DYNAMIC LOADING ON PUMPS—CAUSES FOR VIBRATIONS

by
Stefan Florjanic
Senior Field Engineer
Sulzer Bingham Pumps Inc., Portland, OR

and
Arno Frei
Head, Mechanical Development Group
Sulzer Brothers Limited
Winterthur, Switzerland

Stefan S. Florjanic graduated (1982) from the Federal Institute of Technology in Zurich, Switzerland, with a degree in Mechanical Engineering. After training periods in pump factories in Switzerland, West Germany, U.S.A., France, and Brazil, he joined Sulzer Brothers Limited, in Switzerland (1983). He worked seven years in the area of mechanical development and design of pumps, mainly covering rotodynamic calculations and research. He received a Ph.D. degree for a combined experimental and theoretical research thesis covering the rotodynamic influence of annular seals from the Federal Institute of Technology, in Zurich (1990).

Dr. Florjanic then joined Sulzer Bingham Pumps, Inc., in Portland, Oregon, where he works as a Senior Field Engineer. His responsibilities include general troubleshooting, vibration data acquisition and analysis of pump installations, and mechanical and rotodynamic advising on pump designs.

Arno Frei graduated (1959) from St. Gall Technical College, Switzerland, with a degree in Mechanical Engineering. He joined Sulzer in 1966 and was first engaged in the design and development of primary recirculation pumps for nuclear power stations. After activities in the field of nuclear heat exchangers, he rejoined the pump division, where he has been Head of the Mechanical Development Group since 1978.

ABSTRACT

Some insight into the mechanisms which generate lateral dynamic loads, and hence vibrations, on centrifugal pumps is presented in a general way, and the individual loads are explained and quantified. Without extensive use of formulas and equations, this information can identify the significant types of forces and separate them from less important ones.

Measured data of lateral dynamic forces and resulting vibrations on pumps are presented, the individual causes are identified, and means to reduce specific loading forces are shown. However, loading forces cannot be eliminated totally. Therefore, approximate levels of forces which have to be accepted as physical properties of a centrifugal pump are established.

The particular comparison of mechanical versus hydraulic loading forces consequently leads to the definition of reasonable limits on mechanical balancing and rotor runout. When mechanical loading forces become much smaller than hydraulic forces, tighter manufacturing tolerances will not further improve the overall vibration behavior.

INTRODUCTION

It is commonly known that vibration problems on a centrifugal pump can result from a multitude of possible parameters which are not easily identified. Yet, in order to find a remedy, the cause of the vibration must be first understood and found. An overview of various root causes for vibrations in multistage pumps is given in APPENDIX A, [1].

Generally, there are two principle areas to be investigated, as outlined in Figure 1. Either the dynamic pump rotor-casing-baseplate system is resonant or close to resonance (e.g., at a critical speed or at a bearing housing resonance), or the forces driving the vibrations are excessive. Hence, depending on the nature of the problem, either the system dynamics need to be changed, or the loading forces need to be identified and reduced.

Descriptions on how to model a pump as a dynamic system in order to calculate its natural frequencies and corresponding damping values can be found in many publications [2], [3], [4].

![MEASURED VIBRATIONS](image)

Figure 1. Resonant and Stability Problems Vs Forced Vibration Problems.
approach on how to measure system properties is described in [5].
The model of a pump as a dynamic system allows the identification
of stability limits, critical speeds, and generally how sensitive the
machine is to excitation forces at certain frequencies (i.e., natural
frequencies) and at certain locations (i.e., antinodal points). In-
terpretation of results and means to change the dynamic system are
well described in the literature.

The focus of this presentation is on the identification and quantification of dynamic loading forces driving the vibrations in
a pump. Unlike the measurement of dynamic pump system prop-
etries, the measurement of forced vibrations is much more straight
forward, as the loading or excitation forces are always present.
They are to be distinguished from interaction forces, e.g., in eye
ring and hub ring seals, impeller-casing interaction, etc., which are
only present when the pump rotor vibrates. Interaction forces are
part of the pump dynamic system model and are not discussed here.

In Figure 2, various areas for potential dynamic loading forces
are indicated. They can be caused by hydraulic or mechanical
problems and can be summarized as:

- Mechanical unbalance
- Bent shaft
- Component runout

**Hydraulic**

- Hydraulic unbalance
- Vane passage forces
- Forces due to recirculation/ separation, rotating stall and sim-
  -ilar phenomena
- Excitation due to cavitation
- Surge and system instabilities

Other mechanical problems, e.g., misalignment, soft foot, etc.,
are not treated here, as they are not inherent pump problems, but
result from an inappropriate machine setup.

Most of the listed excitation forces are best presented in a
normalized form, which makes them largely (though not entirely)
independent of the machine size and design. In order to get a better
feeling for the effective forces acting on the pump, two numerical
examples are given for each force. The anticipated levels of the
dynamic loading forces are indicated on the example of a four-
age, stacked impeller design pump with a barrel casing (A) and
a 14 stage back to back design with a horizontally split casing (B),
Figures 2 and 3, respectively.

**Table 1. Main Dimensions of the Two Types of Pumps.**

<table>
<thead>
<tr>
<th></th>
<th>Pump A</th>
<th>Pump B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head</td>
<td>2195 (7201)</td>
<td>1829 (6000)</td>
</tr>
<tr>
<td>Head per Stage, H</td>
<td>549 (1800)</td>
<td>131 (429)</td>
</tr>
<tr>
<td>Flow, Q</td>
<td>0.335 (5310)</td>
<td>0.063 (1000)</td>
</tr>
<tr>
<td>Speed, N</td>
<td>6200</td>
<td>3560</td>
</tr>
<tr>
<td>Rotor Mass</td>
<td>444 (979)</td>
<td>190 (419)</td>
</tr>
<tr>
<td>Number of Stages</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>Specific Speed</td>
<td>32 (1635)</td>
<td>23 (1195)</td>
</tr>
<tr>
<td>Impeller Mass</td>
<td>16 (35)</td>
<td>5.6 (12.5)</td>
</tr>
<tr>
<td>Impeller Diameter, D₂</td>
<td>0.333 (13.1)</td>
<td>0.238 (9.4)</td>
</tr>
<tr>
<td>Imp. Outlet Width, B₂*</td>
<td>0.038 (1.5)</td>
<td>0.032 (1.3)</td>
</tr>
<tr>
<td>Fluid Density, φ</td>
<td>907 (57.9)</td>
<td>945 (59.0)</td>
</tr>
</tbody>
</table>

**DYNAMIC LOADING FORCES**

**Mechanical**

**Mechanical Unbalance**

Mechanical unbalance is the most well-known excitation force
and most often suspected to be the cause of vibrations in a
centrifugal pump. It causes vibrations at exactly running frequen-
cy. Though mechanical unbalance is a very likely cause, measure-
ment of synchronous vibration does not necessarily mean that the
rotor is badly out of mechanical balance, as there are many other
causes which lead to synchronous vibrations (hydraulic unbal-
cence, temporary or permanent rotor bow, casing distortion, critical
speed, misalignment, etc.).

On a stiff shaft, unbalance causes a force of

\[
F_m = \omega^2 \cdot U
\]

where \(U\) is the unbalance in [kg-m] or [oz-in]/(16.386.4). There are
various balance standards which can be applied. The standard ISO
1940 [6] gives various grades of allowable residual unbalance \(G\),
normally used are \(G = 6.3\) and \(G = 2.5\). According to ISO 1940, \(G = 6.3\) is to be used for "pump impellers, fans, fly wheels, compo-
nents under special requirements" among others. The more restric-
tive \(G = 2.5\) is to be used for "gas and steam turbines,
Turbo-compressors, machine tool drives, turbine driven (= high speed) pumps and others. The classification suggests that $G = 6.3$ is to be used for "general" turbomachinery, and $G = 2.5$ is to be used for more "sophisticated" or sensitive turbomachinery.

The unbalance is calculated to be

$$ U = \frac{G \cdot \text{Mass} \cdot 10^{3}}{\omega \text{[kg-m]}} \quad \text{("Mass" in [kg])} $$

$$ U = \frac{G \cdot \text{Mass} \cdot 0.6299}{\omega \text{[oz-in]}} \quad \text{("Mass" in [lb])} $$

(3)

API 610, 7th Edition [7], indicates the following rule for residual unbalance:

$$ U = 6350 \cdot \frac{W}{N} \cdot 10^{4} \quad \text{[kg-m]} \quad \text{("Mass" in [kg])} $$

$$ U = 4 \cdot \frac{W}{N} \quad \text{[oz-in]} \quad \text{("Mass" in [lb])} $$

(4)

Hence, API 610 leads to values almost four times smaller than ISO $G = 2.5$ ($G = 0.7$ in). It is interesting to note that ISO 1940 $G = 1$ classifies "tape recorder and phonograph drivers, and grinding machine drivers."

In order to calculate the unbalance force on a per stage base, the total rotor mass is divided by the number of stages. The resulting unbalance forces are indicated in Table 2 for the two sample pumps.

Table 2. Residual Unbalance Excitation Forces.

<table>
<thead>
<tr>
<th></th>
<th>Force per Stage Pump A</th>
<th>Force of Entire Pump A</th>
<th>Force per Stage Pump B</th>
<th>Force of Entire Pump B</th>
<th>N (lbf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO $G = 6.3$</td>
<td>454 (102)</td>
<td>1816 (408)</td>
<td>446 (100)</td>
<td>N (lbf)</td>
<td></td>
</tr>
<tr>
<td>ISO $G = 2.5$</td>
<td>1180 (40)</td>
<td>721 (162)</td>
<td>177 (40)</td>
<td>N (lbf)</td>
<td></td>
</tr>
<tr>
<td>API 610</td>
<td>48 (11)</td>
<td>192 (43)</td>
<td>47 (11)</td>
<td>N (lbf)</td>
<td></td>
</tr>
</tbody>
</table>

It can be seen, that the rule by API is substantially more stringent than the lower ISO limit for residual unbalance. Caused by the differences in the rotor mass, the rotor speed, and the number of stages, the allowable unbalance loading forces vary widely. For pump A, the force on the entire pump is $4 \times$ bigger and the force per stage is $4 \times$ bigger than for pump B.

These dynamic forces have to be compared to excitation forces caused by other effects. Additionally, it has to be recognized what average mass eccentricity, $e_{\text{avg}}$, the individual unbalance limits represent. This value can be calculated based on $U$ and the total rotor mass, Equation (5), and the results are presented in Table 3.

$$ e_{\text{avg}} = \frac{U}{\text{(Rotor mass)}} $$

(5)

Table 3. Average Mass Eccentricity Due to Unbalance Limits.

<table>
<thead>
<tr>
<th></th>
<th>Average Mass Eccentricity Pump A</th>
<th>Average Mass Eccentricity Pump B</th>
<th>$\mu$m (mils)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO $G = 6.3$</td>
<td>9.7 (0.38)</td>
<td>16.9 (0.67)</td>
<td>$\mu$m (mils)</td>
</tr>
<tr>
<td>ISO $G = 2.5$</td>
<td>3.9 (0.15)</td>
<td>6.7 (0.26)</td>
<td>$\mu$m (mils)</td>
</tr>
<tr>
<td>API 610</td>
<td>1.0 (0.04)</td>
<td>1.8 (0.07)</td>
<td>$\mu$m (mils)</td>
</tr>
</tbody>
</table>

Note: $1 \mu$m = 0.001 mm (1 mil = 0.001 in)

The small mass eccentricities, as imposed by API 610, are readily attainable on a state of the art balancing machine. But repeatability of the measured state of balance can hardly be achieved for those low values. If the rotor is put on a different balance machine or balance mandrel, or if the rotor temperature cannot be held totally constant, or if the rotor needs to be reassembled, the tight tolerance will not be maintained without rebalancing. In fact, trim balancing of an assembled rotor where all the components had been balanced individually, may just correct such effects, e.g., a residual shaft bow. The true state of balance may, therefore, become worse with trim balancing.

**Bent Shaft**

A bent shaft will result in unbalance forces which are in addition to the residual unbalance forces as found on the balancing machine. The bow may have been caused by inappropriate storage of the rotating element (gravitational loads, shocks) or may be temporarily caused by nonsymmetrical thermal expansion, e.g., after a standstill in a hot casing.

The resulting vibrations on the pump will exhibit exactly the same pattern as actual mechanical unbalance and the two phenomena cannot readily be separated. A permanent bow will eventually be detected through dimensional measuring of the rotating element. However, a temporary or thermal bow can only be assumed and is indicated if the operating conditions over time show strong transients or if the element cannot be rotated freely before startup.

To calculate the dynamic forces of a bent shaft, a simplified approach is used [8]:

$$ F_b = \omega^2 \cdot h_b \cdot k_b \cdot \text{Mass} \cdot \text{(Crit Speed Ratio)}^2 $$

(6)

where $h_b$ is the maximum shaft bow or eccentricity and $k_b$ is the shape factor which takes into account that not the entire shaft is at the maximum eccentricity. The rotor is assumed to be at about half the maximum eccentricity in one plane as an average along its length, leading to $k_b = 0.5$.

The original bow of the rotor is counteracted by the centering interaction forces at impeller wear rings, balance pistons and/or center piece and throttle bushing. During operation, these elements reduce the initial bow and its induced unbalance forces. It can be shown that the reduction of the bow orbit is about proportional to the square of the ratio of the critical speeds in air and in pumpage, as long as the machine is not run close to the critical speed itself [8]. For a short pump, this ratio is bigger than for a long pump with many wear rings and possibly a center piece in a back to back configuration. In this example, the ratio for the four stage pump is around 0.5 and for the 14 stage pump it is about 0.2.

The simplified calculation allows the following estimate of dynamic forces, induced by a maximum rotor bow of $h_{ba} = 0.025$ mm (0.001 in) for the four stage pump A and corresponding to Equation (7) $h_{ba} = 0.057$ mm (0.0023 in) for pump B:

$$ h_{ba} = h_{ba} \cdot (14+2)/(4+1) \cdot (D_{pfl}/D_{s}) $$

(7)

taking the number of stages, number of balancing devices, and ratio of impeller diameters into account.
In Table 4, the ratio of forces for pump A and B is much larger than for residual mechanical unbalance, Table 2. It becomes quite obvious that the long 14 stage pump B is much less sensitive to a bowed shaft than the short pump A. The lower sensitivity is clearly caused by the influence of the larger number of impeller wear rings and the center piece which straighten the bowed of the long rotor to a larger extent than the short rotor.

**Table 4. Bent Shaft Excitation Forces.**

<table>
<thead>
<tr>
<th>h = 0.025/57mm</th>
<th>Force per Stage</th>
<th>Force of Entire Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pump A</td>
<td>Pump B</td>
</tr>
<tr>
<td>146 (33)</td>
<td>2 (0.5)</td>
<td>585 (131)</td>
</tr>
</tbody>
</table>

Note: TIR = 2 · h, A = 0.05 mm = 0.002 in
TIR = 2 · h, B = 0.114 mm = 0.0045 in

The forces calculated for pump A are exaggerated, as the interaction forces are unlikely to be strong enough to center the components on the relatively short and stiff rotor. On the long pump B, it can be seen that the influence of component runout becomes stronger than rotor bow.

**Hydraulic**

Dynamic hydraulic excitation is normally presented in the form of normalized forces and/or pressure pulsations (axial forces are not considered here). While the two are not independent, the normalized forces lend themselves more readily for comparison with mechanical forces. Data on how to measure those forces and results from measurements can be found in [12, 13, 14, and 15]. Generally, the normalized hydraulic excitation force $K_{nh}$ is defined as:

$$K_{nh} = F_{nh} / (\rho \cdot g \cdot H \cdot D_i \cdot B_i)$$  \hspace{1cm} (10)

where $F_{nh}$ is the dimensional force, $\rho$ is the fluid density, $g$ is the acceleration due to gravity, $H$ is the head, and $D_i$ and $B_i$ are the impeller diameter and exit width, respectively.

An overview is given in Figure 5 of measured results for various frequency bands ("fn" is the rotating frequency). Without knowing the individual excitation mechanisms, it can already be seen, that the normalized force $K_{nh}$ depends strongly on the frequency range taken into account and on the flow where the pump is operated.

**Figure 5. Hydraulic Lateral Excitation Forces.**

Note that the narrow frequency band portions of $K_{nh}$, i.e., at rotating frequency and at vane pass frequency, are given in peak values. Due to the randomness of the broad band portions of $K_{nh}$, these values are given in RMS values and true peak levels can be up to 3.5 times higher.

**Hydraulic Unbalance**

There is a portion of the unsteady hydraulic force which is synchronous to the rotating frequency. From Equation (10) it can...
be seen that, for a constant synchronous \( K_{ru} \), the dimensional force becomes proportional to the pump head, which in turn is proportional to the square of the rotating speed. Therefore, this hydraulic force behaves exactly the same way as a mechanical unbalance force, and hence, is called hydraulic unbalance.

Measurements of synchronous forces on the pump rotor do not allow the distinction between hydraulic and mechanical unbalance. Similarly to the case of a bent rotor or component runout, other means must be found to differentiate between the various types of unbalance. Hydraulic unbalance can be determined in laboratory tests by running the (short) pump dry and subsequently subtracting the known mechanical unbalance from the one measured during operation (assuming that shaft bow and component runout have been minimized).

For a multistage pump, the only way to identify excessive hydraulic unbalance is by ruling out the mechanical types, and by inspecting the hydraulic passages of the impellers. Hydraulic unbalance forces originate in slight deviations from rotational symmetry of the flow through the impeller channels. This is due to geometrical tolerances, i.e., varying vane exit angles and overall areas between vanes, and some eccentricity of the hydraulic passages relative to the bore of the impeller. The deviations may be small, and not readily detectable during inspection.

Note that hydraulic unbalance cannot be cured by mechanical balancing of the rotor on a mandrel, as the location (phase and amount) of the hydraulic unbalance is not known. Trim balancing in the field lowers the vibration at the measurement location, e.g., at the coupling or at the bearing. As this is not the location where the force originates, the vibrations within the inaccessible wet part of the rotor, at the location of the hydraulic unbalance, may become even worse.

Even for precision cast impellers (ceramic core, lost wax), the normalized hydraulic unbalance is still about \( K_{ru} = 0.015 \), see Figure 5, upper left diagram. It can be substantially higher for lower tolerance castings, e.g., sand cast impellers, and according to Verhoeven [13] \( K_{ru} \) can be larger than 0.1.

Gülich, et al. [14], give an example (Figure 6) of measured lateral forces of an impeller with vane exit angles of 36 degrees and for forces of the same impeller with one vane exit angle increased to 51 degrees. It can be seen that the hydraulic unbalance (at \( f_h \)) increases up to three fold and more in this extreme example.

The hydraulic unbalance forces for the two sample pumps are calculated and presented in Table 6 for \( K_{ru} = 0.015 \). Those forces could easily be two or three times bigger for normal casting impellers.

As for the component runout, the resulting force on the entire pump is the statistical sum of the forces per stage, as the forces of individual impellers are not all in the same direction:

\[
F_{RU,stage} = K_{ru} \times (\rho \cdot g \cdot H \cdot D_2 \cdot B \cdot \beta) 
\]

\[
F_{RU,imp} = \frac{1}{\sqrt{\text{num. stages}}} \cdot \Sigma (F_{RU,stage}) 
\]

Table 6. Hydraulic Unbalance Excitation Forces.

<table>
<thead>
<tr>
<th>Force per Stage</th>
<th>Pump A</th>
<th>Pump B</th>
<th>Force of Entire Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump A</td>
<td>927 (208)</td>
<td>139 (31)</td>
<td>1854 (417)</td>
</tr>
<tr>
<td>Pump B</td>
<td>519 (117)</td>
<td>N (lb. f.)</td>
<td></td>
</tr>
</tbody>
</table>

The hydraulic unbalance forces for precision cast impellers are substantially bigger on a per stage basis than the mechanical unbalance force for the coarse ISO grade \( G = 6.3 \) and of about the same magnitude for the entire pump.

Vane Passage Forces

The cause for vane passing forces can be seen in Figures 7 and 8 [16]. As the vane thickness at the impeller outlet is finite, and there are boundary layers along the vanes, the fluid velocity, and hence the fluid pressure, is not uniform at the impeller outlet. The fluid velocity, \( w \), relative to the impeller has its minimum at the vanes, which in turn makes this the location of the maximum absolute fluid velocity, \( c \). This is due to the rotation of the impeller and the individual directions of the two velocities (see vector diagram in Figure 8). The peaks of the absolute velocity, \( c \), lead to maxima in the stagnation pressure.

Figure 7. Wake Flow in Impeller Vanes in The Rotating Reference Frame.

With time, as indicated in Figure 7, i.e., further downstream of the impeller outlet, the irregular flow distribution starts to even out. This explains why a larger gap between the impeller outlet diameter and the volute or diffuser inlet diameter leads to lower excitation forces. In Appendix A, Table A2 and Figure A2, an overview is given on the influence of relative clearance between impeller outlet diameter \( D_2 \) and volute/diffuser inlet diameter \( D_3 \) (Gap “B”) on the severity of measured vane pass pressure pulsa-
In general, combinations with smallest n's and m's are the worst combination. This shows that a three vane impeller in a double volute is very sensitive to vane pass vibrations. The rule of Equations (13) and (14) should be mainly applied with n=m=1 and n, m > 3 are of no practical concern.

It can be seen from Figure 5, upper right diagram, that the normalized vane pass frequency force $K_{n,m}$ (at $t = z_1/2$) depends on the ratio of operating to best efficiency (BEP) flow ($Q/Q_{BEP}$). Apparently the unevenness of the flow and pressure distribution at the impeller exit becomes most pronounced and leads to largest forces at very low or very high flows. Though lateral forces at higher harmonics (integer multiples) of vane passing frequency exist (APPENDIX A1), they are not readily quantified.

For the purpose of the two sample pumps, the normalized factor is taken at BEP, $K_{n,m} = 0.025$. Equation (11) applies to calculate vane pass frequency forces at each stage. But Equation (12) cannot be applied to estimate the sum of forces for the entire pump, as impellers normally are staggered per design in a multistage pump. The intention of the stagger is to minimize the sum of the vane pass forces from all stages as far as possible. This is not fully possible, and it is assumed that the compensation of forces by staggering leads to a resulting force inversely proportional to the square root of the number of stages.

$$F_{H,v,real} = F_{H,v,stage} / \sqrt{n_{stages}}$$  \hspace{1cm} (15)

**Table 7. Vane Passing Excitation Forces.**

<table>
<thead>
<tr>
<th>Force per Stage</th>
<th>Force of Entire Pump</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump A</td>
<td>Pump B</td>
</tr>
<tr>
<td>Pump A</td>
<td>Pump B</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>$K_{n,m}$ = 0.025</td>
<td>1545 (347)</td>
</tr>
<tr>
<td></td>
<td>231 (52)</td>
</tr>
<tr>
<td></td>
<td>773 (174)</td>
</tr>
<tr>
<td></td>
<td>62 (14)</td>
</tr>
<tr>
<td>$N$ (lb.f.)</td>
<td>$N$ (lb.f.)</td>
</tr>
</tbody>
</table>

The forces of Table 7 may increase by a factor of 2 to 3, depending on the vane combination of the design, the operating flow, and on the relative impeller - volute/diffuser clearance. The forces on the entire pump will certainly be substantially higher, if the impeller staggering has not been optimized. It also becomes obvious, that vane pass excitation on a single stage pump, where no compensation from one stage to the next is possible, can become predominant for a poor layout.

**Forces due to Recirculation/Separation, Rotating Stall, Etc.**

Broad band excitation forces are caused by large-scale turbulence, flow separation, and flow recirculation. The typical flow patterns for part load are shown in Figure 9. Most commonly, recirculation or flow separation at the impeller eye is known to occur at low flows, and to increase as the flowrate is reduced towards shutdown. However, recirculation at the impeller outlet volute/diffuser inlet may also be encountered under such conditions. Flow recirculation can lead to various hydraulic effects (cavitation, see below, head increase, etc.), which may be detrimental or beneficial. However, flow recirculation always introduces additional dynamic loading forces on the rotor. This is due to the irregular flow patterns entering the impeller and the volute/diffuser, fluctuations of the flow incidence, fluctuations of the effective through-flow streamline, and large scale pressure fluctuations at the impeller outlet during off BEP flow conditions.

The total lateral forces for varying flows (percent of BEP), [19, 20], on a time base are shown in Figure 10. The randomness and the high levels of the signal at low flows can easily be seen. The

\[ n \cdot z_2 - m \cdot z_3 \neq 1, \quad (n, m = 1, 2, 3, \ldots) \]  \hspace{1cm} (13)
frequency content of this time base signal is shown in Figure 11. To account for the randomness, RMS-values ("root mean square") are plotted, and the frequency axis is normalized by the rotating frequency. It can be seen that around BEP, the lateral forces are quite small for all frequencies. At low flows, lateral forces increase in general, but they increase strongest at low frequencies. Normally, there is no distinct peak at one given frequency.

In Figure 12, the RMS-values are shown as shown in Figure 11, but integrated into two distinct frequency bands. The results of tests at various speeds and temperatures collapse to one line when normalized, and show that broad band normalized results are repeatable and independent of speed and temperature. The distinct increase of lateral hydraulic forces toward lower flows is also clearly shown in Figure 12.

The example diagrams given here are valid for a certain type of hydraulic design. Other types of hydraulic designs may have other onset points for recirculation with the reduction of flow, and a scatter for the broad band forces will result.

It also has to be noted that there is no rotating stall present in the data of Figures 11 and 12. Though rotating stall occurs at part load, see APPENDIX A1, it is limited to a narrow flow range. Unlike forces due to recirculation, forces due to rotating stall do not keep increasing with the reduction of flow. Furthermore, as the phenomenon is quite repetitive, rotating stall normally produces a lateral force at one fairly steady frequency in the region of 50 percent to 95 percent of running frequency.

Hence, rotating stall is quite an isolated phenomenon which can be identified rather easily (by changing flow; frequency not synchronous, or integer multiple). It is normally the consequence of inappropriate hydraulic design and is not an inherent pump phenomenon. Therefore, while rotating stall has been identified, it is not further treated here.

In the lower part of Figure 5, the RMS-values for the normalized broad band hydraulic excitation forces can be found. The low
frequency band from 1.5 to 20 percent of running frequency and the intermediate frequency band from 20 to 125 percent (excluding 100 percent, which is hydraulic unbalance) indicate both a factor of \(K_{rb} = 0.01\) at BEP. The two forces can be calculated according to Equations (11) and (12) and are indicated in one table only.

**Table 8. Broad Band Hydraulic Excitation Forces (RMS-Values).**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_{rb} = 0.01)</td>
<td>618 (139)</td>
<td>92 (21)</td>
<td>1236 (278)</td>
<td>346 (78)</td>
<td>N</td>
</tr>
</tbody>
</table>

*Note: This is not the sum of the two, but the two are of the same magnitude.

Those values, like all hydraulic loading forces, have been calculated at BEP. At small flows, those RMS-forces will be substantially bigger, and peak values may be up to 3.5 times RMS-values, due to the randomness of the forces.

**Excitation due to Cavitation**

Cavitation is probably one of the most feared and most often discussed detrimental phenomena in centrifugal pumps. [20, 21, 22], and many others cover the various hydraulic aspects of cavitation, its causes, and its effects. Only a general outline for the understanding of the cavitation phenomenon is given here, in order to understand its consequences on pump vibrations.

A typical impeller inlet vane tip and a potential pressure distribution around the inlet are shown in Figure 13. It indicates the available net positive suction head, NPSH, at the suction nozzle which is the margin against vaporization (\(p_{v} \)). As the liquid is accelerated into the impeller inlet, the static pressure is lowered and, if NPSH is insufficient, becomes lower than the vapor pressure in the vicinity of the vane tip. Vapor bubbles formed in this area collapse as soon as they reach an area above vapor pressure further downstream from the inlet. The implosion creates forces which may erode and destroy the vane surface.

![Figure 13. Static Pressure Distribution on a Profile.](image)

There are many other forms of cavitation, beside the one described, [22]: Vortex shedding of an inlet splitter may lead to vapor bubbles being carried from the casing into the impeller eye; recirculation vortices and local vortices in the corners of the impeller channels may lower the static pressure locally below vapor pressure and create vapor bubbles; etc.

As indicated in Figure 14, the formation of cavitation bubbles begins at much higher NPSH (or normalized \(G_{cav} \)) than the generally used NPSH-values for zero percent or three percent head drop would suggest. Therefore, cavitation is present and can be heard even before any head loss can be observed.

![Figure 14. Cavitation Bubbles Vs NPSH.](image)

The clearly audible sound may lead an observer to the conclusion that cavitation is the cause of pump vibrations. But measurement as shown in Figure 15 [14], indicates that overall hydraulic excitation forces, i.e., hydraulic unbalance, vane pass forces, and broad band forces together, do not increase due to cavitation even as three percent head drop is reached. The ratio of hydraulic forces with three percent head drop to the forces without cavitation.
remains virtually over a wide range of flows. Only the hydraulic forces with head breakdown are substantially higher than the forces without cavitation.

There are two reasons for this phenomenon. Firstly, the frequency for cavitation bubble implosions is very high, generally above 10 kHz. This frequency range is normally not measured (and cannot easily be measured) to determine hydraulic excitation forces or pump vibrations. Secondly, the implosions are highly random events, normally distributed all around the impeller. Additionally, though the stresses induced locally on the vane surface are high enough to destroy the material, the overall forces are not very large.

When the cavitation becomes worse, however, the volume of the vapor bubbles disturbs the normal flow pattern through the impeller to such an extent, that pressure pulsations ("local surges") at frequencies much lower than 10 kHz occur, and eventually the head produced by the impeller breaks down totally. Additionally, large fluctuating vapor cavities will alter the rotational symmetry of lift at impeller vane and produce lateral forces. Yet, the measured hydraulic forces remain the indirect result of the cavitation, and originate from the pressure pulsations and disturbed flow pattern caused by the large oscillating cavitation bubbles, not their implosion.

A special type of cavitation induced excitation forces occurs mainly with high suction specific speed (large eye/throat area) impellers. Excessive impeller inlet recirculation leads to fluid pre-rotation upstream of the impeller and hence, to a parabolic pressure profile. The core may be below vapor pressure and block the pipe. The vapor core displaces the fluid and eventually, the flow to the impeller is blocked enough to stop recirculation. Now the pre-rotation is stopped, the vapor core collapses and the process repeats itself. This unsteady behavior produces lateral loading forces at very low frequencies (<10 Hz) [12].

Strong cavitation normally leads to excessive material erosion and limits the life of the involved parts, mainly the impellers, to short time spans. With big cavitation problems, the focus of attention is normally not on vibrations.

However, cavitation in hydrocarbons does not lead to fast material erosion, and Bolleter et al. [23], describes a case history of cavitation induced vibration problems and failures on a crude oil pipeline pump. It is noteworthy that shaft vibration readings taken originally did not indicate any vibration problems. It was only in a later stage that excessive bearing vibrations in the range of 20 to 30 times running frequency, i.e., around 1200 to 2000 Hz, were measured (Figure 16). The cause was found to be vortex shedding from the inlet splitter into the impeller eye and blade cavitation leading to strong pressure pulsations. This led to dynamic forces in the range of above frequencies, a range normally not covered by standard vibration measurement, and to damage of the mechanical seals.

However, actual lateral hydraulic excitation forces directly induced by cavitation are in the range above 10 kHz and are not quantified. Resulting vibrations in this frequency range are so small that they can be neglected. No machine damage is to be expected from forces or vibrations directly induced by cavitation.

forces indirectly caused by very strong cavitation (close to or at head breakdown) are not easily quantified, but they are also not encountered during normal pump operation.

Surge and System Instabilities

Generally, vibrations caused by surge or system instabilities occur at low frequencies, below 15 Hz and even below 1 Hz. The outlined phenomenon of a vapor core leads to pressure surges at low frequencies.

Other surges can be caused by unfavorable piping-pump system characteristics. Low damped acoustical resonance modes of the liquid in the piping can cause surges [24]. Large system surges can also be caused by waterhammer.

Transient conditions in hot systems may lead to partial vaporization of the liquid column in the piping system. The subsequent collapse of the vapor volume leads to waterhammer-like forces along the piping.

Head characteristic curves that are flat or rising with increasing flow may lead to system instabilities, depending on the resistance properties of the system. In Figure 17, the possibility of a statically stable (top) and a statically unstable (bottom) combination of a pump and a system characteristic is shown typically. Note that the seemingly unfavorable pump characteristic is the same for both cases, only the combination of the pump and system characteristics defines stable or unstable conditions. Unfavorable head flow characteristics can also cause surges in a system with pumps operating in parallel.

This overview indicates that surges and hydraulic instabilities are mainly system related and not inherent to centrifugal pumps. Surge conditions need to be avoided by appropriate system design and are to be addressed during the design stage. Loading forces caused by surges may vary to a large extent, depending on the type of surge. While some types lead to only slightly elevated vibrations, and maybe annoying noise, others may lead to catastrophic failure (e.g., waterhammer). Hence, while they need to be avoided, surge and system instability caused loading forces cannot be generally quantified, as they do not depend solely on the pump.

COMPARISON OF RESULTS

An overview is given in Table 9 of all the dimensional loading forces estimated for the two sample pumps and Figure 18 shows these results graphically (in N).

General

Comparing the graphs of Figure 18, it becomes quite obvious that all loading forces on the high speed, high energy concentration pump A (top) are substantially larger than on the low energy concentration pump B (bottom). Allowable mechanical unbalance forces increase linearly with the shaft speed and the rotor mass.
Rotor bow, component runout, and hydraulic forces increase with the square of the shaft speed.

This implies that hydraulic forces increase faster with speed than allowable mechanical unbalance forces. However, casting tolerances for low-energy impellers are normally much less restrictive than for high-energy impellers, leading within the given band width to larger and smaller normalized hydraulic forces. The criteria of allowable tolerances on the impeller cast has not been taken into account for the presented comparison. The difference in tolerances reduces the stronger speed dependency of hydraulic forces compared to the speed dependency of mechanical forces.

Forces due to a bent shaft or component runout also increase faster with speed than allowable mechanical unbalance forces. But they are generally small and reasonably tight machining tolerances for short rotors are sufficient. Long slender shafts are not as sensitive to a bent shaft or component runout.

The level of dynamic forces acting on the high speed unit A show, that a pump of this type has to be of a sturdy design and that rotodynamic considerations are needed to ensure safe operation. The forces on pump B would suggest that this size and design needs less attention. However, this may be misleading, as the effects counteracting the dynamic loading forces have not been shown for comparison here. Those restoring forces are much larger for pump A than for pump B. Only the calculation of the net balance between excitation and interaction forces can indicate that the operation of pump B is safe, even though the excitation forces appear to be small. However, this requires the discussion of the system characteristics, which is not the scope herein.

**Table 9.**

<table>
<thead>
<tr>
<th>All Forces in N (b.f.)</th>
<th>Dynamic Loading Force per Stage</th>
<th>Dynamic Loading Force of Entire Pump</th>
<th>Source of Force</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO G = 6.3</td>
<td>454 (102) 32 (7)</td>
<td>1816 (408) 446 (100)</td>
<td>Mechanical Unbalance</td>
</tr>
<tr>
<td>ISO G = 2.5</td>
<td>180 (40) 13 (3)</td>
<td>721 (142) 177 (40)</td>
<td>Mechanical Unbalance</td>
</tr>
<tr>
<td>API 610</td>
<td>48 (11) 3 (0.8)</td>
<td>192 (42) 47 (11)</td>
<td>Mechanical Unbalance</td>
</tr>
<tr>
<td>( h_c = 0.023 )</td>
<td>146 (33) 2 (0.5)</td>
<td>585 (131) 30 (7)</td>
<td>Best Shot</td>
</tr>
<tr>
<td>( h_c = 0.013 )</td>
<td>234 (53) 10 (2)</td>
<td>502 (118) 41 (9)</td>
<td>Comp. Run-Out</td>
</tr>
<tr>
<td>( K_{w_k} = 0.015 )</td>
<td>927 (208) 139 (31)</td>
<td>1854 (417) 519 (117)</td>
<td>Vane Pass</td>
</tr>
<tr>
<td>( K_{w_k} = 0.025 )</td>
<td>1145 (287) 231 (52)</td>
<td>773 (174) 62 (14)</td>
<td>Vane Pass</td>
</tr>
<tr>
<td>( K_{w_k} = 0.01 )</td>
<td>618 (139) 92 (21)</td>
<td>1236 (278) 346 (78)</td>
<td>Reinc. low f</td>
</tr>
<tr>
<td>( K_{w_k} = 0.001 )</td>
<td>618 (139) 92 (21)</td>
<td>1236 (278) 346 (78)</td>
<td>Reinc. int. f</td>
</tr>
</tbody>
</table>

**Figure 18. Overview of Sample Loading Forces.**

For both sample pumps, the hydraulic loading forces on a per stage basis are substantially higher than any of the mechanical loading forces, as clearly shown in Figure 18. Only the mechanical unbalance force for ISO grade G = 6.3 reaches levels that are comparable to hydraulic forces and may have some influence on the vibrational behavior of the rotor. More restrictive residual unbalance limits, i.e., ISO G = 2.5 and API 610, lead to forces per stage which are much smaller than the hydraulic forces, and are of little significance.

The level of the forces resulting from a bent shaft or component runout are about as important as mechanical unbalance forces according to API 610 rules at low speeds and are of the same magnitude as ISO G = 2.5 unbalance forces at high speeds.
On a per stage basis, vane pass frequency forces are strongest, followed by hydraulic unbalance forces and hydraulic broad band forces. This explains why single stage pumps with poor vane combinations and tight lip clearances can exhibit vane pass vibrations which are substantially higher than synchronous unbalance vibrations. The hydraulic broad band forces do not result in a distinct vibration peak and do not affect pump vibrational behavior as strongly as it appears from Figure 18. At lower part load though, the influence of broad band forces is considerably higher, and vibrations induced can become larger than those caused by any other forces.

**Forces on Entire Pump**

Caused by the different nature of the lateral loading forces and their distribution along the rotor, the total acting force of each category is not necessarily the arithmetic sum of the components acting on each stage. The mechanical unbalance forces and the forces from a bent shaft add arithmetically, the vane pass forces of one impeller are assumed to be partially compensated by additional stages, and the other forces are assumed to add statistically due to their arbitrary direction at each stage.

Hence, some mechanically induced forces become more important as total loading forces on the rotor than on a per stage basis. Yet, even ISO G = 6.3 unbalance forces barely match the hydraulic unbalance forces for both types of pumps. This holds true in spite of the fact that all hydraulic forces were calculated for optimum conditions. Particularly for a pump of the type B, with relatively low head per stage, a cheaper casting for the impellers might be chosen, leading to substantially higher hydraulic unbalance forces than shown here.

With today's generally applied mechanical unbalance limits, i.e., API 610 or similar, the hydraulic unbalance force is clearly the biggest existing dynamic load acting on a pump rotor during normal operating conditions. However, the tight mechanical unbalance limits achieved originally may not easily be maintained.

The effect of tighter balancing limits is shown in Table 10 and Figure 19. The arithmetic sum is the worst case for all unbalance forces being in phase, and the best case with compensating out of phase forces is shown as the arithmetic difference. Both cases are highly unlikely to occur. The statistical sum, the square root of the sum of squares, is the most likely resulting force for arbitrary phases. It can be seen that the tightening of limits from ISO G = 6.3 to G = 2.5 has some impact on the resulting force, but that the tightening from ISO G = 2.5 to API 610 practically does not affect the sum of the forces.

Resulting forces caused by shaft bow and by component runout are of secondary importance on the short pump A, and their influence is negligible on the long rotor B.

The interaction of all synchronous (unbalance) loading forces is quite impressively demonstrated in Figure 19. Tight limits on allowable mechanical unbalance, shaft bow, or component runout hardly reduces the overall synchronous force acting on a stage or on the entire pump. The existing hydraulic synchronous force is predominant and only rather loose mechanical limits affect the resulting force.

### Table 10. Resulting Unbalance Forces in [N].

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO G=2.5</td>
<td>721</td>
<td>585</td>
<td>523</td>
<td>1854</td>
<td>1758</td>
<td>779</td>
<td>1075</td>
<td>25</td>
<td>2153</td>
<td>35</td>
<td>25</td>
<td>1075</td>
<td>25</td>
<td>1075</td>
<td>25</td>
<td>1075</td>
<td></td>
</tr>
<tr>
<td>API 610</td>
<td>192</td>
<td>585</td>
<td>523</td>
<td>1854</td>
<td>1758</td>
<td>779</td>
<td>1075</td>
<td>25</td>
<td>2153</td>
<td>35</td>
<td>25</td>
<td>1075</td>
<td>25</td>
<td>1075</td>
<td>25</td>
<td>1075</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>ISO G=6.3</td>
<td>446</td>
<td>30</td>
<td>41</td>
<td>519</td>
<td>519</td>
<td>767</td>
<td>1036</td>
<td>2</td>
<td>686</td>
<td>35</td>
<td>271</td>
<td>767</td>
<td>271</td>
<td>767</td>
<td>271</td>
<td>767</td>
</tr>
<tr>
<td>ISO G=2.5</td>
<td>177</td>
<td>30</td>
<td>41</td>
<td>519</td>
<td>519</td>
<td>767</td>
<td>1036</td>
<td>271</td>
<td>550</td>
<td>35</td>
<td>271</td>
<td>767</td>
<td>271</td>
<td>767</td>
<td>271</td>
<td>767</td>
<td></td>
</tr>
<tr>
<td>API 610</td>
<td>47</td>
<td>30</td>
<td>41</td>
<td>519</td>
<td>519</td>
<td>767</td>
<td>1036</td>
<td>271</td>
<td>550</td>
<td>35</td>
<td>271</td>
<td>767</td>
<td>271</td>
<td>767</td>
<td>271</td>
<td>767</td>
<td></td>
</tr>
</tbody>
</table>

*Figure 19. Resulting Unbalance Forces for Various Mechanical Balance Grades.*

As expected from the intentional impeller stagger, the vane pass frequency forces become smaller as an overall force on the rotor. The effect of vane pass forces on a 14 stage pump is small, if adequate design rules have been used.

Broad band excitation forces are important at off BEP flow conditions. At very low flows, broad band vibrations can become predominant, and can be higher than any other vibrations.

**CONCLUSIONS**

The most important dynamic loading forces acting on a pump rotor have been shown and their nature explained. Estimates for inherent forces have been given at the example of two typical pump designs. It has been shown that hydraulic excitation forces in a pump generally are predominant.

The influence of rotor bow or component runout is considerably smaller on a long, slender shaft than on short, stiff shaft. However, if bow and runout are maintained within reasonable limits, those forces are of secondary importance.

The lowest level of hydraulic forces has been calculated, based on measured results on impellers with tight casting tolerances (ceramic core, lost wax). In comparison, mechanical unbalance induced vibrations with limits as imposed by API are much smaller. In light of this comparison, the stringent API limits, for which repeatability can hardly be maintained, do not appear to be necessary. Even the less stringent ISO grade G = 2.5 results in forces on the rotor which are considerably lower than the predominant hydraulic unbalance forces.

Balancing a rotor to less than G = 2.5 will therefore not further reduce synchronous vibrations. In many cases, i.e., with more economic lower precision casting impellers for lower heads per stage, a balancing level of G = 6.3 may be sufficient.

Vane pass frequency forces have been shown to be high for a single stage, but on a multistage pump forces compensate to a certain extent by appropriate staggering of the impellers. A general
rule about favorable impeller volute/diffuser vane combination has been indicated, and with the help of measured results, the importance of a sufficient impeller volute/diffuser clearance (“Gap B”) has been shown.

The nature of hydraulic broad band excitation forces has been explained to be caused mainly by flow recirculation. These forces are distributed over a wide frequency band, and do not cause a distinct vibration peak, but contribute to overall vibration. At low pump flows, measured results show that broad band vibrations can reach levels higher than unbalance induced vibrations.

Mechanisms leading to surge and system instability have been outlined. Typical levels for loading forces cannot be indicated for this type of excitation as they depend strongly on the system design. However, it has been realized that those low frequency pulsations may be of catastrophic levels, and need to be addressed during the design stage of the system.

**RECOMMENDATIONS**

Based on the discussion of the dynamic loading forces presented, a summary and recommendations can be established, see Tables 11 and 12. These are general guidelines and more detailed information on individual forces and mechanisms can be found in literature.

Typical values are shown in Table 11 to estimate loading forces acting on a centrifugal pump. The recommended value is a statistical average which may change considerably with individual designs and manufacturing tolerances. This is indicated by the relative broad range of possible minimum and maximum values. The recommendation for residual unbalance limits are given assuming that all other forces are in their lower range. Further limiting the unbalance will not reduce the resulting overall loading forces on the pump.

Some potential solutions to reduce individual loading forces are summarized in Table 12. Only vibrations caused by loading forces are considered, and system related problems are not included (compare to APPENDIX A).

**Table 11.**

<table>
<thead>
<tr>
<th>Source of Force</th>
<th>Grades / Condition</th>
<th>Recommended Values</th>
<th>Posit. Values a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Unbalance</td>
<td>Component Rotor</td>
<td>G = 2.5</td>
<td>G = 2.5 - 6.3</td>
</tr>
<tr>
<td>Bent Shaft (bare shaft)</td>
<td>± 5 stages TIR = ± 10 stages μm (mils)</td>
<td>25 - 50 (1 - 2)</td>
<td>50 - 75 (2 - 3)</td>
</tr>
<tr>
<td>Comp. Run-Out (OD to bore)</td>
<td>(All) TIR μm (mils) = (Incr. w/ lower speed)</td>
<td>25 - 65 (1 - 2.5)</td>
<td></td>
</tr>
<tr>
<td>Hyd. Unbalance (radial dr.)</td>
<td>All Q: Proc. Cast Imp. All Q: Norm. Cast Imp.</td>
<td>0.015</td>
<td>0.02</td>
</tr>
<tr>
<td>Vane Pass (radial thrust)</td>
<td>Q/Q₀ = 0.25</td>
<td>0.03</td>
<td>0.015</td>
</tr>
<tr>
<td>Recirc. low frequency (radial dr.)</td>
<td>Q/Q₀ = 0.25</td>
<td>0.04</td>
<td>0.015</td>
</tr>
<tr>
<td>Recirc. intermed. fr. (radial thrust)</td>
<td>Q/Q₀ = 0.25</td>
<td>0.034</td>
<td>0.02</td>
</tr>
</tbody>
</table>

a) Those are not the absolute Minimum and Maximum values attainable, but extreme values estimated possible with normal manufacturing quality.

**Table 12.**

<table>
<thead>
<tr>
<th>Source of Force</th>
<th>Identification</th>
<th>Recommendations to lower Vibrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical Unbalance</td>
<td>Peak at rotational frequency fᵦ = N/60. (Check if not hyd. unb., shaft bow, excessive run-out) Increases with speed. Not flow dependent.</td>
<td>- Only couplings may be trim balanced (coupling dominated critical speed?) Rotor trim balance may lead to higher vibrations in wet part - Balance individual components on rotor</td>
</tr>
<tr>
<td>Bent Shaft</td>
<td>Peak at rotational frequency fᵦ = N/60. (see mech. unb.)</td>
<td>- Check shaft run-out and correct - Check for thermal transients (temporary thermal bow)</td>
</tr>
<tr>
<td>Comp. Run-Out</td>
<td>Peak at rotational frequency fᵦ = N/60. (see mech. unb.)</td>
<td>- Check component run-out, loose fits, non-symmetric parts (thermal growth)</td>
</tr>
<tr>
<td>Hyd. Unbalance</td>
<td>Peak at rotational frequency fᵦ = N/60. (see mech. unb.)</td>
<td>- Check impeller dimensions (throat areas, vane angles) - Higher precision imp. casting.</td>
</tr>
<tr>
<td>Vane Pass</td>
<td>Peak at vane passage frequency and multiples (fᵦ, fᵦ + fᵦ, fᵦ + 2fᵦ, fᵦ + 3fᵦ, fᵦ + 4fᵦ, ...) Flow dependent</td>
<td>- Check the rule for vane comb. n - zₒ - m - zₒ ± 1 (n, m = 1, 2, 3, 4, 5, ...) n - zₒ - m - zₒ ± 2 (n, m = 1, 2, 3, 4, 5, ...) - Thinner impeller exit vanes - Profil volute/diffuser vanes - Check against low flow</td>
</tr>
<tr>
<td>Recirc. low f</td>
<td>no distinct peak, broad band vibrations 0 to 1.5 - fᵦ increas. towards lower freq. Strongly flow dep.</td>
<td>- Check against low flow - Check against high sus. spec. flow n in large impeller eye - Increase min. flow - Install &quot;Anti-Stall&quot; ring</td>
</tr>
<tr>
<td>Recirc. int. f</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Rotating Stall</td>
<td>Peak around 0.5 to 0.95 · fᵦ Freq. prop. to speed. Amplitude increases slightly with speed. Flow dep.</td>
<td>- Change flow - Improve hydraulic design.</td>
</tr>
<tr>
<td>Cavitation (indirectly)</td>
<td>Broad band vibrations around 0.5 to 10 kHz Strongly suction pressure dependent.</td>
<td>- Reduce cavitation induced pres. pulsation by increasing suction pressure (NPSH) - Improve hydraulic design.</td>
</tr>
<tr>
<td>Surge and System Instability</td>
<td>Relatively distinct peak at low frequency below 15 Hz to less than 1 Hz</td>
<td>- Check on acoustic resonance of system pipe - pump. - Check on parallel running pumps (head - flow characteristics) - Check for flat or rising head - flow characteristic.</td>
</tr>
</tbody>
</table>

Vibrations induced by loading forces may be amplified due to system resonances. In this case, vibrations may remain high, even if the loading forces are minimized (they cannot be eliminated totally). For example, repeated rotor balancing will not reduce synchronous vibrations significantly if the pump is running at or close to a critical speed; cutting impeller vanes back may not resolve high vane pass frequency vibrations on a bearing housing, if the housing is resonant around this frequency; etc. Hence, the following recommendations are to be used if no resonant conditions exist. For resonant conditions, either the system resonance frequency or the excitation frequency needs to be changed, before any other changes are attempted.

**APPENDIX A**
Table A1. Classification of Root Causes of Vibration Problems in Multistage Pumps

<table>
<thead>
<tr>
<th>Case No. (Fig. 18)</th>
<th>Observed Phenomenon</th>
<th>System-related</th>
<th>Root Cause</th>
<th>Excitation Related</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Peak at rotational frequency fR</td>
<td>-</td>
<td>Speed imbalance, bearing unbalance, looseness,</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(rotational vibration)</td>
<td></td>
<td>structural resonance and excitation by residual unbalance</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Peak(s) at low multiple or fraction of rotational frequency (fR, n/2, n/3, etc.)</td>
<td>-</td>
<td>Misalignment (caused by blade design)</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Vibration peaks at blade passing frequency (fBP, 2fBP, 3fBP, ...), etc.</td>
<td>-</td>
<td>Internal acoustic resonance (excited by blade interaction)</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Relatively distinct peak at 0.65 to 0.95 of rotational frequency</td>
<td>-</td>
<td>Bimodal instability, instability in a rotating system, shaft vibrations (caused by load variations)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2nd order hydraulic instability (caused by coupling)</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Broad band vibrations at 0.5 to 1.5 times load frequency</td>
<td>-</td>
<td>Broad band hydraulic forces due to unsteady flow (vaporization, turbulence) usually at part load</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Relatively distinctive peak at 1 to 2 times load frequency</td>
<td>-</td>
<td>Low or negatively damped acoustic modes</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>in the piping system due to fluid sloshing</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>in the hydraulic system due to parallel operation of pipes with unsteady fluid flow</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>in the piping system due to flow oscillations in the control system</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Broad band vibrations between 0.5 to 2 times load frequency</td>
<td>-</td>
<td>Cavitation induced secondary pressure fluctuations and vibrations</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>Peak at 1 to 2 line frequency or other exact multiples of line frequency</td>
<td>-</td>
<td>Motor vibrations transmitted in the pump via the foundation or shaft</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Relatively broad peak at a frequency not related to rotational frequency</td>
<td>-</td>
<td>Casting or bearing housing resonance excited by broad band turbulent forces</td>
<td>-</td>
</tr>
</tbody>
</table>

Table A2. Influence of Radial Gap Between Impeller and Diffuser/Volute on Pressure Pulsations and Stresses

<table>
<thead>
<tr>
<th>Measured Quantity</th>
<th>Location</th>
<th>Comment</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Installation Stage</td>
<td>Pressure</td>
<td>Diffuser</td>
<td>Local</td>
</tr>
<tr>
<td>2</td>
<td>Installation Stage</td>
<td>Pressure</td>
<td>Leading Edge</td>
<td>Average</td>
</tr>
<tr>
<td>3</td>
<td>Installation Stage</td>
<td>Pressure</td>
<td>Diffuser Inlet</td>
<td>Low Flow</td>
</tr>
<tr>
<td>4</td>
<td>Installation Stage</td>
<td>Pressure</td>
<td>Diffuser Inlet</td>
<td>High Flow</td>
</tr>
<tr>
<td>5</td>
<td>Installation Stage</td>
<td>Pressure</td>
<td>Volute</td>
<td>QSEP</td>
</tr>
<tr>
<td>6</td>
<td>Installation Stage</td>
<td>Pressure</td>
<td>Volute</td>
<td>QSEP</td>
</tr>
<tr>
<td>7</td>
<td>Installation Stage</td>
<td>Pressure</td>
<td>Diffuser</td>
<td>Leading Edge</td>
</tr>
</tbody>
</table>

Peak-to-peak values at blade passing frequency normalized according to:

\[
dp^* = \frac{dp}{\rho \cdot \omega^2 \cdot D_2^2}
\]

Gradient \( m \):

\[
m = \frac{D_3}{D_2} - 1
\]

Figure A2. Influence of Radial Gap Between Impeller and Diffuser/Volute on Pressure Pulsations and Stresses (see Table A2 for Explanations).

Figure A1. Illustrative Vibration Spectrum of a Pump at 3500 RPM, Indicating Various Vibration Phenomena. Impellers have 5 Blades, Line Frequency is 60 Hz. Explanations see Table A1.

REFERENCES


3. Pace, S.E., Florijancic, S., and Bolleter, U., "Rotodynamic Developments for High Speed Multistage Pumps," Proceedings of the Third International Pump Symposium, Turbomachinery Laboratory, Department of Mechanical Engineering, Texas A&M University, College Station, Texas (1986).


