime- stone and dacite as irregular veins (Akyol, 1977). Galena, sphalerite, pyrite and chalcopyrite are major minerals with minor amounts of pyrrhotite, marcasite, bismuth, sulfosalts, arsenopyrite, tetradehrite–tennantite, bornite, argentite, hemrosvyvkyte, magnetite, hematite, pyrruslite, orpiment/realgar and native tellurium. Garnet, tremolite and actinolite are common in the skarn zone. Argillic and phyllic alteration at the central part of the system is overprinted locally by advanced argillic alteration with hypogene colorless, tabular crystals of alunite,
Fig. 8. A and B. Stockwork quartz veinlets in altered granodiorite in the Dikmen porphyry prospect [514841E, 4443098N]. C. Photomicrograph of disseminated and vein molybdenite in quartz, Dikmen porphyry prospect [sample no BPCP-1180] [RL]. D. Photomicrograph of zoned plagioclase and amphibole crystals in host-rock granodiorite in the Palamutoba porphyry prospect [sample no BPCP-1357] [XP]. E. Photomicrograph of biotite with plagioclase inclusions in granodiorite, same sample as D. F. Alteration and oxidation of the leached cap at Magara Tepe Zone of the Palamutoba porphyry prospect [from 459341E, 4414993N looking NE]. G. Sheeted and stockwork quartz veins in QSP altered schists at Magara Tepe Zone of the Palamutoba porphyry prospect [458541E, 4416576N]. H. Siliceous stockwork veins with goethite and Mn-oxides at Cinarpinar prospect. I. Porphyry-style quartz stockwork veinlets at Aladag prospect with anomalous Cu–Mo–Au–Ag. J. Porphyry-style quartz stockwork veinlets with sericitic alteration in mineralized porphyry at the Kocayayla prospect, containing anomalous Cu–Mo. Abbreviations used in this and all subsequent figures: PPL: Plain Polarized Light, XP: Crossed Polars, RL: Reflected Light.
halloysite, jarosite, kaolinite and quartz (Agdemir et al., 1994). Strong oxidation near surface with gossans consists of anglesite, cerussite, Fe- and Mn-oxides/hydroxides with galena relics. Average age of alteration and host-rock andesite are Late Oligocene. Multiple mineralizing events such as skarn, carbonate replacement and epithermal events in the Balya deposit need further work to elucidate the spatially related different events. In the literature there are no available geochemical studies on which to base genetic connotations.

Asar Tepe Fe–Cu–Au calcic skarn mineralization is associated with Late Eocene to Oligocene age Evelyn pluton intruded into marbles and biotite–amphibolite gneiss of Paleozoic age. Gold and associated pyrite–pyrrhotite mineralization is probably controlled by a NE-trending structure dipping moderately NW. Massive sulfide mineralization contains pyrite, marcasite, pyrrhotite and chalcopyrite with quartz and calcite gangue. High-grade gold mineralization is associated with 200 m long central core zone (Yilmaz, 2007). Exoskarn mineralization consists of predominantly prograde garnet and diopside with minor retrograde tremolite, epidote, chlorite, scapolite and sericite. Rock-chip sampling in this study from the prospect shows values up to 1.5 m at 13.8 g/t Au, 3.21 g/t Ag, 297 ppm Bi, 110.5 ppm Co, 7,570 ppm Cu and 29.6% Fe.

Yenicice deposit contains several base-metal skarn deposits (Fig. 7) and prospects mainly associated with Oligo-Miocene age granitic intrusions, i.e., Eybek Granodiorite. Economically important orebodies with several Mt ore (Table 1), regardless of grade, are Bagirkacaderesi, Handeresi and Culfakcuru, though no recent work has been done in the district. At Bagirkacaderesi, the skarn zone formed at the contact between Eybek Granodiorite and marble lenses within schists of Paleozoic age. Calc-silicates, garnet, epidote, actinolite and quartz are common gangue minerals in the skarn zone. Precious metal content of most of the base metal ore in the district is not reported; however, some of the deposits contain gold especially in gossan zones, e.g., Culfakcuru. In the district other skarn prospects include Sariotderesi [0.445 Mt at 0.7% Cu, 2.6% Pb, 7% Zn], Kurrtasi, Alandere, Umurlar, Baskoy, Bezirtepe, Koztepe, Karaaydin, Kuserlik, Tozludere, and Halilar (Fig. 7).

4.1.3. Carbonate replacement

Papazlik is the only example of a CR deposit and is probably associated with Oligo-Miocene intrusives, exposed immediately to the SE. Papazlik base- and precious-metal deposit, with intermittent ancient and historical production from an underground mine, is hosted at the contact between quartz–chlorite–amphibolite schist and marble of Paleozoic age. Deposit contains an unclassified resource of 0.242 Mt grading at 5 g/t Au, 23 g/t Ag, 8.21% Pb and 6.72% Zn based on limited drilling, 2 surface and 8 underground drill holes (MTA, 1993b). Most of the mineralization occurs as open space fill with galena, Fe-poor sphalerite, pyrite, and minor chalcopyrite. Supergene minerals include malachite, azurite, cerussite and iron-oxides. Common silicification with comb and drusy quartz crystals as well as chaledony, carbonate and argillic alteration is closely associated with mineralization. Argillic alteration is prominent especially at the sheared contact between vein and wall rocks. The northeast-trending vein with average thickness of 1 m is parallel to bedding plane cleavage. Though there is no skarn zone or causative intrusions exposed in the mine area, the deposit historically was classified as a skarn (e.g., Cumus, 1970). In the area, the only other known prospect with similar geological setting to Papazlik is Kusteppe prospect located to the NE with intermittent past production and remaining small resource of Zn–Pb–Cu.

4.2. Epithermal deposits and prospects

Majority of the epithermal systems are HS style, though economical IS and LS deposits and prospects are present. Only a few epithermal deposits have affinities with IS style systems, their base metal and silver credentials are proven. More detailed studies in the epithermal deposits of the Biga Peninsula will help recognition of more prospects of this style.

Known epithermal deposits and prospects are concentrated in the Oligocene volcanic and subvolcanic rocks (Fig. 9). Nevertheless, epithermal systems hosted in Late Eocene and Miocene volcanic rocks should not be neglected. In spite of the fact that number and size of the LS style epithermal deposits and prospects are dwarfed by HS style, LS deposits are important because of their bonanza grade (>30 gpt or 1 opt) zones, i.e., Kucukdere deposit. Majority of the HS epithermal deposits are clustered in the central Biga Peninsula with several of them in the SE Biga Peninsula. LS and IS deposits are mainly located in the northern and eastern Biga Peninsula (Fig. 9). Agi Dagi and Kirazli are the largest classical examples of HS epithermal systems in the Biga Peninsula. Agi Dagi has 1.4 Moz gold resources, compliant with international reporting codes. Updated gold resources in Kirazli are approximately 0.5 Moz gold. Ongoing feasibility work on both projects expects to expand gold resources and reserves.

Kisacik with approximately 1 Moz gold resources is the largest LS style epithermal deposit in the Biga Peninsula, though resources are not compliant with international reporting codes. Kucukdere is the classical example of a LS system. Koru, Arapucander, Tesibahire and Sahinli could be examples of the IS style epithermal systems in the peninsula.

Some of the HS epithermal systems show transition to porphyry environment as in Kirazli and Alankoy. Some of the epithermal systems are not well enough characterized to determine the styles of the mineralization, e.g., newly discovered epithermal prospects on Gokceada Island. Other deposits with SB- Au and Hg endowment in epitheral class include Buyukyenice and Kucukyenice deposits with small resources in Ivrindi Sb district and Hodul Hg deposit.

4.2.1. HS deposits and prospects

Biga Peninsula has world class HS alteration zones, in which the volume of silica is only comparable to districts such as Yanacocha in Peru. Most of the chalcedonic quartz zones have been mined for industrial use, commercially called silex (mill balls, mill lining bricks etc.), and argillic and advanced argillic zones have been mined as industrial clays. Unfortunately, epithermal gold potential of these alteration zones has just started to be appreciated, especially after the discovery of Agi Dagi and Kirazli systems.

Agi Dagi prospect is an Oligocene flow-dome complex forming a prominent topographic high (Fig. 10A) and lies within a NE-trending mineralized and altered zone, which is approximately 5 km long and 2 km wide. The prospect consists of two defined orebodies, namely Baba Dagi with historical resources, and Deli Dagi located approximately 2.5 km NE, and many other mineralized zones including Aiyi-tepe, Fire Tower, Tavsan Tepe and Ihlamur. Felsic to intermediate volcanic and sub-volcanic rocks including dacite, rhyolite, andesite and post-mineral quartz–feldspar porphyries are the main host rocks in the prospect. Primary textures of these lithologies have been destroyed by strong hydrothermal alteration over extensive areas. Pyrite is the most abundant primary sulfide mineral related to Au in the prospect, and trace to minor amounts of enargite, covellite, galena, molybdenite (particularly in Baba Dagi zone) are locally present. Gold–silver mineralization occurs as disseminations and breccias including phreatic, phreatomagmatic and tectonic. Phreatic (meteoric-hydrothermal) breccias include both heterolithic, rock-flour matrix supported, and hydrothermal mineral (e.g. quartz, chalcedony, pyrite, alunite and pyrophyllite) cemented. In many areas, distinction of lithic tuffs from other breccias could be difficult due to texture obliteration as a result of pervasive hydrothermal alteration. Hydrothermal mineral cemented breccias including crackle and jigsaw are associated with gold mineralization, higher grades commensurate with amount of pyrite (or Fe-oxide) in the matrix. E-trending phreatic breccias are important at Deli Zone (Cunningham-Dunlop and Lee, 2007a). Silicification with massive, vuggy residual quartz, late-stage blanket-like...
Table 1

Mineral deposits with total Au reserve and/or resources >0.2 Moz or >0.5 Mt ore regardless of metal or grade in the Biga Peninsula, NW Turkey.

<table>
<thead>
<tr>
<th>Deposit name</th>
<th>State</th>
<th>Commodity</th>
<th>Deposit type</th>
<th>Principal host rocks</th>
<th>Age of host rocks</th>
<th>Orebody/structure</th>
<th>Mineral reserves and/or resources/or grade</th>
<th>Status</th>
<th>Relevant references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halilaga</td>
<td>Canakkale</td>
<td>Au, Cu</td>
<td>Porphyry Cu–Au</td>
<td>Quartz porphyry, feldspar-hornblende-
quartz porphyry, andesitic flows and tuffs; granodiorite, gray limestone, recrystallized marble and schists at Bakırkılı Hill</td>
<td>Oligocene</td>
<td>Stockwork quartz veins and disseminations</td>
<td>Unclassified potential resource using Leapfrog grade shell: 250–350 Mt at 0.57 g/t Au and 0.45% Cu, (2 m composites at 0.3 g/t Au and 0.2% Cu cut-offs) based on 43 DHs, totaling 10,398.70 m</td>
<td>F</td>
<td>Grieve, 2009</td>
</tr>
<tr>
<td>Tepeoba</td>
<td>Balikesir</td>
<td>Cu, Mo, Au</td>
<td>Porphyry Cu–Mo–Au</td>
<td>Granodiorite, granite and granite porphyry (1) intruded into metasomatic and metasedimentary rocks (2)</td>
<td>Oligo-Miocene (1), Pre- Triassic (2)</td>
<td>Breccia, disseminated, vein and veinlets</td>
<td>Resource: 19.24 Mt at 0.33% Cu, 0.041% Mo plus 4.86 Mt at 0.32% Cu, 0.046% Mo</td>
<td>P</td>
<td>Kucukefe et al., 2003; Murakami et al., 2005</td>
</tr>
<tr>
<td>Aglı Dagi</td>
<td>Canakkale</td>
<td>Au, Ag</td>
<td>Epithermal HS</td>
<td>Oligocene</td>
<td></td>
<td>Disseminations, breccias/ NE-trending mineralized and altered zone</td>
<td>Resource: Baba Zone: 26.601 Mt at 0.52 g/t Au, 0.60 g/t Au (Indicated), 5.98 Mt at 0.48 g/t Au, 0.50 g/t Au (Inferred) Deli Zone: 25.362 Mt at 0.67 g/t Au, 5.96 g/t Au (Indicated), 7.970 Mt at 1.17 g/t Au, 11.18 g/t Au (Inferred); 0.2 g/t Au cutoff</td>
<td>F</td>
<td>Cunningham-Duplon and Lee, 2007a; Keane et al., 2010</td>
</tr>
<tr>
<td>Kırázlı</td>
<td>Canakkale</td>
<td>Au, Ag</td>
<td>Epithermal HS</td>
<td>Andesitic and dacitic lavas and pyroclastics</td>
<td>Oligocene</td>
<td>Stockworks, breccia, disseminated and replacement/NE-trending mineralized zone, sub-horizontal ore zones</td>
<td>Resource: 56.537 Mt at 0.55 g/t Au (Unclassified)</td>
<td>P</td>
<td>Yildirim and Cengiz, 2004</td>
</tr>
<tr>
<td>Kııcık</td>
<td>Canakkale</td>
<td>Au</td>
<td>Epithermal LS</td>
<td>Dacitic, rhyodacitic and andesitic volcanic rocks</td>
<td>Upper Miocene</td>
<td>Multi-phase hydrothermal breccias and stockworks/NE-trending mineralized and altered zone</td>
<td>Reserve: 2.778 Mt at 0.76 g/t Au (Unclassified); Resource: 7.5 Mt at 0.85 g/t Au (Unclassified)</td>
<td>P</td>
<td>Akyol et al., 1977</td>
</tr>
<tr>
<td>Sahiti</td>
<td>Canakkale</td>
<td>Au, Ag</td>
<td>Epithermal</td>
<td>Andesitic and dacitic volcanic rocks (1), schists (2)</td>
<td>Eocene (1), Paleozoic (2)</td>
<td>Veins/mainly NE-trending veins with some E- and N-trends</td>
<td>Resource: 8 Mt at 1.25 g/t Au (Unclassified)</td>
<td>P</td>
<td>MTA, 1993a</td>
</tr>
<tr>
<td>Akbabası</td>
<td>Canakkale</td>
<td>Au, Ag</td>
<td>Epithermal LS</td>
<td>Andesite porphyry (1), Schists (2)</td>
<td>Lower Miocene (1), Pre-Triassic (2)</td>
<td>Veins, breccia, stockworks/NE-trending silicified main zone</td>
<td>Resource: 1.276 Mt at 0.43 g/t Au (Measured + Indicated), 0.138 Mt and 0.65 g/t Au (Inferred) or 1.406 Mt at 0.92 g/t Au, Most ore mined out Remaining Reserve: 0.923 Mt at 1.39% Cu, 7.38% Pb, 2.85% Zn, 1.5–2 g/t Au, 55–60 g/t Ag (Unclassified)</td>
<td>M</td>
<td>Colakoglu, 2000</td>
</tr>
<tr>
<td>Arapuçan</td>
<td>Canakkale</td>
<td>Pb, Zn, Cu</td>
<td>Epithermal IS</td>
<td>Metasandstone and metadolomite (1), nearby dacitic rocks (2), and granitic intrusions (3)</td>
<td>Permian to Triassic (1), Miocene (2), Miocene (3)</td>
<td>5 Major veins/E- and NE-trending veins</td>
<td>Resource: 3.100 Mt at 5.24% Pb, 2.05% Zn, plus Cu (Unclassified) Remaining Reserve: 2.3 Mt at 8% Pb–Zn, average 1.5 g/t Au, 200 g/t Ag in concentrate; Significant past production</td>
<td>M</td>
<td>Bozkaya, 2011</td>
</tr>
<tr>
<td>Koru</td>
<td>Canakkale</td>
<td>Pb, Zn plus</td>
<td>Epithermal IS</td>
<td>Andesite lava and pyroclastics, spherical rhyolite domes</td>
<td>Eocene</td>
<td>Veins, stockworks, breccias/NW-trending veins</td>
<td>Reserve: 0.5 Mt at 8% Pb, 2% Zn, 300 g/t Ag (Unclassified), past production; 9.4 Mt at 31% BaO Remaining Reserve: 2.3 Mt at 8% Pb–Zn, average 1.5 g/t Au, 200 g/t Ag in concentrate; Significant past production</td>
<td>M</td>
<td>Agdemir et al., 1994; MTA, 1995b</td>
</tr>
<tr>
<td>Balya</td>
<td>Canakkale</td>
<td>Pb, Zn, Cu</td>
<td>Skarn/O/Epithermal</td>
<td>Dacite, andesite(1), limestone (2), Conglomerate, sandstone and shale (3)</td>
<td>Late Oligocene (1), Permian (2), Triassic (3)</td>
<td>Veins, replacements, disseminations</td>
<td>Resource: 3.100 Mt at 5.24% Pb, 2.05% Zn, plus Cu (Unclassified) Remaining Reserve: 2.3 Mt at 8% Pb–Zn, average 1.5 g/t Au, 200 g/t Ag in concentrate; Significant past production</td>
<td>M</td>
<td>MTA, 1993b</td>
</tr>
<tr>
<td>Handeresi</td>
<td>Canakkale</td>
<td>Pb, Zn, Cu</td>
<td>Skarn</td>
<td>Schist, phyllite, metasandstone, marble (1), granodiorite (2), dacite (3)</td>
<td>Paleozoic (1), Oligo-Miocene (2), Oligocene (3)</td>
<td>NE-trending fold axis, N-trending post-mineral faults</td>
<td>Remaining Reserve: 2.3 Mt at 8% Pb–Zn, average 1.5 g/t Au, 200 g/t Ag in concentrate; Significant past production</td>
<td>M</td>
<td>MTA, 1993b</td>
</tr>
<tr>
<td>Bagirkacık</td>
<td>Canakkale</td>
<td>Pb, Zn, Cu</td>
<td>Skarn</td>
<td>Metasiltstone, phyllite, marble (1), Metagranodiorite (2), Granodiorite (3)</td>
<td>Paleozoic (1), Carboniferous (2), Miocene (3)</td>
<td>Disseminations, rarely massive/ mineralized schistosity striking WNW, dipping NE Remaining Reserve: 2.3 Mt at 8% Pb–Zn, average 1.5 g/t Au, 200 g/t Ag in concentrate; Significant past production</td>
<td>Remaining Reserve: 5 Mt at 3.8% Pb, 2.18% Zn, 0.45% Cu (Unclassified) Remaining Reserve: 2.3 Mt at 8% Pb–Zn, average 1.5 g/t Au, 200 g/t Ag in concentrate; Significant past production</td>
<td>M</td>
<td>MTA, 1993b</td>
</tr>
<tr>
<td>Culfacıkuru</td>
<td>Canakkale</td>
<td>Pb, Zn, Au</td>
<td>Skarn</td>
<td>Akkoze (1), limestone (2), volcanic rocks (3)</td>
<td>Paleozoic (1), Triassic (1), Jurassic–Cretaceous (2), Oligocene (3)</td>
<td>Massive replacement/N-trending mineralized zone</td>
<td>Remaining Reserve: 9 Mt at 53% FeO, Total resources: 17.538 Mt at 46.5% Fe Remaining Reserve: 2.3 Mt at 8% Pb–Zn, average 1.5 g/t Au, 200 g/t Ag in concentrate; Significant past production</td>
<td>M</td>
<td>Alkyol et al., 1977</td>
</tr>
<tr>
<td>Eğmir</td>
<td>Balikesir</td>
<td>Fe</td>
<td>Latenitic Fe</td>
<td>Andesite porphyry, andesite tuffs and agglomerates</td>
<td>Upper Miocene–Pliocene</td>
<td>Ferricrete formation, hematite matrix talus breccia with locally stratiform, massive zones/NE-trending orebody</td>
<td>Remaining Reserve: 9 Mt at 53% FeO, Total resources: 17.538 Mt at 46.5% Fe Remaining Reserve: 2.3 Mt at 8% Pb–Zn, average 1.5 g/t Au, 200 g/t Ag in concentrate; Significant past production</td>
<td>M</td>
<td>Chinogiolo et al., 1994</td>
</tr>
</tbody>
</table>

chaledonic quartz, and advanced-argillic/argillic alteration are associated with gold mineralization. Quartz crystals in the pervasive silicic alteration zones have fine-grained interlocking jigsaw mosaic textures in thin sections (Fig. 10B). Quartz, alunite, dickite and kaolinite dominate at high levels of the epithermal system, and pyrophyllite (Fig. 10C), halloysite, illite and sercite are dominant at depth. Oxide ore extending to a depth of 100 m at Baba Zone and both oxide and sulfide ore are present at Deli Zone. Agi Dagi prospect shows Mo enrichments in oxide zone, up to 500 ppm, relative to sulfide zone, 50 ppm, indicating the transition to porphyry Au-Mo systems, especially in Baba Dagi and Ayitepe zones (Cunningham-Dunlop and Lee, 2007a).

Camyurt is a newly discovered HS epithermal prospect, located approximately 4 km SE of the Agi Dagi HS system, and is hosted by felsic volcanic rocks. Approximately 1.5 km long, NE-trending discontinuous quartz vein system contains up to 70.4 g/t at 0.92 g/t Au including 11.7 m at 2.44 g/t Au in drill holes (Fronteer annual information form, 03.30.2008). Prospect has ongoing exploration work to test the potential of the whole vein system and promises significant resources.

Kirazli prospect forms another prominent topographic high (Fig. 10D) in a flow-dome setting of Oligocene age in the Biga Peninsula. North-trending main orebody along Kirazli Mountain below silica cap is approximately 1.2 km long and up to 0.35 km wide, and is intersected by ENE-trending, discontinuous ore zone in the SW, which is approximately 0.7 km long and up to 0.4 km wide, forming a reverse L-shaped orebody. Other target zones in the prospect include newly discovered Rock Pile Zone, Iri Zone, located approximately 1 km W and E of the main zone respectively, and Kale Zone, located approximately 1.5 km S. Rock Pile Zone contains bananza-grade gold values, up to 1080 g/t (31.50 opt) Au in rock samples. Gold–silver mineralization is hosted by andesitic and dacitic porphyritic lavas, intrusives and volcaniclastic rocks as well as tuffaceous lauritine sedimentary rocks, which are cut by olivine phyric diabase dikes. Primary textures are largely obscured by strong hydrothermal alteration. Heterolitic and monolitic breccias of phreatic and phreatomagmatic origin, veins and disseminations are the main controls on mineralization. Gold mineralization is associated with late stage Au-poor sphenoidal pyrite, As-rich euhedral pyrite is usually gold poor. SEM study of mineralized samples shows clusters of sub-micron size gold grains in a rim of hematite (probably after pyrite) along the edge of a vugg in quartz (Keane et al., 2010). At least 4 stages of silicification have been differentiated in the prospect, which include widespread silicification with vuggy residual quartz (I), flat-lying chaledonic quartz (forming aquitard) (II), gray quartz veins (III) and crystalline quartz in fractures and vugs (IV) (Cunningham-Dunlop and Lee, 2007b). Advanced argillic alteration with alunite, dickite and kaolinite and argillic alteration are ubiquitous in the prospect. Low-grade Au mineralization is at the base of phase II silicification, and high-grade Au–Ag mineralization is associated with phase III silicification; containing up to 9.10 m grading 44.01 g/t Au in drill hole KD-01 and 9.30 m grading 1213 g/t Ag in drill hole KD-97. The prospect generally contains high-grade gold mineralization in the oxide zone, and low grade in the sulfide zones. On the silicified surface outcrops gold is associated with oxide, which is mainly specular hematite and hematite (Fig. 10E).
Kartaldag with ancient and historical gold mining is speculated to be Astyra, together with the Madendag prospect, both of which were operated by Astyra Gold Mining Company during WWI. Classical HS style epithermal gold and silver mineralization is hosted by Eocene age quartz-feldspar porphyry andesite with up to 3% quartz eyes, based on TAS plot of the whole-rock analyses of only propylitically altered host rock. The prospect contains two mineralized zones, one of which with old surface and underground workings (Fig. 10F) is a
NE-trending zone, approximately 100 m long and up to 10 m thick with a lenticular orebody dipping steeply NW. Another is an unexplored E-trending, mineralized silicified ledge, approximately 500 m long and 50 m wide. Multi-stage silicification with vuggy residual quartz and chalcedony, and advanced argillic and argillic alteration with alunite, dickite, diaspore and kaolinite are the common alteration minerals associated with gold–silver mineralization (Fig. 10G and H). Replacement, vein and breccia related mineralization contains up to 10.7 g/t Au, and 73.4 g/Ag in a total of 11 rock-chip samples in this study. Significant amount of pyrite in gold-rich zones is related to kaolinite. The epithermal system is only partly oxidized with jarosite, goethite and hematite, in order of abundance.

Pirentepe prospect was discovered in the early 90s as a result of an exploration campaign conducted by a JV between MTA and MMAJ. The prospect had known massive chalcedonic quartz and clay zones mined for silex and kaolinite by a local Turkish mining company. HS mineralization is hosted by andesitic lava and pyroclastics intruded by quartz porphries, and is associated with resurgent domes of Oligocene age. The E-trending mineralized and altered zone in the prospect is approximately 3.5 km long and 1 km wide. Main mineralized zones are at Davulgali Tepe in the W and Pirentepe (Celdiren) in the E. Silicification is characterized by acid leached vuggy to massive quartz, which gently dips to the north. Advanced argillic alteration with alunite and kaolinite, and argillic alteration surround the silicified zones. A total of 15 rock and rock-chip samples from the prospect in this study contain up to 2.19 g/t gold, associated with disseminated and breccia zones. Oxidized zone contains common hematite and specular hematite. Best drill results from the prospect include 46.90 m grading 1.79 g/t Au, and 38.0 m grading 1.83 g/t Au, mineralization in both drill holes starting at 17 m depth (Fronteer News Release, 11.09.2006).

Halilaga North, another prospect discovered by MTA and MMAJ JV, is the original HS prospect of Halilaga, called Halilaga North after the discovery of Halilaga porphyry Au–Cu, to avoid confusion. Epithermal Au–Ag mineralization in the prospect, hosted by andesitic lava and pyroclastic rocks, is located in two zones, main Saguluk Tepe zone, approximately 1 km long and 0.2 km wide ENE-trending zone to the NE of Halilaga village, and Taskselen-Kocatas zone, approximately 1 km long and 0.3 km wide NNE-trending zone to the SE of Halilaga village. It has characteristic alteration assemblages of HS epithermal deposits with massive and vuggy residual quartz, advanced argillic and argillic zones. Breccias, veins, and veinlets of mineralization contain up to 2.38 g/t Au and 60 g/Ag in rock samples.

Kucayiri prospect, renamed as Karaya, is located W of the TV Tower prospect and was discovered using BLEG stream sediment sampling in the early 90s. Eocene andesitic lava and flow domes, anesitic and dacitic volanoclastic rocks and quartz–feldspar porphyry intrusive at the contact with hornblende granodiorite are the main host rocks in the prospect. The prospect consists of two E-trending mineralized and altered zones, an oxide-rich zone in the E, SE of Ardic Tepe, and a sulfide zone at Yumru Dagi (Fig. 10I) in the W. These E-trending structures open E to Kayalidag (namely TV Tower prospect). Pyrite, up to 12%, minor chalcopyrite, specular hematite, hematite, malachite, magnetite, arsenopyrite and realgar are observed minerals. Copper-rich zones lie through the SW of Yumru Dagi. An early QSP alteration is overprinted by late advanced argillic alteration with vuggy residual quartz. Advanced argillic alteration assemblages contain mostly alunite (Fig. 10J), pyrophyllite, and kaolinite. Copper mineralization is mainly related to the early QSP event (Yilmaz, 2003). Gold–copper mineralization is associated with disseminations, stockworks (Fig. 11A) and breccias. Oxidized zone with conspicuous specular hematite and hematite stockworks (Fig. 11B and C) in the prospect is relatively shallow, average 20 m thick but locally up to 40 m. Drilling intersected up to 78 m at 0.45 g/t Au, and 250 m at 0.3 g/t Au in the sulfide zones (Yilmaz, 2003). Average copper content is 0.23% in the sulfide zone. Best results from 21 RC and 7 DDH indicate 115.5 m at 0.52 g/t Au and 87.1 m at 0.62 g/t Au (Chesser Resources News Release, 03.01.2009). Part of the TV Tower prospect is an eastern extension of the Kucayiri prospect, and rock-saw channel sampling at Kayalidag gives over 113 m grading at 1.1 g/t Au (FronteerGold News Release, 09.02.2010). Kucayiri prospect may form a superjacent lithocap on the porphyry system, and therefore porphyry Au–Cu mineralization is anticipated at depth.

Sarpdag prospect, recently included in the TV Tower prospect portfolio, is composed of NE-trending mineralized and altered zone, approximately 4 km long and 3 km wide. Main zones in the prospect are located at Bakirlik Tepe, Sarp Dag and Oren Dag. Andesite lava and pyroclastic rocks of Oligocene age and schists of Pre-Triassic age are the main host rocks in the prospect. Disseminated, breccia and stockwork mineralization is associated with widespread silicification with chalcedonic quartz, advanced argillic alteration with kaolinite and dickite, and argillic alteration. Massive silicification forms well-developed flat-lying quartz zones over large areas. Pyrite, specular hematite and hematite are ubiquitous. Total of 21 rock-chip samples in this study from the prospect have values up to 0.502 g/t Au, 3.15 g/t Ag, 2610 ppm Ba, and 158.5 ppm Sb.

Alankoy (Arlik Dere) was also discovered by MTA and MMAJ JV in the early 90s, though ancient surface and underground workings are present. It has classical HS epithermal signatures with well-developed alteration assemblages (Fig. 11D). Prospect has very close spatial association to a small discrete granodioritic intrusion (named as Alankoy stock) with well developed skarn zones as well as quartz stockworks. Andesitic lavas and pyroclastic rocks and granodiorite of Oligocene age, and crystalline limestone, metavolcanic and sedimentary rocks of Triassic age form the host lithologies in the prospect. Main mineralized zones of HS epithermal mineralization are located at Kocatas Tepe, Saritas Tepe and Guvemalani Tepe. NE-trending silicified zone, approximately 2 km long and 1.7 km wide, contains shallow part of the epithermal system with steam-heated zone, which is exposed at Saritas Tepe with native sulfur in vuggy residual quartz. Some of the chalcedonic quartz zones were mined as silex, i.e., Akmak Kil Tepe. Prospect contains abundant specular hematite and hematite in oxidized zones (Fig. 11E). Total of 22 rock and rock-chip samples in this study have values up to 0.705 g/t Au. A garnet-rich skarn zone with gossans located approximately 1 km E of the epithermal system is developed where crystalline limestones abut Alankoy granodiorite stock. Skarn zone is up to 1 km long and 0.5 km wide. Zinc gossans contain up to 0.104 g/t Au, 1.86 g/t Ag, 146 ppm Cu,
Fig. 11. A. Intense quartz stockwork veinlets with hematite, oxide zone at Kuscayiri prospect [467483E, 4424280N], B. Hematite and specular hematite bearing stockwork veinlets in feldspar-porphyry andesite showing moderate silicic and sericitic alteration [467983E, 4424144N], C. Photomicrograph of botryoidal specular hematite (light cream color), locally forming matrix or overgrown broken drusy quartz crystals, in acid-leached silicified breccia, Kuscayiri prospect [sample no BPGP-1053] [RL], D. Advanced argillic and argillic alteration zones with silicic alteration; N slope of Saritas Hill, along Canakkale-Can road, Alankoy epithermal prospect [482753E, 4431180N], E. Botryoidal specular hematite associated with vuggy silica, Alankoy prospect [sample no BPGP-1136] [XPF], F. Porphyry-style quartz stockwork veinlets in QSP altered granodiorite, Alankoy prospect. G. Photomicrograph of hematite matrix mineralized breccia, containing 0.643 g/t Au and 69.8 g/t Ag, Dede Dagi prospect [sample no BPGP-1297] [RL], H. Photomicrograph of the alunite crystals replacing feldspar crystals in vuggy silica, advanced argillic alteration zone, Bodurlar prospect [sample no BPGP-1290] [XPF], I. Radiating pyrophyllite crystals (Prl) and fine-grained alunite (alu) crystals, advanced argillic alteration zone, Bodurlar prospect [sample no BPGP-1296] [XPF]. J. Preserved sponge spicules in pervasively silicified rock, Tepekoy silex mine [sample no BPGP-1106] [PPL].
63.8 ppm In, 434 ppm Pb, 109 ppm Sb, 2590 ppm Mn, and 2480 ppm Zn. Porphyry-style stockwork zones in the Alankoy stock have anomalous gold values up to 0.236 g/t (Fig. 11F). Alankoy prospect may form a lithocap and thus a subjacent porphyry Au–Cu mineralization is anticipated at depth.

Dogancilar HS epithermal Au–Cu prospect consists of mainly veins that are related to a flow-dome complex of Oligocene age, forming a prominent hill called Karadag. All of the known mineralized clusters are centered around the rim of this flow dome, which are Bakirlik Tepe and Kucukbakirlik Tepe 2.5 km S, Magara Tepe 2 km NNE and Tombek Tepe 2.7 km NW, relative to flow-dome structure. Andesitic and dacitic pyroclastic rocks including lithic lapilli tuff, and pumice breccia are the main host rocks in the prospect. Gold mineralization is closely associated with Cu and barite in the Bakirlük vein and stockworks (Pirajno, 1995). Veins, stockworks, and breccias are associated with silicified zones, locally including flat-lying chalcedonic quartz, and advanced argillic alteration including kaolinite, dickite, and pyrophyllite. E-trending veins at Bakirlük Tepe, Kucukbakirlik Tepe and Tombek Tepe and ESE-trending veins at Magara Tepe control Au–Cu mineralization. Silicified zones are mined as silice in the E of Karadag. Oxidized zones in the prospect form gossan. Specular hematite and barite are abundant locally. A total of 11 rock-chip samples from the prospect in this study give values up to 4.8 g/t Au, 2630 ppm Ba, 231 ppm Cu, 474 ppm Pb, and 1665 ppm Zn.

Dede Dagi prospect has the typical signature of a HS epithermal system. Reconnaissance sampling of NE-trending silicified ledges with residual vuggy quartz and opaline quartz in the feldspar porphyry andesite host gives values up to 0.643 g/t Au, 92.8 g/t Ag, 706 ppm As, 1560 ppm Cu, 196.4 ppm Sr, and 231 ppm Sb. Discontinuous mineralization occurs in the LS system. Approximately 1.8 km long and 0.5 km wide, NE-trending mineralized and altered zone contains up to 0.182 g/t Au, 0.38 g/t Ag, 2060 ppm As, 3280 ppm Ba, 118.5 ppm Cu, 70.5 ppm Mo, and 732 ppm Pb values in 11 rock-chip samples in this study. Prospect may have subjacent porphyry Au–Cu–Mo mineralization. Disseminated and breccia controlled mineralized zones contain common iron-oxides with specular hematite. Kiziltepe epithermal/porphyry prospect whole-rock samples in this study from skarn zones of Kestanelik Pluton have up to 384 ppm U values.

4.2.2. LS deposits and prospects
Biga Peninsula has classical low-sulfidation systems, though limited numbers of deposits and prospects are scattered throughout the peninsula (Fig. 7). The discrete Kucukdere gold–silver deposit with bonanza grade ore in the SE Biga Peninsula is the only modern mine of this style. Some of the LS deposits and prospects are developed alongside and/or spatially associated with HS epithermal deposits, as in Madendag, and Akbaba. Madendag and Akbaba have close spatial association to Kartaldağ HS system. This spatial association is not unusual, but it is less common. Kestanelik and Elmali prospects are examples of LS systems, located in the northern and northeastern Biga Peninsula respectively.

Kucukdere deposit, the classical LS system after Ovacik in Turkey, is hosted by feldspar-porphyry andesite of Miocene age. Discontinuous banded-quartz–carbonate vein system in Karayarik and Germe Tepe form a major NE-trending, 2 km long and up to 30 m thick zone dipping 60 to 90° SE. Related shallowly dipping (up to 30°) splay veins, up to 20 m thick, are located SE of this main vein system (Colakoglu, 2000). These splay veins may be precipitated from ore-forming fluids ascending along the high-angle feeders and bleeding out. Veins consist of common breccia, cockade, banded, and banded quartz after calcite textures (Fig. 12A–F), and have Fe- and Mn-oxide rich zones. Silicification with chalcedonic quartz, carbonate alteration with ankerite, and argillic alteration with kaolinite and illite occur associated with gold–silver mineralization. Preserved micro fossils, sponge spicules, have been observed on banded quartz-calcte (Fig. 12G). A total of 12 rock-chip samples from the prospect in this study give up to 122 g/t Au, 121 g/t Ag, 150 ppm Ba, 446 ppm Cu, 2.95% Mn, 1270 ppm Pb, and 725 ppm Zn values. Microscopic gold has been observed in high-grade samples (Fig. 12H). Kucukdere Au–Ag deposit (ore shipped to Ovacik processing plant) open pit was mostly mined out between 2006 and 2009. A small discrete orebody called Coraklik Tepe, located a couple of kilometers SW, with 45 koz reserves is planned to be in production by 2013. Kiscakik (Baharlar) with 1 Moz gold resources is the largest LS epithermal deposit with calculated resources in the Biga Peninsula, though the resource is not compliant to international reporting codes. The prospect was discovered by MTA in early 2000s, but contains ancient mine workings. Lithic lapilli tuff with local ignimbrites and quartz–feldspar porphyries of Upper Miocene age are the main host rocks in the prospect. NE-trending mineralized and altered zone containing en-echelon NW-trending structures is approximately 1.5 km long and 0.5 km wide, and contains 4 to 5 mineralized zones. Multi-phase breccias, discontinuous stockwork quartz veins, beige opaline quartz occurring as veins and/matrix in breccia (Fig. 12H and I), and fine-grained sulfides, mainly pyrite and marcasite, are closely associated with gold mineralization. Up to 14 ppm Au in soil, up to 3 ppm Au and 1 ppm Ag in rock samples have been reported from the prospect (Kilik et al., 2004). Drill cores contain up to 65 g/t Au. A total of 11 rock-chip samples from this study give values of up to 0.707 g/t Au.

Akbaba, also known as Madendag, Au–Ag mineralization occurs at the unconformity contact between Pre-Triassic schists and andesite porphyry. A NE-trending silicified ledge with white, cream to gray chalcedonic quartz has mineralization in mostly massive breccia zones. Partly oxidized zones contain abundant disseminated pyrite locally. Gold–silver mineralization is concealed in the prospect due to the presence of a thick weathered zone above the deposit. A small open pit plant was mostly mined out between 2006 and 2009. A small discrete orebody called Coraklik Tepe, located a couple of kilometers SW, with 45 koz reserves is planned to be in production by 2013. Kiscakik (Baharlar) with 1 Moz gold resources is the largest LS epithermal deposit with calculated resources in the Biga Peninsula, though the resource is not compliant to international reporting codes. The prospect was discovered by MTA in early 2000s, but contains ancient mine workings. Lithic lapilli tuff with local ignimbrites and quartz–feldspar porphyries of Upper Miocene age are the main host rocks in the prospect. NE-trending mineralized and altered zone containing en-echelon NW-trending structures is approximately 1.5 km long and 0.5 km wide, and contains 4 to 5 mineralized zones. Multi-phase breccias, discontinuous stockwork quartz veins, beige opaline quartz occurring as veins and/matrix in breccia (Fig. 12H and I), and fine-grained sulfides, mainly pyrite and marcasite, are closely associated with gold mineralization. Up to 14 ppm Au in soil, up to 3 ppm Au and 1 ppm Ag in rock samples have been reported from the prospect (Kilik et al., 2004). Drill cores contain up to 65 g/t Au. A total of 11 rock-chip samples from this study give values of up to 0.707 g/t Au.

Akbaba, also known as Madendag, Au–Ag mineralization occurs at the unconformity contact between Pre-Triassic schists and andesite porphyry. A NE-trending silicified ledge with white, cream to gray chalcedonic quartz has mineralization in mostly massive breccia zones. Partly oxidized zones contain abundant disseminated pyrite locally. Gold–silver mineralization is concealed in the prospect due to the presence of a thick weathered zone above the deposit. A small open pit plant was mostly mined out between 2006 and 2009. A small discrete orebody called Coraklik Tepe, located a couple of kilometers SW, with 45 koz reserves is planned to be in production by 2013. Kiscakik (Baharlar) with 1 Moz gold resources is the largest LS epithermal deposit with calculated resources in the Biga Peninsula, though the resource is not compliant to international reporting codes. The prospect was discovered by MTA in early 2000s, but contains ancient mine workings. Lithic lapilli tuff with local ignimbrites and quartz–feldspar porphyries of Upper Miocene age are the main host rocks in the prospect. NE-trending mineralized and altered zone containing en-echelon NW-trending structures is approximately 1.5 km long and 0.5 km wide, and contains 4 to 5 mineralized zones. Multi-phase breccias, discontinuous stockwork quartz veins, beige opaline quartz occurring as veins and/matrix in breccia (Fig. 12H and I), and fine-grained sulfides, mainly pyrite and marcasite, are closely associated with gold mineralization. Up to 14 ppm Au in soil, up to 3 ppm Au and 1 ppm Ag in rock samples have been reported from the prospect (Kilik et al., 2004). Drill cores contain up to 65 g/t Au. A total of 11 rock-chip samples from this study give values of up to 0.707 g/t Au.

to young volcanic cover rocks. Therefore, potential of finding hidden orebodies in the prospect is likely. Akbaba lacks banded-quartz–carbonate veins, unlike other LS epithermal systems. Up to 9.53 g/t Au and 6.23 g/t Ag values in rock-chip samples have been detected from a total of 8 samples in this study.

Madendag, located approximately 1.5 km S of Akbaba, is an ancient and historical mine, and is hosted by Pre-Triassic mica schists. Although porphyry andesites of probable Lower Miocene age are exposed in the prospect, they are post-mineral subvolcanic intrusives. No genetically related magmatic rocks crop out in the prospect. The
prospect consists of two mineralized zones, main zone with old workings containing 5 quartz veins, and unexplored Kaletas (Meydan) Tepe zone in the SW. Main gold mineralization is related to 110-striking vein dipping steeply SW with breccias (No:1 Vein; Higgins, 1962), ESE- and SSE-trending, locally banded and lenticular veins contain breccia and stockwork zones. Two vein sets at Kaletas, 145- and 110-striking and steeply dipping, occur as concordant and discordant to schistosity. Vein sets consist of milky and vitreous quartz with local breccias. No up to date resource data on the prospect, but historical data indicates a small orebody with 15 kt at 5.8 g/t Au (Higgins, 1962). Up to 11.1 g/t Au and 10.55 g/t Ag values were obtained in rock-chip samples in this study, total of 12 samples. There is extensive old surface and underground workings in the prospect, 2 adits totaling 900 m, 4 shafts and inclines totaling 400 m (Molly, 1961).

Elmali prospect consists of NW-trending major quartz-veins intersected by a series of N-trending quartz veins, which are hosted by lapilli tuffs of Middle Miocene and limestones of Permian age at the contact with Paleozoic age schists. NW-trending zone of mineralization with anomalous Au (> 1 ppm in rock and > 10 ppb in soil) extends discontinuously for 3 km. LS quartz veins with chalcedonic quartz as well as local bladed quartz after calcite and brecciation have Au and Ag values up to 20 g/t and 25.8 g/t respectively in rock samples. Total of 4 core holes totaling 300.8 m were drilled in the prospect, of which best interception is 6.1 m at 6 g/t Au including a subinterval of 2.6 m at 13.2 g/t Au (Eurasian Minerals News Release, 02.17.2009).

Kestanelik LS epithermal prospect with ongoing exploration, a part of the Sahinli prospect, is located in the northern Biga Peninsula, and is hosted by volcanic and sedimentary rocks of probably Eocene age, and Paleozoic schists. NE- and E-trending vein system mainly at Kara Tepe and Kovanlik Tepe is exposed over an aggregate strike length of approximately 2.5 km. Major mineralized quartz veins with up to 15 m thickness include K3 with over 520 m strike length, K2 with over 100 m strike length, K1 with over 235 m strike length, and Karakovan-W. Mineralized zones contain bonanza grade gold values, especially in oxidized zones, for example up to 4.5 m at 31.48 g/t Au in rock-chip channel samples in K3 vein. However, most of the high-grade mineralization is limited to shallow level (extending to a depth of more than 50 m) oxidized zone, and therefore, could be nugget effect, which is more the norm than the exception throughout the upper parts of vein systems. There is a sharp decrease in the ore grade after this depth. Best interception in the drill holes is 6 m at 15.44 g/t Au (Chesser News Release, 03.23.2010). A new zone called Meydan with bonanza-grade gold mineralization on the surface outcrops contains up to 419 g/t [12.2 opt] Au.

Adatepe prospect in the northern Biga Peninsula, one of the prospects generated during the course of this project, is hosted by lithic lapilli tuff with metamorphic quartz and schist clasts and ignimbritic andesite phyorphy of Eocene, and schists of Paleozoic age. Prospect has a N-trending, main mineralized zone, bending NWW, approximately 0.6 km long and 0.2 km wide, forming a prominent ridge. Si-lification with chalcedonic and opaline quartz surrounded by argillic alteration is closely associated with mineralization. Veins with polymict breccia zones have gold mineralization up to 1.26 g/t Au with anomalous As and Ba in rock-chip samples, 1860 ppm As and 340 ppm Ba respectively, total of 6 rock-chip samples.

4.2.3. IS deposits and prospects

Most of the known IS deposits and prospects, such as Sahinli, Tesbihdere and Korus, are associated with Eocene volcanic rocks in the northern Biga Peninsula, and a deposit, Arapucandere, is located in the eastern Biga Peninsula (Fig. 7). Some of the IS style epithermal deposits and prospects in the Biga Peninsula, as well as in Turkey, are not well recognized and characterized, and therefore are included in the epithermal clan.

Korus Pb-Zn–Ag–Au mine, started production in 1959, is associated with andesitic lava and pyroclastic rocks and spherulitic rhyolite domes of probably Eocene age. The deposit consists of a main orebody with two different producing zones called Eskikisla and Tahtalikuyu with many small mineralized zones. NW-trending veins dipping moderately SW (50–210° dip and dip direction), up to 5 m thick and 200 m long with at least 80 m down dip extension. These veins form a WNW-trending zone, and are cut and offset by NE-trending faults. Veins, stockworks, breccias and fracture-controlled orebody consists of mainly sphalerite, galena, pyrite and chalcopryite with accompanying quartz, barite and calcite gangue, barite rich zones can be potentially economical, e.g., 9.4 Mt at 31% BaSO4. Up to 3.2 ppm gold-bearing zones associated with quartz-adularia were reported. Fluid inclusion studies from limited samples of Tahtalikuyu and Eskikisla orebodies show that primary inclusions in sphalerite have salinities ranging from 2.07 to 9.99 wt.% NaCl equivalent with homogenization temperatures ranging from 120 to 160 °C. Primary inclusions in barite have salinities ranging from 6.02 to 11.09 wt.% NaCl equivalent with homogenization temperatures up to 80 °C (Bozkaya and Gokce, 2001). Secondary fluid inclusions in barite have homogenization temperatures of up to 270 °C. Sulfur isotope studies (Bozkaya and Gokce, 2009) on limited samples (n = 6) from mainly vein ore from Tahtalikuyu and Eskikisla with one sample from stockwork zone indicate δ34S values ranging from −4.0 to −0.1% in sphalerite and galena and 14.9 to 17.3% in barite, indicating different source for sulfur in sulfide and sulfate minerals, magmatic and sedimentary or Cenozoic sea water respectively. Lead-isotope compositions (206Pb/204Pb, 207Pb/204Pb and 208Pb/206Pb) of galena give model ages ranging from 70 to 1 Ma for the reservoir, compatible with the age of Cenozoic magmatic activity. The geochemical studies mentioned above failed to classify the Korus deposit genetically.

Sahinli precious and base metal system is hosted by andesitic and dacitic volcanic rocks including ignimbrites, basaltic volcanic rocks of probably Eocene age, which are intruded by andesite porphyry and rhyolitic lava domes and basaltic dikes. Approximately 3.4 km long NE-trending discontinuous vein zone with mainly NE-trending lenticular veins, dipping 50–80° SW, though some of the veins strike E and N. Quartz veins containing stockwork and breccia zones are up to 900 m long and 10 m thick with average thickness of 3 m, and have approximately 250 m down-dip extension (Yilmaz et al., 2010). Silicification and argillic alteration with illite/muscovite, mixed-layer illite/smectite are associated with base- and precious-metal mineralization. Barren probably post–ore advanced argillic alteration with alunite, dickite/nacrite and pyrophyllite is also present. Pyrite, galena, Fe-poor sphalerite with minor chalcopryite, Sb–Ag–tetrathedrite and electrum are the main ore minerals with quartz, chalcedony and barite gangue. Supergene minerals include digenite, chalcocite, covellite, covellite.
and cerussite. In the prospect there is an unambiguous Au–quartz and Ag-base-metal (galena) association. Additional placer gold mineralization in Miocene–Pliocene conglomerates, agglomerates and tuffs as well as Plio–Quaternary terraces are reported from the prospect (Yildirim and Cengiz, 2004). Though the prospect is claimed to have multiple million ounces of unclassified gold resources, real gold reserve and/or resource estimate is unavailable for the prospect. Mean homogenization temperatures in fluid inclusions from main stage quartz at Sahinli vary from 241 to 280 °C, mainly concentrated between 250 and 300 °C, and salinity values are between 4.3 and 6.9 wt.% NaCl equivalent. Fluid inclusion and isotope studies ($\delta^{18}O$, $\delta^{34}S$ and $\delta^{3}D$) of the ore forming fluids indicate that two fluid mixings, meteoric and sub-ordinate magmatic, are the main mechanism for metal precipitation, with no supportive evidence for boiling in the system (Yilmaz et al., 2010).

Tespıdhire deposit, another example of the IS style-epithermal deposit, is located SE of the Korus mine. The relatively higher average homogenization temperatures (295 °C) in fluid inclusions measured at the Tespıdhire deposit may indicate a relatively deeper part of the epithermal system (Yilmaz et al., 2010).

Arapucandere (Kor Maden) underground Pb–Zn–Cu–Ag–Au mine, intermittent production since 1972, is hosted by metasandstone and metadiabase dikes and sills of Permian to Triassic age, near dacitic and granitic rocks of Oligocene and Miocene age respectively. In the Arapucandere mine there are a total of 5 major economical veins, namely Veins I to V, from NW to SE. Structurally controlled veins strike E and NE. However, E-striking veins are more economical, such as Veins IV and V, dipping 50° S, 2 m thick and 400 m long and 1.5 m thick and 110 m long respectively. Other important veins are located approximately 1.25 km SE of Arapucandere mine, Somas Maden area. Galena, sphalerite, chalcopyrite and pyrite with quartz, calcite and barite gangue are the main mineral assemblages in the veins with minor amounts of marcasite, covellite, and specular hematite. Sulfidification, sericitization and argillic alteration with local halloysite is closely associated with veins. Development of tremolite–actinolite, epidote and chlorite in metadiabase in some areas, such as Vein V, may indicate skarnified host-rocks. Geochemical analyses of 3 samples in this study from Vein V give values up to 10.5% Cu, 9.66% Pb, 7.47% Zn, 558 g/t Ag, 1160 g/t Au, 2340 ppm Bi, 354 ppm Cd, 335 ppm Co, 374 ppm Mn, and 215 ppm W. Two-phase, liquid–vapor inclusions from main-stage sphalerite and quartz give an average 295 °C (ranging from 229 to 384 °C) and 303 °C (ranging from 242 to 438 °C) respectively with inferred salinity values ranging from 1.8 to 18.5 wt.% NaCl equivalent (Orgun et al., 2005). A later study (Bozkaya et al., 2008) with direct salinity measurements from samples indicated that primary fluid inclusions in sphalerite range from 14.0 to 34.0 wt.% NaCl equivalent with average value of 25.3% in 85 measurements, and primary inclusions in quartz range from 13.6 to 25.5 wt.% NaCl equivalent with average value of 22.7 wt.% NaCl equivalent in 57 measurements, which is slightly lower than mineralizing fluids. The same study indicated homogenization temperatures, without pressure correction, of 276.3 to 319.7 °C with 301.4 °C average value (n = 11) in primary inclusions in sphalerite, 150.2 to 306.7 °C with 240.2 °C average value (n = 21) in primary inclusions in quartz, and 206.1 to 321.9 °C with average value of 263.6 °C (n = 19) in primary inclusions in calcite. Sulfur isotope studies from galena and pyrite in a total of 13 samples with 13 measurements give $\delta^{34}S$ values ranging from −5.2 to −1.2‰, with average values of −3.95 and −2.24‰, respectively, and suggest a magmatic source (Orgun et al., 2005). A recent study (Bozkaya, 2011) with a total of 20 measurements from 12 samples gives similar sulfur isotope values with a wider range for galena, sphalerite and chalcopyrite from mainly Veins IV and V, ranging from −9.94 to −0.8‰, with average values of −3.86, −4.22 and −2.56‰ respectively. Lead–isotope compositions $^{206}Pb/^{204}Pb$, $^{207}Pb/^{204}Pb$ and $^{208}Pb/^{204}Pb$ of galena from the same veins in the same study give model ages of 114 to 63 Ma, which may indicate lead derivation from Triassic host rocks. The $\delta^{18}O$ from quartz crystal and $\delta^{3}D$ from fluid inclusions, ranging from 2.3 to 4.9‰ and −90 to −55 respectively, indicate that mineralizing fluids were slightly modified meteoric water (Bozkaya et al., 2008). None of the geochemical studies mentioned above classified the Arapucandere deposit genetically.

5. Other deposit types

5.1. Distal-disseminated Au–Ag deposits

Carbonate-rock hosted Kızıldağ and Findikli Au–Ag prospects, with many affinities to Carlin-type gold deposits, in the eastern Biga Peninsula (Fig. 13) can be classified as sedimentary-rock hosted distal disseminated Au–Ag deposits. Antimony Au–Ag mineralization at Kızıldağ occurs at the contact between limestones, containing slumped breccias, and andesitic porphyry, Upper Jurassic to Lower Cretaceous and Oligocene age respectively. A nearby granitic intrusion is located approximately 1.6 km NW. Prospect is long-time known for old Sb workings (Yuce, 1978), but Au–Ag potential has only been considered recently. NE-trending mineralized zone with an E-trending vein is approximately 1.5 km long, containing reported Sb showings in 4 different areas. Veins, veinlets and breccias, containing locally banded and drussy quartz and cockade texture, contain stibnite and arsenian pyrite. Sulfidification, characterized by jasperoid formation, decalcification and argillic alteration are closely associated with Au–Ag–As–Sb mineralization. Argillically altered zones with fine-grained disseminated arsenian pyrite contain gold mineralization up to 1.8 g/t Au and 1.24 g/t Ag. A total of 9 rock-chip samples taken from the prospect in this study give values up to 4.25 g/t Au, 4.52 g/t Ag, 9190 ppm As, 170 ppm Ba, 30.9 ppm Mo, 123 ppm Sb, and 11.15 ppm Te. Gold is probably associated with fine-grained disseminated arsenian pyrite. Findikli, located to the NE, is another sedimentary-rock hosted gold prospect, similar to Kızıldağ. Findikli also contains anomalous Mo values up to 46.1 ppm.

5.2. Orogenic Au deposits

Biga Peninsula contains examples of two subcategories of the orogenic gold deposits in Turkey: mesothermal and listwanite-hosted. Mesothermal gold deposits and prospects in Turkey are mainly associated with pre-Mesozoic masifs, especially the Menderes Massif containing many prospects with small discontinuous quartz veins. Listwanite-hosted deposits are hosted by ophiolitic ultramafic rocks, mainly serpentinites, and are related to thrust faults, normal faults, and shear zones. These structures are favorable loci for high-fluid flow, and related mineralization accompanied with silica-carbonate alteration (listwanitization) and typically postdates the serpentinization process (Yigit, 2006, 2009). Tuztasi prospect, hosted by metamorphic rocks of the Kazdağ Massif, and Alakeci hosted by listwanitized ophiolitic rocks could be examples of these subcategories respectively (Fig. 13).

Tuztasi Au–Ag prospect is located at the NE end of approximately 8 km long NE-trending shear-zone of Au-quartz veins, and consists of 3 major NE-trending veins dipping 20 to 40° NW, 6 to 12 m thick and up to 1.2 km long. Gold–silver mineralization is hosted by Paleozoic gneiss and schist of Kazdağ Massif and is closely associated with siliceous and argillic alteration. Mineralized veins with drusy to scaccharoidal quartz and breccias with cockade textures contain Au–Ag mineralization associated with pyrite and arsenopyrite. The prospect contains >1600 ppb Au in soil samples (Yilmaz, 2007). Total of 8 rock-chip samples from the prospect in this study show up to 2.68 g/t Au, 145 g/t Ag, >10,000 ppm As, and 176 ppm Sb values. Though the prospect is classified as epithermal based on mainly silica textures, it is deduced that orogenic gold mineralization in the prospect could be remobilized during the Latest Oligocene Kazdağ metamorphic core complex formation, causing epithermal signatures. Listwanite hosted gold at Alakeci is associated with ophiolitic ultramafic rocks.

Please cite this article as: Yigit, O., A prospective sector in the Tethyan Metallogenic Belt: Geology and geochronology of mineral deposits in the Biga Peninsula, ..., Ore Geol. Rev. (2012), doi:10.1016/j.oregeorev.2011.09.015
of Upper Cretaceous age. Anomalous Au–Ag as well as Co–Ni–Cr values are present in the silicified and listwanitized ultramafic rocks.

5.3. Volcanogenic Mn deposits

Most of the volcanogenic Mn deposits and prospects are related to mainly Eocene volcanic activity in the northern Biga Peninsula (Fig. 13). Most of them contain small resources (~0.1 Mt ore regardless of grade) and some of them were worked during, before and after WWI, i.e., Ilyasli and Medentepe (Temasalik). There is no recent mining activity in any of the prospects.

5.4. Volcanogenic U deposits

Kucukkuyu is the only known volcanogenic uranium mineralization in the Biga Peninsula, and is hosted by tuffs and tuffites of Middle-Upper Miocene Arikli Member of the Kucukkuyu Formation (Figs. 2 and 13). Uranium mineralization is associated with the phosphate mineral dahlite. Total of 250 t of U₃O₈ was defined in the prospect in the 1970s with average grade of 0.08% U₃O₈ or 0.8% U₃O₈ (depending on the data source), no recent work has been done in the prospect.

5.5. Lateritic Fe deposits

Iron deposits and prospects in the Biga Peninsula, spatially related to Miocene andesitic subaerial volcanic rocks, are reported as sedimentary exhalative (SEDEX) or volcanogenic sedimentary (Cihnioglu et al., 1994), or transported laterite deposits (Gumus, 1999). However, the majority of these should be properly classified more accurately as ferricrete formations. Lateritic deposits are mainly residual or in-situ formations by definition, unlike ferricrete formations which mainly contain somewhat transported clasts and Fe-oxide cement materials (relatively short distance). These unique economical iron deposits of epicontinental setting are common in the Biga Peninsula (Fig. 13), and are mostly associated with talus breccias as in Kuscayiri, or small fault-controlled basins over the altered or unaltered Miocene volcanic rocks as in Egmir deposits. Some of the deposits contain siliceous sinters along the faults, but they are thought not to be related to iron deposition. Egmir and Kuscayiri deposits are the typical examples of this type.

Egmir open pit deposits, consisting of Buyukegmir and Kucukegmir orebodies, lie over the altered andesite porphyry, andesite tufts and agglomerates of Upper Miocene to Pliocene age. The district was discovered in 1951 and there has been intermittent production since 1953. NE-trending orebody in Buyukegmir deposit is 1.4 km long, 60–300 m wide and average 18 m thick, up to 45 m. The deposit...
contains hematite matrix volcanic blast breccias with local stratiform and massive hematite with minor amounts of pyrite, traces of rutile and barite. A layer of kaolinite is formed at the base of the orebody, and silicic alteration in the volcanic rocks is probably not related to iron deposition. The deposits contain hematized fossil plants. Buyukemir or has high As content and Kuckemir orebody, located 400 m S of Buyukemir, is mined out.

Kuscayiri [0.369 Mt at 39.62% Fe and 39.69% SiO2] is another ferricrete formation with andesite porphyry clasts and andesitic agglomerates cemented by hematite and goethite. NW-trending discontinuous orebody with past production is stratiform and approximately 1 km long. Hematite–goethite matrix talus breccia is most probably associated with extension-related regional uplifting during Upper Miocene to Pliocene. Due to low grades and high SiO2 content, there is no current production. Camoba [0.202 Mt ore grading 52.17% Fe and 12.86% SiO2] is another example of this type of deposit. Past production came from 3 open pits in the mine.

5.6. Placer deposits

Beach sands of Holocene age in the Geyikli prospect host the only known placer in the Biga Peninsula (Fig. 13), and contain U and Th with high-radiation values. Heavy mineral concentrates in the beach sands, ranging 7 to 50%, have non-magnetic minerals like unanorthorite (containing 25% UO2), thorianite, uraninite, titanite, zircon, apatite, corundum, anatase and thorite (Andac, 1971; Andac and Mucke, 1975). Source for the radioactive minerals is most probably the Kestanbol Pluton to the east.

6. Mineral reserves and resources

Gold, Ag, Pb, Zn, Fe and Sb are the preeminent metals in most of the producing metal mines in the Biga Peninsula (Table 1) excepting historical Cu, U, Mn and Mo production. Table 1 shows geological characteristics and reserve and/or resource data for significant deposits and prospects with more than 0.2 Moz gold or > 0.5 Mt ore regardless of grade. Majority of current exploration and development efforts are concentrated on the Au (Ag) and Cu deposits and prospects as well as Pb–Zn (Au–Ag).

Total gold endowment of the Biga Peninsula is 9.18 Moz gold [2842 t] contained in twelve different deposits and prospects including unclassified resources as well as by-product gold. Six of which, Hallilaga, Agi Dagi, Kirazli, Sahinli, Kiscak, and Akbaba are epithermal and porphyry type gold deposits and contain significant gold (>0.3 Moz or 10 t) resources (Table 1).

7. Geochronology

7.1. Ar/Ar dating method

Radiometric dating of selected samples of mineralization, alteration and host-rock were carried out in Actlabs in Canada, using the following techniques. The samples wrapped in Al foil were loaded in an evacuated and sealed quartz vial with K and Cs salts and packets of LP-6 biotite interspersed with the samples to be used as a flux monitor. The sample was irradiated in the nuclear reactor for 48 h. The flux monitors were placed between every two samples, thereby allowing precise determination of the flux gradients within the tube. After the flux monitors were run, J values were then calculated for each sample, using the measured flux gradient. LP-6 biotite has an assumed age of 128.1 Ma. The neutron gradient did not exceed 0.5% on sample size. The Ar isotope composition was measured in a Micro-mass 5400 static mass spectrometer. 1200 °C blank of 40Ar did not exceed n 10–10 cm3 STP (Standard Temperature and Pressure).

7.2. Age of magmatism, mineralization and alteration

Though many radiometric age dates (mainly K/Ar and some Ar/Ar) are available for the magmatic rocks of the Biga Peninsula (Fig. 6, references therein), lack of age dating for mineralization and alteration makes metallogenic and geochronological studies difficult. In many instances age of the mineralized system is inferred from age of causative magmatic activity. In many areas the relationship between mineralization, and host and wall rocks is not clear due to pervasive hydrothermal alteration. Thus, inferred ages of mineralization are debatable in most cases.

40Ar/39Ar step-heating age dating was performed on suitable samples taken from Agi Dagi, Kartaldag, Kuscayiri and Alankoy prospects (Table 2). Priority was given to the samples from important prospects in terms of economics and exploration, e.g., HS epithermal and porphyry. All of the samples were taken from surface outcrops, except Agi Dagi. Core sample from Agi Dagi prospect came from 121 m depth of a diamond drill hole immediately northeast of Baba Dagi Zone. In many prospects, suitable mineral samples for age dates were not found. Four alunite samples were chosen from vuggy silica and advanced argillic alteration of the HS epithermal systems and one hornblende sample was taken from the causative granodiorite intrusive in Alankoy porphyry/epithermal prospect, which has weak propylitic alteration (Table 2). Using textural and paragenetic relationships hypogene alunite samples were chosen for analyses, and then samples were checked on transmitted light microscope and then on SEM. All of the samples yielded age spectrum with well-behaved plateaus, and gave precise weighted mean plateau ages (WMPA) (Figs. 14–18).

Interpretation of the 40Ar/39Ar step-heating age dates incorporated with other available age data indicates that at least two phases of HS epithermal gold mineralization and at least three phases of porphyry Cu–Au–Mo mineralization occurred in the Biga Peninsula (Fig. 6). Continuous mineralization in any of these phases of a particular deposit type is not implied. Late Eocene age early phase in HS epithermal systems is characterized by Kartaldag and Kuscayiri prospects. An alunite sample from Kartaldag prospect gives 38.8 ± 0.7 Ma WMPA and 38.8 ± 1.1 Ma inverse isochron age (IIA), while an alunite sample from Kuscayiri prospect gives 38.2 ± 0.5 Ma WMPA, and 39.4 ± 0.6 Ma IIA. This early phase is probably related to emplacement of the Kuscayiri Pluton, K/Ar ages in hornblendes ranging 35.7 to 39.4 Ma (Fig. 6). Secondary
younger phase of the HS epithermal mineralization and alteration occurred in Early Oligocene, and dominates the early phase. This phase formed the largest HS systems, such as Agi Dagi, not only in Biga Peninsula, but also in Turkey. An alunite sample from Agi Dagi gives 26.4±0.9 Ma WMPA, and 25.8±1.4 Ma IIA, while an alunite sample from Alankoy HS system gives 27.9±0.2 Ma WMPA, and 27.5±0.3 Ma IIA. Previous K/Ar ages from whole-rock quartz-alunite alteration at Alankoy prospect are 30.7±1.5 and 13.6±1.7 Ma, which may indicate a much younger phase of HS or supergene alteration. Kirazli prospect and Balya deposit also correspond to this phase of mineralization in the Biga Peninsula. At Kirazli whole-rock age of quartz-alunite alteration, though it may not be reliable, gives 30.7±1.5 Ma. At Balya, whole-rock age from unaltered host-rock hornblende andesite gives 24.8±1.2 Ma while argillic–phyllitic alteration zone, and argillic–phylllic alteration overprinted by advanced argillic alteration give 24.7±1.2 Ma and 26.3±1.3 Ma respectively (Agdemir et al., 1994).

The oldest phase of the three-phased porphyry Cu–Au–Mo mineralization in the Biga Peninsula is characterized by Dikmen and Çakılıkı prospects related to Dikmen and Karabiga stocks (Fig. 6 and references therein). Though age of the mineralization is not known in Dikmen prospect, radiometric age dating of the Dikmen granodiorite gives 46.6±2.3 Ma to 51.9±2.6 Ma, K/Ar whole-rock. Middle phase is characterized by Early Oligocene Alankoy granodioritic stock. Hornblende separates from Alankoy granodiorite gives 32.7±0.7 Ma WMPA, and 28.3±2.6 Ma IIA, though the large errors and very high 40Ar/39Ar ratio should be noted. It is believed that porphyry mineralization associated with Alankoy stock is most probably closely related to Alankoy HS epithermal prospect. In other words, vuggy silica and advanced argillic alteration zones in the Alankoy HS system form a lithocap on the subjacent porphyry system. If such a genetic relationship exists, IIA of hornblende from Alankoy granodiorite system is more accurate, 28.3±2.6 Ma IIA cooling age vs. 27.9±0.2 Ma WMPA advanced argillic alteration age. The youngest Late Oligocene porphyry phase is characterized by Tepeoba prospect and related plutonism. Direct age dating of the molybdenite in Tepeoba using Re/Os method indicated Late Oligocene age with 25.03±0.14 Ma and 25.11±0.14 Ma for veins surrounding breccia and 25.62±0.09 Ma for breccia (Murakami et al., 2005). In the same study, K/Ar ages indicated 23.8±1.2 and 23.8±1.4 Ma for phlogopite in breccia, and 22.8±1.4 Ma and 24.6±1.4 Ma for muscovite surrounding the breccia. K/Ar ages in the causative intrusions indicated that biotite from granodiorite gives 20.3±1.0 and 21.4±1.2 Ma while K-feldspar in granite gives older ages, 34.7±2.0 Ma.

8. Metallogenic considerations

Metallogenic correlations of Turkish mineral deposits within the TMB were discussed in some detail by Yigit (2006, 2007a, 2007b, 2009). Metallogeny of the Biga Peninsula has been mainly shaped by Cenozoic magmatic-related mineral deposits and prospects. Biga Peninsula metallogeny, a part of the Anatolide porphyry–skarn–epithermal belt (Yigit, 2006, 2009), extends westwards to the Oligo-Miocene Serbomacedonian-Rhodope metallogenic belt (Heinrich and Neubauer, 2002; Marchev et al., 2005a) of Balkan Peninsula of SE Europe (Fig. 1, inset). Serbomacedonian-Rhodope belt contains porphyry (e.g., Skouries, Buchim, Maronia), epithermal (e.g., Perama Hill, Madjarova), CR (e.g., Olympias), and detachment-fault related (e.g., Ada Tepe) deposits and prospects. Maronia porphyry mineralization with 29.8±25 Ma volcanic rocks, and HS and IS epithermal mineralization and alteration in Madjarova district have temporal relations to the similar phases of mineralization and alteration as exist in the Biga Peninsula (Marchev et al., 2005a, Rice et al., 2007). Carbonate-hosted Olympias (Klias et al., 1996) deposit could be an analogy to Papazlik Pb–Zn (Au–Ag) deposit in the Biga Peninsula.

Age of the main precious and base metal epithermal deposits in the Rhodope Massif is clustered in mostly Early Oligocene rocks, 30
to 33 Ma (Marchev et al., 2005a; Moritz et al., 2010). The oldest volcanic rocks in the Eastern Rhodope Massif have 34.62 Ma Ar/Ar ages, which is very similar to initiation of the volcanism in the Biga Peninsula with Can Volcanics, 34.3 Ma K/Ar ages, except one K/Ar age from Baliklicesme Volcanics which is 37.3 Ma (Fig. 6 and the references therein). Recent Ar/Ar age data (Moritz et al., 2010) indicated that IS and HS epithermal systems in the eastern Rhodopes formed within a very short time frame, 31.2 to 32.13 Ma Ar/Ar. This mineralizing event may be characterized by Kirazli and Alankoy HS epithermal systems in the Biga Peninsula, 27.9 to 30.7 Ma (Fig. 6).

The earlier, Late Eocene phase, of HS epithermal gold systems in the Biga Peninsula (Kuscayiri: 38.2, Kartaldag: 38.8 Ma) appears to be missing in the Rhodopes. However, Late Eocene (34.71–37.55 Ma Ar/Ar) mineralizing event is characterized by sedimentary-rock hosted LS epithermal systems in the Rhodope Massif (e.g., Ada Tepe) (Moritz et al., 2010). However, Ada Tepe is related to detachment-faults formed as a result of core-complex development, rather than magmatism (Marchev et al., 2005b). In the Biga Peninsula, existence of similar systems is not reported, but detachment-fault related gold deposits are known in western Turkey (Yigit, 2006; 2009).

Base-metal skarns in the Yenice district could be comparable to polymetallic Pb–Zn–Ag deposits in the Rhodope Massif (e.g., Madan; Marchev et al., 2005a). Though there are no available radiometric ages for correlations, age of the intrusions in the district is mainly Oligo-Miocene (29.2 ± 1.6 to 18.8 ± 1.3 Ma). At Madan Paleozoic metamorphic-rock hosted mineralization is related to Early Oligocene dike swarms and ignimbrites (Vassileva et al., 2005).

Neogene Inner Carpathian Metallogenic belt of Apuseni and Metaliferi Mountains of Transylvania, Romania, containing the Golden Quadrilateral (e.g., Rosia Montana) (Heinrich and Neubauer, 2002), could correlate with Miocene epithermal systems in the Biga Peninsula. Ophiolite and ophiolitic melanges of Jurassic to Cretaceous, potentially important especially for listwanite-hosted gold, and lateritic Ni–Co deposits in the Biga Peninsula, extend westwards to Greece, Albania, Serbia, Montenegro, and Bosnia-Herzegovina in SE Europe.

Please cite this article as: Yigit, O., A prospective sector in the Tethyan Metallogenic Belt: Geology and geochronology of mineral deposits in the Biga Peninsula, ..., Ore Geol. Rev. (2012), doi:10.1016/j.oregeorev.2011.09.015
Yigit (2006 and 2009) emphasized a close relationship between intrusive and related mineralization, and the Aegean Trench rollback. The Aegean Trench in the south appears to control the dominantly east-trending porphyry and/or metallogenic belts in Turkey, a fact that is overlooked in many studies. A conspicuous west–northwest trending intrusive and related porphyry deposit belt, called the Anatolides Metallogenic Belt, overprints the general tectonic fabric of Turkey, and cuts across the Sakarya Zone, the Izmir–Ankara–Erzincan Suture and Central Anatolian Crystalline complex. Furthermore, both magmatic and volcanic rocks have younging ages from north to south since Cretaceous, supporting a single subduction model with a south migrating arc. Porphyry deposits as well as causative intrusions have a younging age from north to south in the Biga Peninsula. If this single subduction model is the case (Jolivet and Brun, 2010), angle of the subduction may control the composition of the magmatic rocks and distribution of the deposits, in contrast to other models (e.g., tectonic escape, back-arc extension or orogenic collapse models; discussed in Yigit, 2006).

When compared to the Mo rich porphyry deposits of the world, with the exception of Bingham and Ok Tedi, Dikmen porphyry prospect has unusually high Au values as is usual in Turkish porphyries (i.e., Kisladag) or other porphyry deposits in the TMB (i.e., Skouries) (Yigit, 2006; 2009).

9. Implications for mineral exploration

9.1. Regional to district scale

Though numbers of producing mines are limited in the Biga Peninsula, types of the deposits as well as size of the new HS epithermal
and porphyry Cu–Au discoveries can be compared to major mineral belts in other parts of the world. Studies on the prime metallogenic belts indicate that orogenic belts with proven metallogenic credentials or new domains of the orogenic belt predisposed to exceptional metal endowment have high-potential for mineral exploration (e.g., for gold, Sillitoe, 2008). Therefore, Biga Peninsula with proven metal endowment forms a prolific sector for future mineral exploration within TMB. Based on the current discoveries and metallogenic analyses, gold and copper are the primary targets for mineral exploration. However, base-metal as well as iron endowment of the district should not be underestimated.

Amount of silica in the Biga Peninsula can only be comparable to systems like the Late Miocene Yanacocha district of Peru. However, Biga Peninsula contains much larger silicic alteration cells compared to Yanacocha, which is roughly 15 × 20 km (Bell et al., 2005). In the Biga Peninsula, surface geochemical sampling of these large silicic alteration zones substantiated that in many areas they are barren in terms of gold mineralization. It should be kept in mind that the leached caps of the buried gold deposits in Yanacocha district also do not have any surface gold geochemical signatures. At the surface, gold is depleted, and Hg, Sb, and As are enriched. In exposing gold deposits, gold positively correlated with Ag, As, Ba, Bi and Hg (Bell et al., 2005). Therefore, many prospects with extensive silica zones, e.g., flat-lying silica zones at Sarıdağ prospect, or many industrial mineral prospects containing silex and kaolinite deposits in many areas, should be evaluated for their epithermal gold potential. Furthermore, these flat-lying massive silica zones could form an aquitard for later mineralized fluids, as in Kirazlı and Ağı Dagi.

Caldera structures in many areas spatially control distribution of epithermal mineralization, e.g., Kirazlı and Kartaldag calderas. Caldera bounding ring fractures are the main loci of the flow domes, which, in turn, control the gold mineralization at the margins. Though there are no detailed geological studies on the volcanic successions and facies of the caldera formations in many areas, low erosional rates enable recognition of distinct morphological circular patterns (based on GIS geospatial analyses, gold and copper are the primary targets for mineral exploration. However, base-metal as well as iron endowment of the district should not be underestimated.

Yanacocha district existence of metamorphic rocks containing abundant carbonate levels are the other favorable factor for formation of skarn deposits. Yenice district skarn deposits may have genetically related porphyry potential, though they are mainly explored for their base-metal content. Thus Cu–Au–Mo potential of the district should be evaluated. It should be kept in mind that many proximal skarn deposits with absence of hydrous, retrograde overprints, which commonly contains magnetite, actinolite, epidote, chlorite, smectite, quartz, carbonate and iron sulfides, are unlikely to host significant Cu–Au deposits (Meinert et al., 2003; Sillitoe, 2010).

Skarn deposits are clustered in the Yenice district, mainly associated with Oligo-Miocene intrusions. These intrusives lack coeval volcanic rocks in the district, indicating high-erosional rates that might be a cogent control on the distribution of skarn deposits in the district. In the district existence of metamorphic rocks containing abundant carbonate levels are the other favorable factor for formation of skarn deposits. Therefore, priority target for Au–Cu exploration is the Eocene to Oligocene age volcano-plutonic rocks, especially of ages 38 Ma to 25 Ma.

The unusual nature of the Mo rich porphyry Au deposits is exemplified by Dikmen prospect in the Biga Peninsula. In the early days of exploration by multi-national companies in Turkey this caused some major handicaps as they did not show much interest in porphyry Mo prospects and deposits and thus underestimated their gold endowment.

Northernmost Biga Peninsula is a candidate to form a new district for porphyry and related mineralization, though only a few prospects were generated in this study, e.g., Çakırlı. At Çakırlı, conspicuous high erosional rates and lack of coeval volcanic rocks indicate that a deeper part of the porphyry system is exposed without preserved lithocaps or known related epithermal systems. Furthermore, a few examples of HS epithermal prospects in the volcanic rocks to the north of the Canakkale-Can road, e.g., Dede Dagi and Bodurlar, are associated with flow-dome complexes, and promise a high potential for this type of mineralization.

A close spatial relationship between some of the epithermal systems and Pre-Triassic metamorphic basement rocks exists in the Biga Peninsula, e.g., Madendag, Akbaba, Kartaldag, Kestanelik, prospects. It appears that volcanic structures, e.g., calderas, cutting the metamorphic basement rocks are somewhat more prospective. Studies in epithermal systems such as the Kushikino and Hishikari deposits in Japan suggest that the role of basement metamorphic rocks may be important in the formation of mineralizing systems (Morishita and Nakano, 2008).

Duration of the hydrothermal systems can also be comparable to Yanacocha district of Peru. Available 40Ar/39Ar radiometric age data indicate long-lived, multiple mineralizing and alteration systems in the Biga Peninsula. Differentiated mineralization and alteration phases in the Biga Peninsula based on the limited radiometric age data indicate that causative porphyry intrusions have coeval volcanic and subvolcanic rocks that host HS epithermal systems. This is especially unambiguous for Oligocene systems. Though there are no available radiometric ages in many other epithermal and porphyry prospects, geologically inferred host-rock ages have a similar relationship with the exception of some LS epithermal systems (e.g., Miocene age Kucukdere).

Silicified rocks in the Biga Peninsula with high-resistivity can be identified using geophysical techniques, e.g., induced polarization (IP) with resistivity and chargeability, time-domain electromagnetic (TDEM) and controlled-source audio magnetotelluric (CSAMT), as in other epithermal districts. Flat-lying silica zones can be efficiently determined by CSAMT survey, while IP chargeability can be useful to recognize the oxide-sulfide boundary.

Widespread ash flows with large-volume of ignimbrites of Lower to Middle Miocene age in the Biga Peninsula are not permissive for porphyry and superjacent epithermal gold deposits. Ash-flows, indicative of caldera formation, are the product of explosive volcanism which is not conducive to ore formation due to absence of retained volatiles during pyroclastic eruptions (Sillitoe, 2010). However, these ash flows may host LS style epithermal veins, therefore, should not be ignored in regional exploration programs. In the Can-Etili area ash flows may disrupt the earlier mineralization, as is the case in Chala deposit in the large Borovitsa caldera of the Rhodope Massif (Singer and Marchev, 2000).

Skarn deposits are clustered in the Yenice district, mainly associated with Oligo-Miocene intrusions. These intrusives lack coeval volcanic rocks in the district, indicating high-erosional rates that might be a cognent control on the distribution of skarn deposits in the district. In the district existence of metamorphic rocks containing abundant carbonate levels are the other favorable factor for formation of skarn deposits. Yenice district skarn deposits may have genetically related porphyry potential, though they are mainly explored for their base-metal content. Thus Cu–Au–Mo potential of the district should be evaluated. It should be kept in mind that many proximal skarn deposits with absence of hydrous, retrograde overprints, which commonly contains magnetite, actinolite, epidote, chloride, smectite, quartz, carbonate and iron sulfides, are unlikely to host significant Cu–Au deposits (Meinert et al., 2003; Sillitoe, 2010).

Ophiolitic rocks, locally listwanitized, have great potential for lateritic Ni–Co deposits, as in Daldag in western Turkey. In the Biga Peninsula most of the exploration efforts are concentrated on magmatic rocks, however, potential ore deposits and prospects related to ophiolitic as well as metamorphic complexes covering extensive areas in the Biga Peninsula should not be underrated. Deficiency of mineral deposits and prospects in these rocks is mainly due to lack of exploration.

Ferricrete iron deposits in the Biga Peninsula were formed by easily available iron, such as from widespread specular hematite. Leached iron forms a matrix between angular volcanic clasts, in some areas containing clay-rich zones at the base. These epicontinental lateritic formations are thought to be related to a major regional uplifting event during Upper Miocene to Pliocene in the Biga Peninsula.

Volcanogenic Mn deposits and prospects of the Biga Peninsula do not have much recent exploration activity. Most of them are associated with silicified rocks and epithermal in origin, and thus they should be
evaluated for their epithermal gold potential. Cyprus-type Mn deposits may exist associated with widespread ophiolitic rocks in the Biga Peninsula.

Conceptual Cu–Au exploration is not popular for blind orebodies in Turkey in contrast to other parts of the world, e.g., Great Basin of the US or in the Chilean Andes of S America. Though the country is underexplored and there are plenty of deposits and prospects with surface exposures, potential of the Neogene basins should be evaluated, especially in Biga Peninsula as well as W Turkey. Extensional, thin-skin tectonic regime in W Turkey caused many horst and graben structures to form with infill of varying thickness. In many areas known favorable host-lithologies, especially for porphyry Au–Cu systems, are not projected to graben-fills or pediments. At this stage of exploration in the Biga Peninsula as well as W Turkey, there is a great opportunity to acquire mineral exploration licenses easily over these Neogene sedimentary basins, e.g., Bayramic Graben, unlike in the mountain ranges. Then reconnaissance Au–Cu exploration could be employed using geochemical exploration with partial/selective leach techniques for analyses. This method can also be used to find the extension of LS veins under basin fill, for example Miocene age LS epithermal systems like Kucukdere in Biga Peninsula and Ovacik district in W Turkey.

9.2. Deposit scale

In deposit scale exploration, E-trending discontinuous extensional structural zones containing mineralized and altered zones with silica ledges, are locally important in controlling gold mineralization, i.e., Kuscayiri, Pirentepe, Kartaldag and Hamam Tepe prospects. Origin of these E-trending structures should be elaborated on to further decipher metallogeny of the Biga Peninsula. The incidence of these silica ledges in mineralizing systems should be examined in a geochronological framework.

Silica textures like jigsaw mosaic to feathery (plumose) chalcedonic quartz, e.g., Agi Dagi, indicate a formation temperature between 100 and 180 °C. Reticulate and saccharoidal or reticulate saccharoidal e.g., Kucukdere, Arapucandere, Kisacik and Findikli, indicate a formation temperature above 180 °C (Yigit et al., 2006 and references therein). Common bladed calcite in Kucukdere, commonly replaced by quartz pseudomorphs, may help to locate high-grade zones, because they show concomitant rapid cooling in LS epithermal systems in the boiling zones, which in turn causes loss of CO2 and thus ore deposition. However, some of them may be barren due to marginal water influx late in the life of the epithermal system (Hedenquist et al., 2000).

Pyroclastic rocks with intrinsic permeability favorably control mineralization and alteration, especially silicification. Subhorizontal, tabular massive opaline or chalcedonic silica is the site of paleo-water tables, the characteristic base of steam-heated environment. Preserved minor erosional remnants of steam-heated horizons and theirchalcedonic bases are normally barren and devoid of precious and base metals as well as As and Sb, unless telescoped on the underlying mineralization due to water-table descent, though elevated vapor element (e.g., Hg, F) contents are commonly present. Existence of these zones may indicate mineralized porphyry at depth (Sillitoe, 1999; 2010). Therefore, prospects with preserved steam-heated zones in the Biga Peninsula may indicate subjacent porphyry Cu–Au mineralization, e.g., native-sulfur bearing steam-heated vuggy silica zones at Alankoy prospect.

Conspicuous specular hematite as stockwork veinlets or disseminations in fracture-fill is a good exploration tool in many HS epithermal prospects, e.g, Kirazli, Agi Dagi, Kuscayari, Sarpdağ, and Pirene Tepe. Specular hematite probably forms as a result of magnetite transformation. Abundant magnetite indicating high oxygen fugacities (fO2) is favorable for the formation of gold-rich porphyry deposits (Sillitoe, 1979). Thus, some of these HS epithermal deposits with abundant specular hematite may form a lithocap, and may suggest subjacent blind porphyry Cu–Au mineralization, as in Kuscayiri. Abundant specular hematite may indicate epithermal-porphyry transitional environments as in Maricunga Belt, northern Chile (Muntean and Einaudi, 2001).

HS lithocaps drill tested in many prospects end at barren sericitic or chlorite/sericite alteration zones, however, potential of subjacent blind porphyry mineralization that may exist below has not been tested (Sillitoe, 2010). Many HS epithermal prospects may form superjacent to porphyry deposits or may be telescoped, therefore, A- and B-type veinlets in sericitic and/or advanced argillic zones may still be recognized due to their refractory nature, if they developed in the potassic alteration zone. Porphyry style stockwork zones at the Aladag prospect are considered to be related to Kirazli HS system. Kocayayla district with known base metal deposits contains anomalous stockwork zones indicative of porphyry systems. Therefore, many long-known epithermal prospects should be reevaluated.

Gokceada Island with several newly discovered prospects may form a new district for epithermal and/or porphyry deposits. Known prospects are associated with Oligocene volcano-plutonic rocks, which are most probably equivalent to the mineralized rocks on the mainland or similar to the porphyry systems on Limnos and Lesvos islands (e.g. Voudouris and Affieris, 2005).

Some of the high-temperature values in fluid inclusions in Arapucandere as well as high salinities may indicate a transition to sub-porphyry veins in the porphyry environment. High-salinities may also indicate high base-metal and Ag/Au values as in other IS deposits with mainly Zn–Pb-dominated mineralization (Sillitoe and Hedenquist, 2003). However the fluid responsible for quartz and carbonate gangu deposition in IS vein deposits is commonly much lower in salinity than the episodic pulses of saline fluid that deposit the ore and related sulfide minerals.

Though host rock is interpreted as lithic-lapilli tuff at the Kısıçak epithermal prospect, centimeter-size clasts and rock-flower matrix containing tuffaceous components are reminiscent of diatreme breccias, e.g. Cripple Creek Breccia in Colorado. The low-grade gold mineralization could be diatreme-hosted gold, which implies much higher tonnage gold potential in the prospect though grades may be low.

Kizildam and Findikli prospects in the eastern Biga Peninsula have many affinities to Carlin-type gold deposits, in terms of host-rocks, mineralization and alteration, e.g. limestone host-rock, arsenian? pyrite, antimony gold association, jasperoid formation, and decalcification (Yigit and Hofstra, 2003; Yigit et al., 2003, 2006). However, they are related to magmatism with higher grade Ag values, and they can be classified as distal-disseminated gold deposits (cf. Carlin-type, Cline et al., 2005) like Mesel in Indonesia, Jeronimo in Chile, and Zarshuran in Iran.

Existence of limited number of prospects in the Biga Peninsula should not discourage exploration for radioactive minerals, such as U and Th. High concentration of fissionable metals in beach placers at Geyikli prospect is probably derived from Kestanbol Pluton, because some of the epithermal/porphyry prospects in the source area contain high-concentration of U and Th, e.g., Kiziltepe and Cinarpınar.

Some of the prospects in the Biga Peninsula have unusual enrichment of indium, such as zinc gossans in Alankoy prospect. Indium, used to produce indium tin oxide (ITO) mainly used in flat-panel display devices and LCDs, has increasing demand in the world market. Therefore, indium potential as well as other minor metals could be an exploration interest in the Biga Peninsula.

Bonanza grade gold values in Rock Pile zone of the Kirazli prospect and Meydan Zone of Kestanlik prospect suggest that more than two decades of modern exploration is not sufficient to find even highly-mineralized surface outcrops. Therefore, relying heavily on the geochemistry without geology, mineralization, alteration and structural geology of the ore forming systems is inefficient to discover orebodies.
Acknowledgment

Catherine Yigit is thanked for her discussions of the ins and outs of the paper and for detailed editing. TUBITAK is gratefully acknowledged for financial support as most of the data were generated from the author’s project supported by the Turkish Science Foundation (TUBITAK Project 104Y062 “Cold Metallurgy of the Biga Peninsula, NW Turkey”). Eldorado Gold Turkey is thanked for supporting some geochemical and TerraSpec analyses. The manuscript benefited from constructive comments by Peter Marchev. Thorough reviews by an anonymous reviewer and editorial handling by Jaroslav Lexa improved the content.

References

Andac, M., 1971. Summary report of geologic investigation within the Biga Peninsula, NW Turkey. MTA Bull. 120, 199–222 (in Turkish).
Gumus, A., 1970. Metallogeny of Turkey: Explanation of 1:2 500 000 scale metallogenic map of Turkey. MTA publication, 144 (in Turkish).
Higgs, R., 1962. Geology of the Madenagold Prospect, Canakkale. MTA Report. 3861 (60p (in Turkish)).
Kafalaciglu, A., 1963. Geology around Ezine and Bozcaada and the age of limestone and serpentines. MTA Bull. 60, 61–70.