

Prepared By

Michigan Department of Environmental Quality Operator Training and Certification Unit

Clarifiers Sedimentation Basins Settling Tanks

Provide Quiescent Area

Separation of Solids

Settleable Floatable

2. Characteristics of the Water

3. Characteristics of the Clarifier

Stoke's Law

$$VF = \frac{2(p - p_o)g}{9n} (d/2)^2$$

VF	= Fall Velocity
(p - p _o)	= Density difference between
	particle and water
n	= viscosity of water
g	= gravitational acceleration constant
d	= diameter of the particle

Stoke's Law

Forget the Formula Remember the Removal Efficiency Depends on Several Factors

VF	= Fall Velocity
(p - p _o)	= Density difference between
	particle and water
n	= viscosity of water
g	= gravitational acceleration constant
d	diameter of the particle

Particle Size versus Settling Time

Particle Size mm	Order of Size	Time to Settle
1.0	Coarse Sand	3 Seconds
0.1	Fine Sand	38 Seconds
0.01	Silt	33 Minutes
0.001	Bacteria	55 Hours
0.0001	Colloidal	230 Days
0.00001	Colloidal	6.3 Years

2. Characteristics of the Water

3. Characteristics of the Clarifier

Settling Rate

Cold Water More Dense More Viscous

Warm Water Less Dense Less Viscous

Solids Settle More Readily in Warm Water Than in Cold Water

Warm Water - Greater Efficiency of Clarification

Cool Water- Less Efficiency of Clarification

1. Characteristics of the Solids

2. Characteristics of the Water

3. Characteristics of the Clarifier

3. Characteristics of the Clarifier

Surface Area Depth Hydraulic Loading Solids Loading

3. Characteristics of the Clarifier

Surface Area Depth Hydraulic Loading Solids Loading Design Operation Maintenance

3. Characteristics of the Clarifier

Flow Characteristics in the Clarifier

Flow Must be Dispersed Evenly Throughout

Higher Flow (Horizontal Velocity) in One Part of Tank Density Currents

Currents Within the Tank Carry Solids Through the Tank.

Not the Same as Excessive Hydraulic Load (Detention Time vs. Fall Velocity)

Missing or poor influent baffling

Missing or poor influent baffling

Missing or poor influent baffling

Clarifier Short Circuiting

Causes

- **Uneven effluent weirs**
- **Plant growth or thrash in effluent weirs**

Temperature stratification between influent & clarifier water temperatures.

Clarifier Short Circuiting

Monitoring for Short Circuiting Visual Observation Flow Over Weir Solids Over Weir

Monitoring for Short Circuiting

Dye Testing

Higher Flow (Horizontal Velocity) in One Part of Tank

Density Currents

- Missing or poor influent baffling
- Uneven effluent weirs
- Plant growth or thrash in effluent weirs
- Temperature stratification between influent & clarifier water temperatures.

1. Characteristics of the Solids

2. Characteristics of the Water

3. Characteristics of the Clarifier

Types of Clarifiers

Inclined Plate (Lamella)

Rectangular

Circular

Inclined Plate (Lamella)

Increased settling efficiency due to increased surface area

Smaller Area Needed for Installation

Increased settling efficiency due to increased surface area

Smaller Area Needed for Installation

Seldom Used With Organic Wastes

Biological Growths Reduce Efficiency Mostly Industrial Applications

Rectangular Clarifiers

Influent baffling

Solids Removal Mechanism

Prevent Wear on the Flights Where They Contact the Rails Transfer Wear to the Shoe Instead of the Flights

Scum Removal

Scum Removal

Scum Removal

Effluent Weir – "V Notch"

Flow = Velocity X Area

As Flow Increases, Area Increases

And As Area Increases, Velocity Decreases

Effluent Weir – "V Notch"

Helps Keep Velocity Constant

Reduces Solids Build-up Behind Weir

Effluent Weirs

Finger Weirs

Effluent Weirs

Secondary Rectangular Clarifiers – Most Important

Monitor for Short Circuiting

Visual Observation

Flow Over Weir Solids Over Weir Dye Testing

Consider Baffles

Influent typically enters the basin from the center rather than from one end.

Influent typically enters the basin from the center rather than from one end.

A Circular Baffle Directs Flow

A Circular Baffle Directs Flow

Solids Settle Scraped to Sump Removed by Pumping

Solids Settle Scraped to Sump Removed by Pumping

The Water Flows to the Effluent Weir Around the Circumference of the Clarifier

Circular Clarifier Outlet

The Launder and Weir May Be

Effluent Launder/Weir Inside Clarifier (#2) Can Create Water Current

- Loss of solids over weir.
- Baffles used to redirect & slow water currents.

Other Clarifier Baffles

Clarifier Short Circuiting

• Missing or poor effluent baffling

• Uneven effluent weirs

• Plant growth or thrash in effluent weirs

• Temperature stratification between influent & clarifier water temperatures.

Rectangular Tank

Circular Sludge Collection and Skimming

"Squirqular" Clarifier

Peripheral Feed Peripheral Discharge

Peripheral Feed

Center Discharge

Radial Discharge

Peripheral Feed

Tow Bro Clarifier

Spiral Sludge Collector

Telescoping Valves for RAS Return

Many Others

Each Designed to Address Particular Concern

Routine Inspection & Maintenance

Drive Mechanism Lubrication (Manufacturers Specs.) Observe Proper Operation (2/Day)

Sludge Judge Daily (Each Shift)

Rectangular Clarifiers

Sludge Collection System Operating Smoothly Floating Sludge

Frequent Shear Pin or Breaker Failure

Circular Clarifiers Skimmer/Sludge Collector

Operating Smoothly Scum Trough Plugged

Cleaning Weirs – Launder - Center Well

The Hard Way

The Easy Way

Limit Growth ?

Limit Growth ?

Covers Block Sunlight Limits Algae Growth

Limit Growth ?

Covers Block Sunlight Limits Algae Growth

Provides Cold Weather Protection

Monitoring for Short Circuiting

Visual Observation Flow Over Weir Solids Over Weir

Dye Testing

Routine Inspection & Maintenance

Sludge Judge Daily (Each Shift)

Cleaning

Monitoring for Short Circuiting

Also Includes Calculating and Monitoring Loading

Detention Time Surface Overflow Rate Weir Overflow Rate Solids Loading Rate

Prepared By

Michigan Department of Environmental Quality Operator Training and Certification Unit