CAVITATION STUDY IN A HIGH PRESSURE WATER INJECTION PUMP

by

Erik Torbergsen
Manager, Development Department

Sigve Gjerstad
Project Engineer, Development Department

Andreas Hosøy
Project Engineer, Development Department

Frank Mohn Flatøy AS, Oil & Gas Division
Frekhaug, Norway

and

Brian Aasland
Staff Engineer Rotating Equipment, Concept Development Department

Statoil ASA
Stavanger, Norway

ABSTRACT

High energy pumps often operate at high speeds to achieve compact designs with few stages. These pumps need special attention on cavitation performance because the cavitation erosion rate is related to impeller speed. This paper presents a case study of cavitation problems observed in a high pressure water injection pump. To solve the problems, two different impellers were analyzed with respect to “as-built” deviations in inlet angles and leading edge shape compared to design. Experimental and numerical methods were applied to study the “as-built” and “design” versions. It is shown that “as-built” local inlet angles and shapes controlled the cavitation performance. The necessary suction pressure for cavitation-free operation is discussed by the use of a simulated (computational fluid dynamics) inception line. Visualization on a full scale test pump with different suction pressures was used to validate the numerical cavitation performance.

INTRODUCTION

Cavitation behavior of centrifugal pumps has been a major concern for all pump manufacturers. What has been known for years is that when having a typical 3 percent head drop in a centrifugal pump, which is the industrial definition of the necessary suction pressure for a pump impeller, significant cavitation will be present on the blade. The consequence of this can be cavitation erosion on the blades, vibration, and noise problems.

An early evaluation of the minimum net positive suction head (NPSH) required by a centrifugal pump for smooth and trouble-free operation was carried out by Vlaming (1981). The method, based on both an empirical and theoretical approach, is often adopted as a basis for a 40,000 hour lifetime estimation against cavitation damage. As discussed by Vlaming and others, the blade velocity is a major factor when determining the lifetime of the blade and erosion problems. Simoneau, et al. (1989), have shown that both incidence angle and velocity heavily influence the erosion rate and, on a 2-D National Advisory Committee for Aeronautics (NACA) profile, the erosion rate can vary from the eighth to eleventh power of speed. Guelich and Pace (1986) have discussed the erosion rate and conclude that for centrifugal pump impellers, the sixth power of speed is typical, based on several
published experiments. This means that for high energy pumps, often operating at high speeds, the cavitation inception and bubble length is of particular interest when designing and evaluating a pump design. Several studies also discuss the erosion rate related to the cavity length and it is shown to vary approximately with the second to fourth power of the cavity length.

Altogether, this results in the need for knowledge about cavitation inception and cavity length for different capacities when designing and operating high energy pumps. A criterion often applied is zero tolerance with respect to cavitation inception in the region of continuous operation. A practical approach used, in many cases by pump manufacturers, is "in-field" trimming of the blade leading edge to solve cavitation problems. The objective of this paper is to present a case study with cavitation erosion problems in a high pressure water injection pump for oil well pressure boosting, operating at high speed. The suction pressure, with respect to blade cavitation inception, is presented by the use of numerical methods. Full scale visual studies on a high pressure water injection pump have also been used to validate the numerical simulations.

The four water injection pumps described in this case are operating at the Statoil Norne oil field.

THEORETICAL BACKGROUND

During the last few years, several articles and studies have described cavitation in centrifugal impellers with the use of numerical flow simulations. Dupont (2001) presents numerical simulations with use of a simplified cavity length model and discusses the typical off-design shape of suction head at cavitation inception as a function of flow. For a typical radial impeller, the incipient visual cavitation on the blade suction side (visible side) reaches a peak at part capacity, often 30 to 70 percent of the best efficiency point (BEP), i.e., significant suction head is often required to suppress the cavitation inception at part load. Several authors relate this peak in inception to a capacity slightly higher than the critical capacity at which the swirling backflow starts in the suction flow. An excellent paper by Schiavallo (1987) discusses this phenomenon. Determination of the off-design cavitation peak is also very important when defining minimum flow operation of the pump, and, for continuously running high energy pumps, this is an essential requirement. The minimum NPSH for inception often occurs at slightly lower capacity than the BEP. This is shown experimentally by Kumaraswamy and Radha Krishna (1986). For higher flows, the NPSH_inception increases sharply, and the incipient cavitation takes place on the pressure side of the blade leading edge.

Several field studies of cavitation in high energy pumps have been presented. Ferman, et al. (1997), present a case study with a boiler feed pump where one aim was to reduce the erosion by an improved impeller design that had smaller cavity length. Full scale flow visualization techniques were applied.

The use of numerical flow simulations (computational fluid dynamics [CFD]) has become common and important in the design of centrifugal pumps. Several publications and studies show the use of numerical predictions of complex transient flow phenomena such as rotating stall and impeller recirculation, as well as the steady-state characteristics. However, not too many papers present cavitation studies in centrifugal pumps by the use of two phase cavitation models and pressure profiles. A detailed analysis of the cavitation zones was considered beyond the scope of this work. The code applied in this work is widely used in turbomachinery flow analysis, and several articles regarding pump performance have been presented.

CASE DESCRIPTION

The use of high pressure injection pumps to boost pressure in oil wells is increasing. The main reason is the need to increase oil recovery from the reservoir. Some fields even need water injection to produce, i.e., when water injection is out of operation so is the oil production. The importance of water injection is therefore very high for an increasing number of installations in the North Sea. Typically, these pumps are placed on offshore platforms with limited space available. The need for ratings of several megawatts often leads to the use of high-power density pumps. One way to achieve this is to operate the pumps at high speed, typically 12 to 14,000 rpm, leading to a stiff, overhung, end suction design with few stages. These pumps run continuously at a discharge pressure of typically 200 to 300 bars (2900 to 4350 psi) and capacities of 100 to 700 m³/h (440 to 3080 gpm). Based on the above discussion, it is quite clear that detailed knowledge about the cavitation performance is necessary. The water injection pump design consists of three main stages, where one stage is a low speed booster stage operating at 2500 to 4000 rpm, feeding the water into two high speed/high pressure stages with sufficient suction pressure. The suction pressure delivered from the booster stage discharge is typically 15 to 45 bars (218 to 653 psi), dependent on the impeller design used in the high pressure stages. The pump is integrated on a gearbox, and a typical sketch is shown in Figure 1, where the low and high speed shaft is driven by an input shaft coupled to an external electric motor (typically two-pole, 60 Hz). The critical with respect to cavitation is the first high pressure stage on the high speed shaft.

The background for this study was a case with four water injection pumps at an oil field, installed on a floating production vessel (FPSO) offshore the northwest coast of Norway. After operating the pumps for one to two years, cavitation erosion was discovered on the first high pressure stage impeller and several repairs were made. In Figure 2, an example of the erosion after 4800 hours of operation is shown. The erosion pattern is typical for a centrifugal impeller cavitating at flows below best efficiency point but above onset of suction recirculation. A visual study during operation in the field was carried out using a video camera and a strobe light. The impeller inlet showed clear evidence of cavitation in the whole allowable operating region. The cavitation was present on the blade suction side. This result was surprising because the design was optimized with significant suction pressure for the first high pressure stage impeller and sufficient tolerances for the 25 Cr duplex steel impeller and to 40,000 hours' lifetime estimation. The situation was evaluated between the pump manufacturer and the end user and found to be unacceptable for long-term operation. The impeller blade design was checked and a detailed dimensional control of the actual impeller casting was carried out. The blades showed severe deviation in the inlet angle: the "as-built" local inlet angle of the cast impeller was 5 to 8 degrees higher than the design angle. The deviation was discovered on several impellers based on the same casting model, indicating a systematic deviation. An example of this is shown in Figure 3,
where the inlet blade profile from the “as-built” impeller is shown together with the “design” profile. A significantly higher inlet angle can be seen on the “as-built” profile, leading to a much higher incidence angle and a blade that will be more sensitive to cavitation in the allowable operational region. The reason for the deviation was the manufacturing technique originally applied to the casting pattern by the foundry. New manufacturing techniques are now adopted for the pattern.

A detailed analysis of the cavitation performance was initiated. It was necessary to manufacture a high precision impeller (milling of blades and welding of shroud) to minimize blade geometry deviations compared with analysis. In addition, a different impeller design with slightly higher specific speed was also analyzed. This impeller satisfied the rated point of the pump operating in the field and could therefore be applied as an alternative solution for the pump. A casting version of this second impeller was also dimensionally checked in the same way as impeller number 1 and deviations were also found. They were systematic but much less, compared to impeller number 1 (as shown in Figure 4). The inlet profile even shows a lower local inlet angle along the suction side in the “as-built” case. The two different impellers analyzed now included two versions each, identified as:

- Impeller number 1
 - “design”
 - “as-built”
- Impeller number 2
 - “design”
 - “as-built”
“Design” refers to very small geometrical deviations compared to the design profile, i.e., the machined high precision impeller is equal to impeller number 1 “design.” The main design geometrical parameters for the two impellers are shown in Table 1.

Table 1. Main Physical Parameters for the Two Impellers Analyzed in the Study.

<table>
<thead>
<tr>
<th>Impeller no.</th>
<th>Specific speed (design), Nq</th>
<th>Impeller diameter</th>
<th>Number of vanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25 (1290 US) 224 mm (8.8 inches) 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>29 (1496 US) 224 mm (8.8 inches) 8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The design version of impeller number 2 was not manufactured, but only analyzed numerically, as will be discussed below. The analysis program for the above impeller versions was included in a full scale test. The test water injection pump had the main parameters shown in Table 2.

Table 2. Full Scale Test Water Injection Pump Main Parameters.

<table>
<thead>
<tr>
<th>Rated capacity</th>
<th>Differential head rated</th>
<th>Booster stage impeller speed</th>
<th>High pressure stage impeller speed</th>
<th>High pressure stage suction pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td>667 m³/h (2935 gpm)</td>
<td>2293 mlc (7523 feet)</td>
<td>3250 rpm</td>
<td>13050 rpm</td>
<td>36-41 bara (522-595 psi a)</td>
</tr>
</tbody>
</table>

EXPERIMENTAL SETUP IN FULL SCALE PUMP

The full scale pump used in the visual study was investigated during inhouse factory testing, including standard performance instrumentation. A visualization unit for the first high pressure impeller stage was applied. The aim was to study the inlet of the first high pressure stage for different operational points and especially if cavitation were present at nominal conditions for both “design” and “as-built” versions. Due to the fixed ratio gearbox with integral booster pump, adjustment of the suction pressure to the first high pressure stage was not directly achievable. However, different restriction orifices between the booster and first high pressure stage were used to reduce the suction pressure.

The visualization unit is shown in Figure 5. A high speed digital camera was used together with a specially designed flashlight to ensure enough light. The high impeller speed and need for a detailed view of the blade made it necessary to use a camera with a shutter speed of 10 µs in conjunction with the high intensity flashlight (1000 J). An adaptor with a glass window was fitted inside the inlet pipe to enable a satisfactory view of the impeller inlet edges. The adaptor protected the borescope from the suction pressure. The borescope had a connection for the camera and light source. An external trigger was used to trigger both the camera and the flashlight simultaneously.

A compromise had to be made to minimize the adapter influence on the inlet flow and to ensure enough light to give clear and usable pictures for cavitation studies (distance to impeller inlet indicated in Figure 5). The test unit gave digital pictures with satisfactory quality for approximate evaluation of cavitation cloud sizes. It was assumed that a cavitation length down to approximately 1 percent of the impeller outlet radius, that is, a typical length of 1 mm (.04 inch), could be studied. However, the print quality of the digital pictures was limited. During the tests, several pictures were studied at each operating point to ensure repeatable results.

NUMERICAL ANALYSIS

The numerical modeling and simulations were carried out using a Reynolds averaged Navier-Stokes finite volume code, including a standard k-ε model and logarithmic wall functions for the flow in low Reynolds number regions near a solid wall. A steady-state approach with one blade and periodic boundary conditions using uniform axial velocity field at the inlet boundary, at a sufficient distance from the blade leading edge, including the suction pipe. At the outlet boundary located at a 20 percent radial distance relative to the impeller radius, a constant pressure boundary was applied. Since a single phase incompressible simulation was used, only the relative pressure was of interest when studying the pressure profiles on the blade leading edge. The cavitation inception in the simulation was defined as the static inlet pressure (suction pipe pressure corresponding to suction pressure measurements in the pump) giving small pressure zones on the leading edge below vapor pressure. The zone lengths were defined as cavitation lengths (streamline direction) less than 1 percent of the impeller outlet radius, and the corresponding inlet pressure can be viewed as a simulated NPSH_{inception}.

Several grid sensitivity checks were carried out to minimize grid size influence. An example of one impeller model with inlet and outlet is shown in Figures 6 and 7, including a view of the inlet blade grid.

Both impellers number 1 and number 2 presented earlier, including both “design” and “as-built” versions, were simulated to study inception for several operational points.

NUMERICAL AND EXPERIMENTAL RESULTS

In Figure 8, the NPSH analysis of impeller number 1, “design” version, is shown with the flow on the horizontal axis and the inception pressure on the vertical axis. The solid line shows the results from the numerical simulation for several capacities, using the inception criteria discussed above, and defines the simulated NPSH_{inception}. The line is interpolated between several simulation results. Below a flow coefficient of approximately 0.18 the line corresponds to inception on the blade suction side, while above 0.18 the inception takes place on the blade pressure side. The shape of the line is in qualitative agreement with typical inception curves reported by others for centrifugal impellers. The low flow peak in NPSH_{inception} is 60 to 70 percent of BEP (located at approximately 0.19). It can further be seen that at a typical suction pressure of 40 bara (580 psia), a cavitation free operation for the number 1 “design” case is expected to be from approximately ϕ = 0.13 to 0.20. Given the above suction pressure, this should be the region for preferred operation (simulated) when specifying a zero tolerance to cavitation. For low flow coefficients, below the peak in NPSH_{inception}, suction backflow and recirculation could be observed in the simulation.

From the full scale visualization tests, several points have been plotted on the same figure for the number 1 “design” version impeller. The triangular points show cavitation with corresponding

Figure 5. Sketch Showing the Visualization Unit Adjacent to the Inlet of the First High Pressure Stage Impeller.
Cavity lengths determined from the visualization (length in streamline direction relative to impeller outlet radius). Few points were available, but it can be seen that below the theoretical inception line, significant cavity lengths are present in the low flow region. The circled points, representing cavitation-free operation, lie close to and above the inception line. However, at low flow, one point without cavitation can be seen located close to but below the line.

In Figure 9, the same analysis is presented for impeller number 1 “as-built” version. The simulated inception line has changed significantly. The off-design peak in NPSH$^{\text{inception}}$ is dramatically increased and covers a wide range of capacities. The minimum NPSH$^{\text{inception}}$ point is moved from $\phi = 0.18$ to approximately 0.27. However, this result is not surprising, recalling the significant deviations in the inlet angle shown in Figures 3 and 4. This curve also explains the field case erosion problem with this impeller, operating with a suction pressure of 40 bara (580 psia) (preferred region in the field case was from $\phi = 0.13$ to 0.20). The triangular points from visualization show significant cavitation in the operating region with up to 20 percent cavity lengths, in correspondence with the observed erosion marks (as shown in Figure 2). However, one point at low flow indicates cavitation also outside the simulated inception line.

For impeller number 2, a similar analysis was carried out, but only the “as-built” version was studied experimentally. In Figure 10, the “as-built” version is shown with the simulated inception line and even more visualization points. It can be seen that a significant reduction in NPSH$^{\text{inception}}$ is present compared to the impeller number 1 “as-built” version. With a typical suction pressure of 40 bara (580 psia) for impeller number 2 “as-built” version, numerically a cavitation-free operation can be expected in the complete region up to approximately $\phi = 0.23$. Studying the experimental visualization points, several cavitation-free operation capacities are found in the region of 28 to 40 bara (406 to 580 psia). This means that according to both simulations and visualizations, a cavitation-free operation is expected for this version when having the above-mentioned suction pressures and flow coefficients.
For pressures below the simulated inception line and between $\psi = 0.14$ and 0.16, cavitation with cavity lengths from 4 percent to 14 percent is present, the lowest lengths lying close to the simulated inception line. In Figure 11, the simulated inception line is shown for impeller number 2 “design” version. No visualization data for this were available, but the shape is quite similar to the “as-built” version with the minimum point at the same capacity. However, the curve shows between 10 to 20 bars (145 to 290 psi) higher $N_{PSH_{inception}}$, decreasing the cavitation-free operational region and shifting it to higher flow with 40 bara (580 psia) suction pressure.

CONCLUSIONS

A continuously running, high pressure water injection pump needs special attention on cavitation performance. Despite the limited amount of experimental data, the simulated cavitation inception line seems to capture the main trends satisfactorily, based on visualization tests on a full scale test pump and field observations. The typical shape of the inception line is also in qualitative agreement with typical characteristics published by others. The simulation of inception has been adopted as a design rule for achieving cavitation-free operation of the first high pressure stage impeller on high pressure water injection pumps. The second interesting point from the study is that the local deviations in the inlet profile, often observed in castings, can have a significant impact on cavitation performance. Although the deviation observed in the number 1 case is extreme and too high for leading edge trim, it is shown that local inlet angle deviations often control the cavitation performance. The shape of the leading edge is important, as shown for impeller number 2, and leading edge trim can often be used to optimize the local angles. When designing for zero tolerance, the deviations observed in the casting blade profile mean that carrying out numerical simulations on a design version could lead to significant errors in the local pressure profiles and thereby cavitation performance, even though the overall performance of the impeller is satisfactory. This topic needs further attention, with both numerical and experimental studies.

The main objective in this exercise was to reduce cavitation problems. This means having suction pressures with sufficient margins to achieve at least 40,000 hours’ lifetime or, as discussed, zero-tolerance to cavitation inception. Generally, using numerically generated inception curves can be time and resource consuming when designing high energy pumps. Additional simple rules and criteria are therefore needed. This can be developed and evaluated by a closer cooperation between the end user and pump manufacturer.

NOMENCLATURE

- A = Area
- N_q = Specific speed of high pressure impeller in ISO units
Q = Flow rate
U = Impeller peripheral speed
BEP = Best efficiency point
NPSH = Net positive suction head
\(\phi \) = Flow coefficient (\(\phi = \frac{Q}{A U} \))

Subscript

1 = Impeller eye (inlet)
inception = Cavitation inception condition

REFERENCES

Ferman, R. S., Cugal, M., Gopalakrishnan, S., and Fuller, P. D. K., 1997, “Boiler Feed Pump Re-Rate for Increased Head and Reduced Cavitation,” ASME FEDSM97-3337.

