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Abstract: Microbial carbonate mineralization is widespread in nature and among 

microorganisms, and of vast ecological and geological importance. However, our 

understanding of the mechanisms that trigger and control processes such as calcification, 

i.e., mineralization of CO2 to calcium carbonate (CaCO3), is limited and literature on 

cyanobacterial calcification is oftentimes bewildering and occasionally controversial. In 

cyanobacteria, calcification may be intimately associated with the carbon dioxide-(CO2) 

concentrating mechanism (CCM), a biochemical system that allows the cells to raise the 

concentration of CO2 at the site of the carboxylating enzyme ribulose 1,5-bisphosphate 

carboxylase/oxygenase (Rubisco) up to 1000-fold over that in the surrounding medium. A 

comprehensive understanding of biologically induced carbonate mineralization is 

important for our ability to assess its role in past, present, and future carbon cycling, 

interpret paleontological data, and for evaluating the process as a means for biological 

carbon capture and storage (CCS). In this review we summarize and discuss the metabolic, 

physiological and structural features of cyanobacteria that may be involved in the reactions 

leading to mineral formation and precipitation, present a conceptual model of 

cyanobacterial calcification, and, finally, suggest practical applications for cyanobacterial 

carbonate mineralization. 
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carbonate anions can interact with the cations present in the solution to form insoluble carbonates. For 

example, if Ca2+ is present, CaCO3 can be formed. Precipitation of CaCO3 can be described with the 

following Reactions: 

Ca2+ + 2HCO3
−  CaCO3 + CO2 + H2O (4)

Ca2+ + CO3
2−  CaCO3 (5)

with Reaction (5) dominating in seawater [21]. In both cases, two moles of alkalinity are consumed per 

formation of one mole of CaCO3. Precipitation of CaCO3 from the solution lowers its pH. Because of 

this, and since a greater fraction of dissolved inorganic carbon (DIC) is present as CO2 (aq) at low pH, 

the formation of CaCO3 in seawater stimulates an increase in the concentration of CO2 (aq) and 

promotes its outgassing [22]. This is opposed to the photosynthetic conversion of CO2 into organic 

matter [23], which serves as a transient carbon sink: 

CO2 (aq) + H2O  CH2O + O2 (6)

It is important to note that formation of both insoluble carbonates and organic matter pulls the 

equilibria of the carbonate species to the right to replace the removed (bi) carbonate ions in the solution.  

Three crystalline polymorphs of anhydrous CaCO3 are known to occur in nature, calcite, aragonite, 

and vaterite. The first two are by far the most abundant forms of biologically produced CaCO3 [24]. 

The crystal structure of calcite is rhombohedral, whereas that of aragonite is orthorhombic. The 

different structures of the mineral polymorphs lead to a difference in their physical and chemical 

properties [25], of which the solubility is of major importance for the mineralization process. The 

solubility product for each carbonate mineral is defined as: 

Ksp mineral = [Ca2+] × [CO3
2−] (7)

where [Ca2+] and [CO3
2−] refers to, respectively, the calcium and carbonate ion activities in a solution 

saturated with respect to the mineral, at a given temperature, salinity, and pressure. Calcite is the most 

stable polymorph while vaterite is the most soluble, i.e., Ksp calcite < Ksp aragonite < Ksp vaterite. The CaCO3 

saturation state of the solution, Ω, is expressed as:  

Ω୫୧୬ୣ୰ୟ୪ ൌ
ሾCaଶାሿ ൈ ሾCOଷ

ଶିሿ
Kୱ୮ ୫୧୬ୣ୰ୟ୪

 (8)

At Ω >1 the solution is supersaturated and at Ω < 1 it is undersaturated with respect to the CaCO3 

mineral [25]. As mentioned above, the Ω is linked to temperature, pressure, and salinity through the 

dissociation constant. Contrary to the typical increase of solubility with increasing temperature 

observed for most minerals, the solubility of calcite decreases with increasing temperature, as does the 

solubility of CO2 gas in water. Changes in pressure affect the partial pressure of CO2 (pCO2) and thus 

the amount of gas dissolving in the solution. Increase in ionic strength of the solution leads to decrease 

of ion activity, affecting solubility of carbonates. Presence of particular ions e.g., Mg2+ and PO4
2− is 

known to specifically inhibit CaCO3 precipitation [26,27]. Magnesium calcites (MgxCa1−x(CO3)) are 

an important subgroup of the CaCO3 minerals, frequently produced in natural environments. With up 

to 30 mol % MgCO3 in the case of some biogenic calcites, solubility of the magnesium calcites is 

strongly influenced by their magnesium content. Properties and a mode of formation of dolomite 
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(CaMg(CO3)2), one of the most abundant sedimentary minerals, are known in less details than for most 

other carbonates. Though marine and many other natural waters generally are greatly supersaturated 

with respect to both magnesite (MgCO3) and dolomite, these cannot form directly from aqueous 

solutions under near Earth surface conditions [28] due to a high energy of hydration of the Mg2+ ion 

and a kinetic barrier hindering formation of complex and well-ordered structure of the minerals. 

Instead, a variety of magnesium carbonate hydrates (e.g., nesquehonite, MgCO2·3H2O) and 

hydroxyhydrates (e.g., hydromagnesite, Mg5(CO3)4(OH)2·4H2O and dypingite, Mg5(CO3)4(OH)2·5H2O) 

form from solution [29]. 

CaCO3 precipitation in solutions without a nucleation surface (homogeneous nucleation) is often 

impeded by kinetic barriers, as seen in systems supersaturated with Ca2+ and CO3
2− such as the 

oceans [29]. Such kinetic barriers include the high energy of hydration of the calcium ions, the low 

concentration and activity of the carbonate ions, and the presence of high concentrations of sulfate and 

magnesium ions [29,30]. The addition of a surface on which the crystal can nucleate (heterogeneous 

nucleation) can dramatically reduce kinetic barriers in the calcification. There is increasing evidence 

that many processes traditionally considered as purely physico-chemical, such as carbonate mud 

production during whiting events [31,32], particle formation such as ooids and peloids [33–35], and 

carbonate cycling in terrestrial environments [36–38], have an organic and/or biological origin. 

Relative abundance of stable isotopes in the precipitate can bear witness to the nature of its origin [39]. 

Thus enrichment of carbonate minerals with 12C indicates that the carbon was derived from the 

degradation of the organic carbon e.g., by sulfate reducing bacteria, while enrichment with 13C  

co-localizes carbonate precipitation with photosynthesis, actively depleting the 12C pool [40,41].  

Mineralization by microbial calcification (Reactions (4) or (5)) is generally considered to be 

biologically induced, as opposed to biologically controlled. While biologically controlled mineralization 

is an organized process where cells exert a high degree of control over nucleation and crystallization, 

and that usually results in specialized structures such as shells, biologically induced mineralization is a 

more diffuse phenomenon that depends on various metabolic activities that result in an alkaline (micro) 

environment and cell surface properties such as nucleation sites for mineralization [24,42,43].  

3. Cyanobacteria 

Cyanobacteria are Gram-negative bacteria that carry out oxygenic photosynthesis and are thought 

to be the origin of chloroplasts of plants and eukaryotic algae via endosymbiotic events in  

mid-Proterozoic [44]. Through their photosynthetic capacity cyanobacteria have been tremendously 

important in shaping the course of evolution and ecological change throughout Earth’s history [45], 

and they continue to contribute to a large share of the total photosynthetic harnessing of solar energy 

and assimilation of CO2 to organic compounds. It is estimated that half of global photosynthesis is 

carried out by phytoplankton [46], with cyanobacteria being, at times, the dominant contributors to 

CO2 fixation [47]. Indeed, >25% of current global photosynthesis can be accounted for by the two 

genera of marine cyanobacteria, Synechococcus and Prochlorococcus [48].  

Cyanobacteria thrive in the majority of ecosystem habitats on Earth; they successfully populate 

freshwater and marine environments, hot springs, and cold dry valleys, coping with extremes in 

salinity, light quality and availability, UV radiation, pH, dryness, desiccation, temperature, and 
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pressure. Similarly, they exhibit an unusually wide range of morphologies, from submicron-size 

unicellular free-living cells to complex well-structured mat communities comprising several 

cyanobacterial lineages and intra- and inter-lineage functional differentiation [47]. Many cyanobacteria 

are diazotrophs and can assimilate not only CO2 but also fix atmospheric nitrogen (N2) and convert it 

to organic matter [49]. There are three major ecological groups of cyanobacteria in the aquatic 

environment: (i) mat-forming species, composing biofilms over rocks, sediments, and submerged 

plants; (ii) bloom-formers, most common in nutrient-rich water bodies, e.g., coastal ocean zones, 

eutrophic streams and lakes; and (iii) picocyanobacteria (< 2 m in diameter) that are often abundant 

in open oceans and clear water lakes. The mat-forming cyanobacteria have a particularly long history. 

Some of these organisms form laminated, lithified structures called stromatolites. Those formations 

exhibit a striking resemblance to the fossil stromatolites [15,50] found all the way back to the 

Precambrian. The stromatolite communities, thought to have been the main primary producers on 

Earth for more than 1 billion years throughout the Proterozoic, are much less abundant today [51]. 

Another group of aquatic cyanobacteria worth mentioning comprises colonial non-bloom-formers, 

which are common in a variety of aquatic habitats, including mesotrophic lakes, wetlands, and saline 

waters [52]. Many cyanobacteria, especially those forming colonies or biofilms, excrete organic 

polymeric substances to form extracellular formations e.g., sheaths or capsules [53,54]. The function 

of these exopolymeric substances (EPS) may be to allow association of cells, facilitate gliding, support 

uptake of micronutrients, and absorb heavy metals from the solution. The EPS can serve as a 

nucleation surface for mineralization and therefore is also a critical component of the carbonate 

mineralization process in many cyanobacteria and other bacteria (see further discussion in Section 3.2). 

3.1. The CO2-concentrating Mechanism 

CCMs seem ubiquitous in cyanobacteria [55], although their presence has not been confirmed in all 

of the around 1500 described cyanobacterial species [56]. A CCM may provide a means for enhanced 

carbonate mineralization by elevating pH at the immediate cell exterior, and thus increasing the 

supersaturation level of the microenvironment in respect to a mineral. During oxygenic photosynthesis 

(Figure 2), CO2 is converted to organic compounds via the CBB cycle, utilizing ATP and NAD(P)H as 

energy and reducing equivalents, respectively (Figure 2). Light energy is harvested by the two 

photosystems, Photosystem II (PSII) and Photosystem I (PSI), associated with the light-harvesting 

phycobilisome complex. Light energy in PSII and PSI excites electrons, supporting an electron 

transport from water to NADP+ through an electron transport chain involving a large number of redox 

components, including the two photosystems, Plastoquinones (PQ), the Cytochrome b/f complex, 

plastocyanin (PC), and Ferredoxin-NADPH oxido-reductase (FNR). The electron transport in the 

thylakoid membrane generates a H+ gradient, which is the driving force for ATP synthesis by the ATP 

synthase. ATP and NADPH produced by photosphosphorylation are used to fuel the Calvin cycle in 

the carboxysome/cytosol, whereby atmospheric CO2 is reduced to organic compounds by Ribulose-1,5 

bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) and other enzymes. Rubisco is 

encumbered with the ability to use not only CO2 but also O2 as substrate, a property that, together with 

its slow turnover number, severely impairs Rubisco’s carboxylation efficiency. For aquatic 

cyanobacteria and algae, the situation is exacerbated by the poor availability of CO2 in water, with a 
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considerable amount of their energy in EPS biosynthesis, and the EPS can constitute a substantial 

proportion of their biomass production (>60% dry weigh) [68]. The cyanobacterial EPS (cyano-EPS) 

can be divided in two groups, the ones associated with the cell surface, and the RPS. The cell  

surface-linked EPS is referred to as sheaths (thin, dense film loosely surrounding cells or cell clusters), 

capsules (thick layer intimately associated with the cell surface), or slimes (mucilaginous material 

dispersed around the cell) [69–71]. The RPS are soluble portions of polysaccharide material released 

into the environment. The composition of cyano-EPS exhibits some unusual features compared to EPS 

from other bacteria [66]: (i) the presence of sulfate groups and uronic acids, which both contribute to 

the anionic nature of the cyano-EPS, confers a negative charge and a “sticky” behavior. The number 

and distribution of charged groups are responsible for the ability of the cyano-EPS to chelate cations, 

notably metal ions; (ii) many cyano-EPS also contain ester-linked acetyl groups, peptides, and 

deoxysugars like fucose and rhamnose. These groups render the EPS hydrophobic and provide 

emulsifying properties; (iii) in contrast to EPS synthesized by other bacteria, cyano-EPS are complex 

HEPO structures, most of them containing six or more different kinds of monosaccharides. This high 

number of different monosaccharides generates a wide range of linkage types, and is the reason for the 

high number of possible structures and architectures, and the presence of complex repeating units in 

the cyano-EPS. Cyano-EPS can also contain polypeptides enriched in different amino acid residues, 

e.g., Glu- and Asp-rich small proteins. 

The physiological roles for cyano-EPS are likely to be numerous. Although little experimental 

evidence exists for particular functions, it is known that the EPS in a variety of bacteria provide 

protection against dehydration, phage-induced lysis, phagocytosis, and antibody recognition. The 

ecological roles of cyano-EPS may include protection against desiccation, salinity, UV-irradiation, 

oxidative stress, and predation; increase the availability of light, nutrient uptake, N2 fixation (prevent 

entry of oxygen in heterocysts), and movement (gliding), and in establishing symbiotic association 

with other organisms [15,71,72]. While cyano-EPS play an important role in binding and sequestration 

of necessary trace elements, at the other end of the spectrum, by the same token EPS are crucial for 

protecting cells against toxic metals. Cyanobacteria are well-known for their capacity to chelate and 

sequester many metal cations, i.e., Cr6+, Cu2+, Pb2+, and Cd2+ in their EPS [69,73–83]. The affinity of 

cyano-EPS for different metals is strain-dependent, and it differs between EPS and RPS [77].  

EPS can play a key role in influencing carbonate precipitation through multiple mechanisms  

(e.g., [84–86]). For example, negatively charged groups in the EPS can recruit cations such as Ca2+ 

and Mg2+, thereby facilitating carbonate formation. On the other hand, by tightly binding bivalent 

cations the EPS can inhibit carbonate formations. Also, EPS can favor carbonate precipitation by 

forming heterogeneous microdomains that support different types of microbial metabolism, and by 

serving as an energy and carbon source for heterotrophic bacteria [87]. The properties of the EPS also 

influence the mineralogy of the precipitated CaCO3 crystals [88]. 

3.3. S-layers 

Nucleation of CaCO3 formation by cyanobacteria often occurs on the external surface layer  

(S-layer) of bacterial cell wall. First demonstrated in 1953 in Spirillum species [89], S-layer was 

subsequently found in hundreds of different species belonging to all major phylogenetic groups of 
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bacteria and archaea [90,91]. This “two-dimensional array of proteinaceous subunits” covering the 

entire surface of the cell with highly porous lattice is commonly composed of a single homogeneous 

protein or glycoprotein species. The protomers, ranging from 25 to 200 kDa [92], are translocated 

mainly as precursors containing an N-terminal signal peptide [91]. Mature proteins undergo  

self-assembly on the cell surface, forming 5–20 nm thick lattice with a rather smooth outer and a more 

corrugated inner surface. The subunits are held together and onto the supporting envelope layer mainly 

by non-covalent forces including hydrophobic interactions and hydrogen bonds, as well as ionic bonds 

involving divalent cations or direct interaction of polar groups [91]. In vitro self-assembly studies 

indicated that the information required for this assembly is entirely contained within the individual  

S-layer subunit [93,94]. However, there is little overall identity for either the primary or secondary 

structure of the protomers, at least in most bacteria [90]. The S-layer subunits are arranged in oblique 

(p1, p2), square (p4), or hexagonal (p3, p6) symmetry with center-to-center spacings of the 

morphological units varying between 2.5 and 35 nm [95,96]. Well-defined pores with a diameter of  

2–8 nm occupy between 30% and 70% of the surface area [95]. With rare exceptions, the isoelectric 

points (pIs) of S-layer proteins, typically containing a high content of acidic and hydrophobic amino 

acids, are in the weakly acidic pH range [94,97]. Glycine- and aspartate-rich regions frequent in  

S-layer proteins are thought to function in calcium ion bridging to the outer membrane [98,99].  

The regulatory mechanisms involved in biosynthesis of S-layers are not yet clear. Thus in most 

organisms studied, the rate of synthesis of S-layer subunits appears to be strictly controlled since only 

minor amounts of S-layer proteins can be detected in the growth medium. Along with this, a few 

organisms were reported to produce and shed a considerable excess of these proteins into the 

surrounding medium [100]. If present, S-layer proteins can comprise up to approximately 15% of the 

cellular protein [90]. Efficient production and maintenance of S-layers require a considerable amount 

of resources, attesting to the physiological and evolutionary importance of S-layers in microorganisms. 

Although no function has yet been defined for all the characterized S-layers, there is a list of functions 

proposed or determined for specific species examined. This includes determining and maintaining cell 

shape, cell envelope integrity, cell adhesion and surface recognition, and affecting an efficiency of 

phagocytosis in Gram-positive bacteria [101,102]. In Bacillaceae, S-layers could delineate the 

periplasmic space and, consequently, delay or control the release of exoenzymes [103,104].  

No S-layer is present in the Gram-negative E.coli—the most extensively studied bacterial model 

organism. However, S-layer structures and S-layer-encoding genes were identified in many other 

Gram-negative bacteria, including species of Aeromonas, Campylobacter, Caulobacter, Fusobacterium, 

Thermus etc. [105,106]. Also, more than 60 cultivated strains of cyanobacteria are known to possess 

an S-layer [98], most of which are of p6 lattice symmetry [107]. In the marine Synechococcus sp. 

WH8102, inactivation of the swmA gene, encoding the S-layer protein, impacts cell motility [98,108]. 

However, absence of SwmA had no significant effect on the susceptibility of cells to grazing by the 

heterotrophic cosmopolitan dinoflagellate Oxyrrhis marina [109]. In Synechococcus sp. strain GL24, 

the hexagonal S-layer units were reported to function as discrete crystallization nuclei for fine grain 

mineral formation [110,111]. 
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4. Cyanobacterial Carbonate Mineralization 

As stated in the Introduction, carbonate mineralization by cyanobacteria is of major ecological and 

geological significance, and it has been the subject of a vast number of laboratory and field 

investigations. A representative list of published experimental studies is shown in Table 1. Cyanobacteria 

may catalyze the carbonate mineralization reaction(s) by increasing the saturation state of the 

environment intimately associated with the cell, with respect to the mineral. This can be done by one 

or both of two means [61]: metabolic activity altering a pH of the environment and passive and/or 

active ion concentration. The photosynthetic electron transport in the thylakoids and the CA activity in 

the carboxysome (Reaction (8)) both consume cytosolic H+, resulting in a net increase of OH− in the 

cytosol. Neutralization of this imbalance, e.g., by the activity of a Ca2+/H+ antiport, generates an 

alkaline microenvironment on the outer cell surface. The alkaline pH shifts the equilibria of the 

bicarbonate buffer system (Reactions (2) and (3)) to the right and generates localized regions of 

increased CO3
2− concentrations at the cell exterior (Figure 3). Recruitment of Ca2+ to the cell surface 

occurs from the surrounding medium and also via the export of Ca2+ through the Ca2+/H+ translocator. 

A second mechanism by which cyanobacteria can catalyze carbonate precipitation is by the presence 

of ordered Ca2+/Mg2+-binding groups on the cell surface [6,12], e.g., glutamate and aspartate residues, 

or carboxylates and sulfonates. Those groups serve as nucleation sites for initiation of the  

CaCO3 precipitation.  

Table 1. Examples of experimental laboratory- and field-based studies analyzing carbonate 

precipitation mediated by cyanobacterial cultures and communities. Abbreviations: Ara, 

aragonite (CaCO3); ACC, amorphous CaCO3; Cc, calcite (CaCO3), Dol, dolomite 

(CaMg(CO3)2); Dyp, Dypingite (Mg5(CO3)4(OH)2·5H2O); hMag, Hydromagnesite 

(Mg5(CO3)4(OH)2·4H2O); Mg-Cal (MgxCa1−xCO3), magnesium calcite; ND, not determined.  

Species Culture conditions Mineral Ref. 

Synechococcus PCC 8806, 
Synechococcus PCC 8807 

Artificial seawater (ASNIII) ND [112] 

Synechococcus, Planktothrix Freshwater medium (BG11) Cc [113] 
Synechococcus PCC 7942 NaHCO3 + CaCl2 solutions  Cc [114] 
Synechococcus PCC 7942 Freshwater medium (Z/10) ACC, Ara, Cc [115–117]
Trichodesmium erythraeum 
IMS101 

Artificial YBCII based seawater Ara [118] 

Artificial cyanobacterial mat 
incl. Calothrix, Phormidium, 
and Pseudanabaena spp. 

Seawater Mg-Cc, Ara [119,120] 

Major species Environmental conditions Mineral Ref. 

Synechococcus GL24 Meromictic lake Ara [121] 
Pleurocapsa group Soda lake  Ara [122] 
Phormidium spp. Seawater lakes Mg-Cc [123] 
Phormidium cf. crosbyanum, 
Phormidium sp. TK1, 
Schizothrix sp. 

Seawater ND [124] 
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Table 1. Cont.  

Major species Environmental conditions Mineral Ref. 

Coccoid and filamentous 
cyanobacteria incl. Rivularia 
type 

Fossil and active tufa formations 
associated with freshwater 
springs, waterfall, and wet areas 

Cc, Ara [125] 

Dichothrix spp. Seawater Cc, Ara [9] 
Rivularia haematites Calcareous streams and 

freshwater lake 
ND [126] 

Homoeothrix crustacean Calcareous stream Cc [127] 
Lyngbya sp. Alkaline wetland Dyp, Ara [13] 
Coccoid and filamentous 
cyanobacteria incl. Nostocales, 
Chroococcales, Oscillatoriales, 
and Pleurocapsales spp. 

Alkaline brackish caldera lake hMag, Ara [128] 

Diatoms and filamentoud 
cyanobacteria incl. Lyngbya 
and Gloeocapsa spp. 

Alkaline lake hMag [129,130] 

Thus EPS, possessing both the highly hydrated nature facilitating ion accumulation and 

concentration [131] and the negatively charged residues [121], is frequently found to be linked to the 

mineralization processes [8,84,116,132]. Cyanobacterial S-layers, providing ordered ion-binding 

groups and frequently being the outermost defining layer of the cell, was also shown to undergo 

mineralization[110,111]. Furthermore, the encrusted patches of S-layer were reported to be shed by 

cyanobacteria, probably in attempt to prevent total encasement in mineral and subsequent death of the 

cell [18,121]. With calcium carbonates comprising the major array of minerals associated with 

cyanobacteria, relatively few studies reported precipitation of magnesium carbonates (Table 1). In 

most cases, biologically-induced formation of magnesium carbonates was confined to Mg-rich alkaline 

environments. Hydromagnesite (Mg5(CO3)4(OH)2·4H2O) was detected in stromatolite-like formations of 

the Lake Salda, Turkey, and the deposition mineral was mediated by a microflora of diatoms and 

cyanobacteria [129,130]. Dypingite (Mg5(CO3)4(OH)2·5H2O) was reported to be produced in mats of 

cyanobacteria enriched from alkaline wetland near Atlin, British Colombia [13]. Precipitation of 

dolomite, one of the most abundant sedimentary carbonate minerals, was shown to be mainly 

facilitated by metabolic activities of methanogens and sulfur reducing bacteria actively increasing 

alkalinity and/or pH of the environment (e.g., [133–138]). The capability of cyanobacteria to induce 

dolomite formation remains to be clarified. 

We don’t yet know the physiological or biochemical function(s) (if any) of calcification in 

cyanobacteria, although some possibilities have been suggested [61]. Calcification may provide a 

means to buffer the pH rise generated by the CCM machinery [139]. Also, since calcification will 

remove Ca2+ from chemical equilibria and may offer a means to sustain an active efflux of Ca2+ via the 

Ca2+/H+ translocator, it generates a H+ gradient that may enhance nutrient and HCO3
− uptake [140,141]. 

Another benefit of carbonate precipitation may be to prevent inhibition of the HCO3
− transporters by 

CO3
2− ions [141,142], or to provide cyanobacteria with a calcerous shell as a protective layer against 
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excessive light exposure [143]. In a Ca2+-rich environment, calcification may also serve as a process to 

remove toxic levels of Ca2+ ions [144]. Finally, it should be noted that microbial calcification in 

aquatic environments results in release of CO2 (Reaction (4); however, see Section 5 below), so it also 

is possible that cyanobacteria benefit from calcification by an increase in availability of CO2 for 

Rubisco. In this context it is pertinent to consider the suggestion by Martinez et al. [113] that 

cyanobacteria need a protective mechanism against carbonate precipitation on the cell exterior. They 

argued that precipitation of carbonate minerals on the cell surface would prevent photosynthesis by 

interfering with HCO3
− uptake. Such a view can be taken to mean that cyanobacterial carbonate 

mineralization is simply a consequence of the environment. Although this may be true, the notion that 

a calcified cyanobacterial cell surface is detrimental to photosynthesis or cell survival is not 

substantiated. For example, a layer of calcified EPS may fully or partly detach from the cell, and for 

the freshwater cyanobacterium Synechococcus sp. GL24, which contains an S-layer, it was proposed 

that the calcified S-layer is shed, followed by synthesis of a nascent S-layer [18,121]. The protective 

mechanism invoked by Martinez et al. hinges on a positive cell surface charge at alkaline pH, as 

determined by Zeta-potential (-potential) measurements, thereby impeding recruitment of Ca2+ ions to 

the cell surface [113]. These findings differ from -potential measurements of cyanobacteria such as 

the marine Synechococcus sp. PCC 8806 (Kamennaya, N.A. et al. unpublished [145] and the 

freshwater strain S. leopoliensis [117], which showed negative surface charge at circumneutral or 

alkaline pH and a shift toward less negative charge upon binding of Ca2+. Similar results were obtained 

by Dittrich and Sibler for freshwater Synechococcus sp. [146] .The strains used by Martinez and 

coworkers are only identified as Synechococcus sp. and Planktothrix sp., and we don’t know details 

about their cell surface properties, or to what extent they are representative of other cyanobacteria.  

It is clear from the above that the process of cyanobacterial calcification differs between different 

environmental conditions. Moreover, the onset and mechanistic details of calcification are also subject 

to taxonomic control. As an example, carbonate minerals produced by coccoid cyanobacteria are often 

found in the EPS between cells, whereas in filamentous strains mineralization results in the formation 

of a tube surrounding the trichome (filament) [1]. Another example is the recent finding of a 

cyanobacterial strain that produces intracellular carbonate minerals [147] (see also Section 5 below). 

Since no enzymatic process is directly involved in carbonate mineralization, the conventional 

biochemistry tool kit remains inapplicable to studies of calcification in cyanobacteria. Dynamics of CaCO3 

precipitation in cultures of cyanobacteria can be deduced from temporal shifts in (i) Ca2+ concentrations, 

using inductively coupled plasma atomic/optical emission spectroscopy (ICP-A/OES) [13,83,110,112] 

atomic absorption spectroscopy [16,129,148,149], or Ca2+ ion-specific electrodes [16,132] and  

(ii) carbonate chemistry of the solution. Speciation and concentrations of carbonate species in 

equilibrium from any two of the species measured (pH, total DIC, and total alkalinity) can be 

calculated with computer programs, e.g., CO2calc [150], CO2Sys [151], PHREEQE [152] and others. 

The presence of micrometer-scale crystals can be directly detected with bright-field [87] and  

cross-polarized microscopy [84]. Autofluorescence from cyanobacteria coupled with biorefringence 

from crystals reveals space relations between cells and crystals. Furthermore, epifluorescent microscopy 

can be used to detect Ca2+-chelating fluorophores, e.g., calcein and tetracycline [36]. Electron 

microscopy, e.g., scanning (SEM) [13,31,36,38,87,88,129] and transmission (TEM) [31,110,111,116] 

electron microscopies, provides details about the morphology, thickness and localization of the 
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precipitates. Electron microscopy-coupled Energy Dispersive Spectrometry (EDS) [36,87,88,110,111,144] 

gives information about elemental composition of the precipitate and links structural characteristics of 

the crystalline matter to its chemical composition. X-ray Diffraction (XRD) [13,87,116,129,139,144] 

and Raman microscopy reveal the type of non-amorphous crystalline polymorphs in the precipitate 

based on the crystal symmetry, e.g., distinguishing between rhombohedral calcite and orthorhombic 

aragonite. Relative abundance of stable isotopes (e.g., C, O) in carbonate precipitates is detected with 

mass spectrometry [9,13,62,129]. Two synchrotron based methods—Near Edge X-ray Absorption Fine 

Structure (NEXAFS) [116] and Fourier Transform Infrared (FTIR) [83,88] spectroscopy, can detect 

unique absorptions indicative of different forms of carbonates. Finally, Time-of-Flight Secondary 

Mass Spectrometry (ToF-SIMS), a sensitive surface method, can be applied to detect calcification in 

its early stages (Kamennaya, N.A. et al., unpublished [145]).  

5. Practical Implications of Cyanobacterial Carbonate Mineralization 

The dual capture of CO2 in cyanobacteria, into one organic form as biomass, and one inorganic 

form, with formation and precipitation of carbonate minerals (Figure 1), leads to several aspects of 

potential practical importance for a wide range of research areas, including paleontology, geology, 

ecology, and climate change. 

(1) As a general phenomenon, microbial calcification in a natural setting, such as the oceans, is 

considered a net source for atmospheric CO2. However, whether oceanic cyanobacterial communities 

provide a net source or sink for CO2 depends on the ROI (see Introduction); at values >0.6, the system 

incorporates enough CO2 into biomass for it to function as a net sink, whereas a value <0.6 indicates 

that the system is a net source [153]. Additionally, field and laboratory measurements of systems with 

cyanobacteria or other calcifying organisms showed released CO2/precipitated carbonates ratios () of 

0.1–0.006, which starkly deviate from the theoretically calculated  of 0.6 in seawater (no relation to 

the threshold value for ROI) and close to 1.0 in freshwater [154]. Further, laboratory and field investigations 

of microalgal blooms indicated that microbial calcification can act as a CO2 sink [139,155]. It was 

suggested that possible explanations for this apparent discrepancy between theoretical and 

experimental results were (i) recapture of the released CO2 by photosynthesis and (ii) enhanced 

sedimentation of both organic and inorganic carbon. A thorough understanding of the organic and 

inorganic carbon fluxes in different cyanobacterial communities, the carbonate mineralization process, 

the interplay between calcification and photosynthesis, and how this interaction may be influenced by 

climate change is critical for correct calculations of the global carbon budget under present and 

predicted climatic regimes. 

(2) Carbonate mineralization by cyanobacteria and other microorganisms can also be 

biogeochemically coupled to weathering of silicate minerals. Biologically accelerated weathering 

(BAW) of silicates occurs both chemically and mechanically via production by microorganisms of 

extracellular enzymes, chelates, simple and complex organic acids, alcohols, and EPS [156–161]. The 

combined cyanobacterial activities of accelerated silicate weathering and carbonate mineralization may 

therefore provide an important sink for atmospheric CO2 in terrestrial systems [162] (see  

bullet 5 below).  



Minerals 2012, 2                     

 

351

(3) Detailed knowledge about the mechanisms and environmental requirements (e.g., optimal 

nutrient and light availability, maximal allowable concentration of mineralization inhibitors, saturation 

state of the solution with respect to the minerals precipitated) for cyanobacterial calcification is crucial 

for our ability to reconstruct paleoenvironements. For example, the question arises as to what extent 

CO2 concentrations during Earth’s history, with a range from present atmospheric level (PAL) to  

30 times PAL in the Phanerozoic [6] and up to 80–600 times PAL in the Precambrian [163,164], have 

been permissible with cyanobacterial calcification. Similarly, as we learn more about cyanobacterial 

carbonate mineralization under high CO2 conditions, we may be able to complement and/or modify 

interpretations that explain the presence of fossil records for calcareous cyanobacteria from the early 

Phanerozoic (Cambrian) [5,19], or for aragonite structures from the Precambrian [165].  

The recent isolation of cyanobacteria that form intracellular carbonates [147], morphologically and 

chemically resembling those of a long-known but uncultured giant sulfur bacterium, Achromatium 

oxaliferum [166], opens the door to a new direction in studies on carbonate mineralization in 

cyanobacteria, and presents a fascinating, although challenging, task for those involved in patching up 

our paleontological landscape [147,167].  

(4) The capacity of cyanobacteria to thrive in high CO2 concentrations makes them an attractive 

system for beneficial recycling of CO2 from point sources such as coal-fired power plants via biofuel 

synthesis [168]. In this regard, it becomes important to further our understanding of the interactions 

between the two modes of CO2 utilization. For example, for cyanobacteria-based biofuel production, it 

is desirable to funnel as much of the captured CO2 as possible to biofuel synthesis at the expense of 

carbonate formations. However, at the same time, we may want to consider the possibility that the 

carbonate mineralization process confers metabolic benefits, e.g., by providing extra CO2 for 

photosynthesis, or by generating H+ to facilitate nutrient uptake [61,141]. 

(5) Finally, exploitation of biologically induced carbonate mineralization may offer the potential to 

engineer systems whereby cyanobacteria could act as solar-powered catalysts in biological CCS, e.g., 

by capturing CO2 in flue gas from coal-fired power plants and converting it to carbonate salts for 

storage, once a suitable source of alkalinity is present. This concept is not novel. Calculations by Lee 

and colleagues [112,169], based on whiting events and microcosm experiments, suggested that 

calcification by the marine cyanobacterium Synechococcus sp. PCC 8806 over an area of 70 km2 could 

account for around 2.5 MT CaCO3 per year, which translates to half of the CO2 produced by a 

500 MW power plant. From laboratory experiments, Yates and Robbins [139] concluded that a single 

bloom (3.2 × 109 L) of the eukaryotic microalga Nannochloris attomus could precipitate 1.6 × 103 T of 

CaCO3 in 12 h. The same authors also studied marine whiting events on the Bahama Bank and 

concluded that blooms of cyanobacteria and green algae could sequester close to 5700 T·C·yr−1 as 

CaCO3 [170]. The potential role of cyanobacteria in carbon sequestration by carbonate mineralization 

linked to BAW has been discussed by Ferris et al. [162] and was also proposed at a 2003 National 

Academy of Sciences workshop [171]. A similar approach using coccolithophorid algae was evaluated 

in a DOE-funded project [172]. The possibility of using consortia of cyanobacteria, microalgae and 

heterotrophic bacteria for simultaneous biomass production and CCS via carbonate mineralization and 

BAW of tailings was demonstrated by Power and colleagues for CO2 emissions from the Diavik Diamond 

Mine, Canada and the Mt Keith Nickel Mine, Western Australia. [173] and from an asbestos mine in 

Canada [174]. They concluded that ponds with the microbial community would be able to produce 
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carbonates in the range of 23 to 841 T·yr−1 for the Diavik site, and 6520 to 52,700 T·yr−1 for Mt Keith, 

requiring 2 and 11 GL of water, respectively, for the two mines.  

Several issues need to be addressed to seriously evaluate the possibility for biological CCS via 

cyanobacterial carbonate mineralization: (i) First and foremost, it is not clear if the alkalinity generated 

by cyanobacterial metabolism suffices to drive the reaction toward a net CO2 consumption, particularly 

at CO2 levels such as those in flue gas (~5%–15%) when the CCM would be suppressed. If not, 

additional alkalinity can be provided, e.g., as the mineral portlandite (Ca(OH)2) or as fly ash, i.e., 

silicate-containing residues from chimneys of coal-fired power plants with a strong pH buffering 

capacity. Alternatively, and as all added to above, hydrolysis of silicate minerals by microbially 

accelerated weathering may be used to drive the pH up, simultaneously releasing cations for carbonate 

mineral precipitation. Silicate minerals offer an abundant supply of calcium; calcium and magnesium 

silicates are plentiful in the Earth’s crust and, hence, as mentioned above, the potential capacity for 

sequestration of anthropogenic CO2 as stable carbonates by accelerated weathering linked to carbonate 

mineralization is exceptionally large. Important calcium silicates include wollastonite (CaSiO3) and 

plagioclase feldspars ((Na,Ca)(Si,Al)4O8 and CaAl2Si2O8), which is abundant in mafic and ultramafic 

rocks. To what extent the cost and logistics of such arrangements would be economically viable is an 

open question; (ii) an obvious question is what will happen during the course of diurnal light-dark 

cycles; will formed CaCO3 dissolve, or can the system be constructed such that the CaCO3 is 

continuously withdrawn for storage; (iii) seawater, saline drainage water, waste brines from desalination 

or other industrial processes can all serve as ample Ca2+ sources. However, if needed, Ca2+ can also be 

supplied as porlandite, fly ash, which may contain up to 20% CaO, gypsum (CaSO4·2 H2O), or silicate 

minerals. Again, cost and logistics need to be considered; (iv) To be of industrial relevance, the scale 

of any CCS operation with ponds of calcifying cyanobacteria is likely to command a large area. 

Whether such a demand can be satisfied by marginal land or other non-arable areas remains to be 

found out. The results presented by Lee et al., Yates and Robbins, and Power et al. [112,139,169,173] 

discussed above give some indications on the ecological footprint required. As more data become 

available, it will be possible to make and refine models where different inputs, such as cyanobacterial 

species or consortia, sources of alkalinity, Ca2+ and water, and pond size, are entered. 

Despite these many outstanding questions, we finish with a futuristic scenario describing carbonate 

mineralization by halophilic cyanobacteria as a means for biological CCS (Figure 4): Many 

cyanobacteria are halophilic and thrive in saline and hypersaline waters. Such waters include seawater, 

saline drainage water, waste brines from desalination or other industrial processes, and water produced 

from the oil and gas industry, or from geological CCS. Apart from delivering the water volumes for 

cyanobacterial cultivation, saline waters also provide calcium for the calcification process. The levels 

of Ca2+ in saline drainage water or waste brines are usually very high. Other Ca2+ sources include 

gypsum, portlandite and fly ash. The ability of using diverse water and calcium sources for 

cyanobacterial calcification improves the likelihood of co-locating power plants and calcification sites. 

Portlandite or fly ash can also be added to boost alkalinity. Alternatively, hydrolysis of silicate minerals 

may be used to drive the pH up, simultaneously releasing cations for carbonate mineral precipitation. 
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