Lecture 21 Matte smelting: Materials balance

Contents:

Problem 1
Problem 2
Problem 3
Conclusions

Problem 1

A copper ore has the following proximate analysis (wt. %):

\[\text{Cu}_2\text{S} 20, \text{FeS}_2 56, \text{and SiO}_2 24. \]

It is smelted in a reverberatory furnace using pure limestone as a flux. The slag has 36% FeO and 21% CaO.

Calculate (per 1000 of ore) weight of limestone, slag and matte.

Solution:

In solving material balance it is important to have understood the chemistry of matte smelting.

In this problem slag consists of 36% FeO and 21% CaO slag will have all SiO\(_2\) in slag

\[\% \text{SiO}_2 \text{ in slag} = 43\%. \]

All SiO\(_2\) of ore enters into slag. SiO\(_2\) balance gives weight of slag 558.1 kg.

To find weight of limestone we have to calculate CaO.

Amount of limestone = 209.3 kg.

Matt is a mixture of Cu\(_2\)S + FeS. for all calculation purposes. There is no loss of Cu in slag. All copper of ore enter into matte.

There is loss of iron in slag.

\[\text{Fe in matte} = \text{Total iron} - \text{iron in slag} \]

Calculation gives weight of matte 365 kg.

Problem 2
A copper smelter smelts the ore of the following composition given below in weight percent: Cu 10%, Fe 30%, S 10%, SiO₂ 33%, CaO 7%, Al₂O₃ 4%, H₂O 6%. Limestone of composition 94% CaCO₃ and 6% SiO₂ is one-fifth of the weight of the ore. The coke is 12% of the ore and its ultimate analysis is (wt. %) C 82, SiO₂ 8, Al₂O₃ 5, Fe 2, S 2, H₂O 1. During smelting 25% of the total sulphur charged is oxidized as SO₂. The analysis of dry flue gas (in Volume %) SO₂ 0.9, CO₂ 11.4, O₂ 9.2, N₂ 78.5. No copper is lost in slag and ignore the flue dust.

Determine (for 1000 kg ore):

a) The weight of matte and its grade,
 b) Weight and composition of slag,
 c) Volume of gases (dry), calculated from sulphur and carbon content,
 d) Cubic meter of air.

Solution: Basis is 1000 kg ore.

Matte consists of Cu₂S + FeS.

Performing S balance and Cu balance one can find S combined with Cu₂S and then amount of FeS

Weight of matte 267.4 kg and its Grade is 37.4%

Slag consists of SiO₂, Al₂O₃, CaO and FeO, since all Fe does not enter into matte.

One can find weight of each component

Weight of slag is 845.2 kg.

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight %</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>41.6%</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>5.5%</td>
</tr>
<tr>
<td>CaO</td>
<td>20.7%</td>
</tr>
<tr>
<td>FeO</td>
<td>32.2%</td>
</tr>
</tbody>
</table>

Volume of gases

On performing S and C balance

Amount of flue gas = 88.4 kg mols.

\[N₂ \text{ balance gives air} = 1972 \text{ m}^3. \]

Problem 3

The proximate analysis of copper concentrate (wt. %) is as follows:
Cu₂S 20%, FeS₂ 49%, SiO₂ 26%, Al₂O₃ 5%. The concentrate is smelted in a furnace in presence of iron ore and limestone. The analysis of iron ore is 81% Fe₂O₃ and 19% SiO₂ and that of limestone is 93% CaCO₃ and 7% SiO₂. The grade of matte is 45% and the ratio of SiO₂ : FeO : CaO in slag is 45: 40: 15. The oil amounts to 12% of the charge and analyzes 85% carbon and 15% hydrogen. The air used is 10% excess than theoretical required for smelting.

Calculate (per tonne of concentrate):

a) Weight of each flux and weight of slag.

b) Volume of air and % composition of gases.

As said in lecture 20, fluxes are used in matte smelting to facilitate slag formation and removal of SiO₂.

Let x kg iron ore y kg limestone and z kg slag.

One can perform SiO₂, CaO and iron balance

1) SiO₂ in concentrate + SiO₂ in iron ore + SiO₂ in limestone = SiO₂ in slag
2) CaO in CaCO₃ = CaO in slag
3) Fe in concentrate + iron in iron ore = Fe in matte + Fe in slag

We can form 3 equations with 3 unknowns.

\[
\begin{align*}
 x &= 133.6 \text{ kg iron ore} \\
 y &= 191.5 \text{ kg limestone} \\
 x &= 664.0 \text{ kg slag}
\end{align*}
\]

Volume of air:

Air used for combustion and oxidation of sulphur to SO₂ and Fe to FeO.

\[
\begin{align*}
 \text{Amount of oil} &= 159 \text{ kg}
\end{align*}
\]

Assuming complete combustion, combustion reaction

\[
\begin{align*}
 C + O₂ &= CO₂ \\
 H₂ + \frac{1}{2} O₂ &= H₂
\end{align*}
\]

Oxidation reactions are

\[
\begin{align*}
 \text{Fe} + 0.5 \text{ O₂} &= \text{FeO} \\
 \text{S} + O₂ &= \text{SO₂}
\end{align*}
\]
Theoretical O_2 required from air = O_2 for combustion + O_2 for oxidation − O_2 available from Fe_2O_3 or iron ore.

Actual air = 10% of theoretical air.

It is advisable that the reader should calculate using the above balances.

Actual amount of air = 2878 m3

Composition of gases

<table>
<thead>
<tr>
<th></th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO_2</td>
<td>5.86</td>
</tr>
<tr>
<td>SO_2</td>
<td>5.01</td>
</tr>
<tr>
<td>H_2O</td>
<td>4.70</td>
</tr>
<tr>
<td>N_2</td>
<td>79.50</td>
</tr>
<tr>
<td>O_2</td>
<td>1.93</td>
</tr>
</tbody>
</table>

Volume of gases = 2858 m3

Conclusion:
in this lecture technique to solve material balance problems in matte smelting is illustrated. There could be other procedure also which may be simpler that what presented here. The lecturer of this course would be extremely happy if the reader innovate any new procedure to solve the problems.