#### Explosive Characteristics and Performance Baron Fidler



Improving Processes. Instilling Expertise.





### **Course Agenda**

- Explosive Properties
- Detonation Properties
- Explosive types
  - Characteristics
  - Available technologies
- Explosive selection to meet blasting objectives
- Explosive selection for the most efficient "crusher"



# **Explosive Properties**

- Physical properties
  - Give an indication of the application in which they can be used
- Detonation properties
  - These properties are used to describe the performance of explosives
- Safety properties
  - These describe the handling requirements for different products

All properties are important when selecting explosives.



# **Physical Properties**

- Loaded Density
- Water resistance
- Chemical stability
- Fume characteristics
- Sleep time



### **Loaded Density**

- Important property for explosive selection
- Density below 1.0 g/cm<sup>3</sup> means explosive may float in water
  - High viscosity products such a homogenized emulsion
  - Loading process such as repump emulsion
- Increasing density leads to increasing Velocity of Detonation (VoD) up towards critical density
- Increasing density leads to increasing detonation pressure
- Higher density for non-ideal explosives risks dead pressing
- Determine loading density (kg/m or lb/ft)



#### Water Resistance

Ability of explosive ability to withstand exposure to water without losing sensitivity or efficiency

- Wide variation:
  - ANFO has none
  - Emulsion is excellent
- Dependent on water conditions
  - Static or dynamic water
  - pH will affect emulsion sleep time
- Orange-Brown Nitrous Oxide fumes post blast is indication of water damage to explosive
- Water resistance of explosives can be improved by use of hole liners, but usually at the risk of reduced charge per meter of blast hole



# **Chemical Stability**

Defined as the ability to remain chemically unchanged when stored correctly. It is a key parameter in shelf life of many products Factors affecting shelf life include:

- Formulation/Raw material quality
- Packaging
- Temperature and humidity of storage environment
- Contamination

Characteristic signs of deterioration include:

- Crystallization
- Increased viscosity and/or density
- Color change (e.g. bulk emulsions go cloudy as crystallization increases)
- Poor field performance



### **Fume Characteristics**

- Oxygen balanced explosives yield non toxic gases
  - (CO<sub>2</sub>, N<sub>2</sub> and H<sub>2</sub>O)

Minor quantities of toxic gases also produced

- Oxides of nitrogen (NO<sub>x</sub>) result from an excess of oxygen in the formulation (oxygen positive)
- Carbon monoxide (CO) results from a deficiency of oxygen in the explosive (oxygen negative)



# **Sleep Time**

- Wet or dry ground
- Product selection
- Ground type
  - Reactive material to explosive material
  - Exposure to the reactive material as with bulk products
  - Hot temperature ground (150° F)



# **Detonation Properties**

- Velocity of detonation (VoD)
- Detonation pressure
- Energy/strength
- Critical diameter
- Confinement



# **Velocity of Detonation (VoD)**

Speed that the detonation wave travels through the explosive, usually expressed in metres per second (m/s) or feet per second (ft/s)

- Influenced by:
  - Rock Type
  - Charge diameter
  - Explosive density
  - Explosive formulation
  - Particle size
  - Degree of confinement
  - Primer (size and type)
- VoD will influence how the energy is released from the explosive (i.e. the partition of energy into shock and heave)



# **Velocity of Detonation (VoD)**

VoD is a guide to determining the efficiency of the explosive

- Comparison of VoD results should be done within the context of the particular blasting situation (i.e. same mine, same rock type). For Example, ANFO VoDs vary from 2500 to 4500 m/s (8200-14700 ft/s) depending on hole diameter in the same rock
- VoD data should be seen as a statistical variable (i.e. get multiple data wherever possible) to allow for:
  - Rock type variation
  - Charging variation
  - Data capture system



#### **Detonation Pressure P**<sub>d</sub>

Pressure in the detonation reaction zone as it progresses along a charge, expressed in MPa. This is what generates the shock pulse in rock

P<sub>d</sub> estimation for commercial explosives:

 $P_d = 0.25 \text{ x VoD}^2 \text{ x } \rho$ 

eg. ANFO at  $\rho$  = 0.85g/cc and VOD = 4000m/s (13123 ft/s)

 $P_d = 0.25 \times 4000^2 \times 0.85$ 

= 3400 Mpa

- = 34 Kbars
- = 499,800 psi



### **Available Explosives Energy**

The energy that an explosive is able to deliver to do useful work:

- Energy delivered to the rock mass before the gasses vent to the atmosphere (Calculated using thermodynamic codes)
- Effective energy is the energy transformed into useful rock fragmentation and rock displacement
- Actual amount of energy delivered in any blast is unknown as too many variables exist
- One critical factor is the cut off pressure assumed in any energy calculation
  - Changing the cut off pressure will change the energy attributed to an explosive



# **Absolute Weight Strength (AWS)**

This is the theoretical absolute energy available, based on the ingredients of the explosive

- Energy calculated by Thermodynamic Codes (ideal) (i.e. computer models of the detonation chemistry and energy of the reactions)
- Usually quoted in MJ/kg of explosive
- AWS of ANFO is 880 cal/g for 94% AN and 6% Fuel Oil
- Explosive efficiency varies from 35% to 90% of maximum energy (this is the actual energy delivered in a blast is 35% to 90% of theoretical maximum)



# **Relative Weight Strength (RWS)**

This is the ratio of energies of a unit weight of explosive compared to an equal weight of ANFO

 RWS for an explosive is the AWS of the explosive divided by the AWS of ANFO, expressed as a percentage:

$$RWS_{explosive} = \frac{AWS_{explosive} X 100}{AWS_{ANFO}}$$



### **Absolute Bulk Strength (ABS)**

The energy available in a unit volume of explosive

• ABS for an explosive is its AWS multiplied by its density

$$ABS_{explosive} = AWS_{explosive} \times \rho_{explosive}$$

# Where $\rho_{\text{explosive}}$ is the density of the explosive and ABS units are in cal/cc



# **Relative Bulk Strength (RBS)**

The ratio of the energies available in a given volume of explosive compared to an equal volume of ANFO

 RBS for an explosive is the ABS of the explosive divided by the ABS of ANFO, expressed as a percentage:

$$RBS_{explosive} = \frac{ABS_{explosive} X 100}{ABS_{ANFO}}$$



# **Critical Diameter = D**<sub>crit</sub>

Defined as the minimum diameter at which a stable detonation can propagate.

- Ideal explosives, 1 mm (0.04 inch)
- Non-ideal explosives, can be up to 200 mm (8 inch)
- D<sub>crit</sub> depends on the level of confinement

D<sub>crit</sub> is important for determining hole size/explosive type compatibility

- D<sub>crit</sub> is determined predominantly by the size of the reaction zone
- Density also has an effect on D<sub>crit</sub>



#### **Critical Diameter**



#### Molecular explosives

Non-ideal explosives



© Quarry Academy 2009

# Confinement

Confinement refers to the strength of the walls of the container in which the explosive is detonating.

#### Standards are:

- Unconfined usually taken as a cardboard tube
- Confined usually taken as a Schedule 40 Steel tube

#### Increasing confinement:

- Increases the VOD
- Maintains steady state detonation / reaction
- Therefore can determine efficiency of energy release and potential for NO<sub>x</sub> fumes



# Sensitivity

Defined as ease of initiation of explosive (i.e. minimum energy required to initiate detonation)

- Varies with composition, diameter, temperature and pressure
- High Explosive (1.1D) defined as sensitive to No 8 strength detonator or 25 gr/fr cord,
- Blasting Agent 1.5D requires a booster for initiation
- Can be altered by incorrect use
  - Some blasting agents can become detonating cord sensitive lateral prime
  - Some blasting agents can be desensitized by detonating cord lateral dead-press

#### **Testing includes:**

 Minimum primer, Critical diameter, Impact, Critical density, Frcition, Gap test



#### **ANFO**

#### **Advantages**

- Easy to manufacture
- Cost effective
- Simplest and most widely used explosive
- Low density

#### **Disadvantages**

- No water resistance
- Fume generation
- Low density





#### **Physical properties**

Bulk poured density: 0.82 - 0.85 g/cm<sup>3</sup> (dependent on AN source)

- Blow loaded density: 0.85 to +1.05 g/cm<sup>3</sup>
- Water resistance: none actually hydroscopic

#### **Detonation properties**

- AWS = 880 cal/g (401 Kcal/lb)
- RWS = 100
- RBS = 100 115
- VOD = 2500 4500 m/s (8200 14700 ft/s)
- High gas (heave) energy potential



#### **Energy Variation of ANFO**





© Quarry Academy 2009

# The Product Characteristics are Determined by the Emulsion Formulation

No one characteristic can be considered separate to the others.

The final product formulation is a compromise made to achieve the balance required for the particular application:

- Transport and handling
- Shelf life
- Minimum hole diameter required
- Detonation performance
- Reactive ground



# Why do we use emulsion explosives?

#### 1. Water resistance

- ANFO has no water resistance
- Emulsion blends can be slept for 2 weeks in wet conditions

#### 2. Variable density

- Different Heavy ANFO blends
- Gassing sensitivity

#### 3. Variable energy

- Differing percentages of AN and Emulsion
- Density gradient
- Differing density

#### 4. Detonation characteristics

- Higher VOD if desirable
- Heave to shock can be manipulated as needed

#### 5. Reactive Ground

Inhibited explosives



# Variable Density/Energy

#### Blends with ANFO

- ANFO is made from LD porous blasting grade AN prill. Additives include MgO, Al<sub>2</sub>(SO4)<sub>3.</sub>, fatty amines, alkyl naphthalene sulphonates etc
- These additives can have a destabilising effect on the emulsion
- The % of prill and type of prill affects emulsion stability
- The chosen emulsion formulation must have suitable stability characteristics for the application

#### Gassing

- Addition of gassing chemicals typically pH modifiers and chemicals that react with the oxidiser components
- Interaction with the emulsion structure
- Interaction with the emulsifiers, eg emulsion thinning and thickening



# **Heavy ANFO Properties**

#### **Physical Properties**

- Bulk density range is 0.95 1.35 g/cm<sup>3</sup>
- Sensitivity to initiation is low
- Water resistance increases with emulsion content
- Higher water resistance than ANFO

#### **Detonation Properties**

- RWS < ANFO\*</p>
- RBS > ANFO\*
- VoD > ANFO

\*Depends on assumptions in energy derivation



#### **The Structure of Homogenized Emulsion**





© Quarry Academy 2009

#### **The Benefits of Homogenized Emulsions**

Titan Emulsion is *very* thick and resists flowing into cracks or laminations

- Predictable loading density
- More predictable blast results
- More complete detonation
- Generates less fumes
- Reduces possibility of flyrock and blowout





#### Bulk Explosives Comparison: Energy / Density Profiles





#### **Titan Thickened Emulsion**





© Quarry Academy 2009

#### **Packaged Products**

- Packaged explosives can't completely fill the blasthole, loss of lbs/ft and drop in Powder Factor
- Increased detonation velocities and density can increase the available energy
- Used effectively in pre-splitting
- Used effectively in customer loading the front row or critical holes

Caution: Don't let packages free fall into blastholes!



#### **Dynamite** High Bulk Strength - more than other explosives

#### **RELATIVE BULK STRENGTH COMPARISON**



- When as much rock-breaking energy as possible must be concentrated in the borehole, dynamite is the answer.
- Use dynamite to toe load the column to shear the floor.
- •Load dynamite and drill smaller holes.

#### **Primers**

Performance of main explosive column may be strongly influenced by choice of primer

- Run-up zone extends 1 3 hole diameters if primer is inefficient or undersized
  - Ensure molecular explosive primer
- Overdrive zone extends 1 3 hole diameters if over primed.
- Primer selection should be based on:
  - Composition
  - Shape (diameter that best matches hole diameter)
  - Choice of main explosive
- Additional primers should be used for each 6 m (20 ft) of charge columns
- Recommended minimum detonation pressure for ANFO is 10,000MPa (1,450,000 psi)



#### **Explosive Selection to Meet Rock Structure and Strength Properties**



**Fractures** 



#### **Explosive Selection to Meet Blast Objectives**



#### **Fragmentation requirement**

#### **Chemical Crushing - Key Part of the Value Chain**



#### **Design Factors for Drill and Blast**



www.quarryacademy.com





Improving Processes. Instilling Expertise.



