Robert F. (Bob) Heyl is a Staff Consultant with Chevron Energy, Research, and Technology Company, in Houston, Texas. He is also team leader of the Chevron Machinery and Mechanical Systems Technology Rapid Execution Network, and he is leader of the Mechanical Equipment Round Table attended by Chevron’s mechanical equipment personnel from around the world. Mr. Heyl has been with Texaco and Chevron for 35 years and is responsible for the design and troubleshooting of mechanical equipment internationally. His responsibilities include equipment application, specification, selection, installation, troubleshooting, and the development and promotion of new technologies throughout the company.

Mr. Heyl has a B.S. degree (Engineering Science) from Hofstra University and attended Columbia University. He is a Steering Committee member of the API Subcommittee on Mechanical Equipment, and is Chairman of API 674, API 675, and API 676 Task Forces. He has participated on API 682, API 614, and API 682.

Written text was not submitted for this tutorial. The slide presentation is provided here.
What is Multiphase Flow?

- Flow consisting of at least:
 - Liquid
 - Gas

(But often high volumes of gas, mixed with oil, water, and solids)

GVF for Gas-Oil-Water Mixtures

Actual BPD of Gas =
\[(ACFD) (7.481 \text{ gal/cu ft}) (1 \text{ bbl/42 gal}) = (ACFD) (0.178 \text{ bbl/cu ft.})\]

where

\[ACFD = [(SCFD) (14.7 \text{ psia}) (MPP Inlet Temp F+460) (Z)] / [(MPP Inlet Press psia) (520R)]\]

where Z is often 1.0

Multiphase Pump Criteria

- Gas Volume (Void) Fraction [GVF] at Suction Conditions
- measured in %
- Particulate - measured in %
- Maximum Particle Size and Distribution
- Liquid Viscosity
- Temperature
- Gas Composition
- Suction Pressure
- Discharge Pressure
- Flow Rate
- Potential for Slug Flow

GVF for Gas-Oil-Water Mixtures

BPD = (Actual BPD of Gas + BPD of Oil + BPD of Water)

And therefore

GVF = (Actual BPD of Gas)/(BPD)

Types of Multiphase Pumps

- Need: Oil Rate in BPD
- Gas Rate in SCFD
- Water Rate in BPD
- Pump Inlet Pressure in PSIG
- Pump Discharge Pressure in PSIG
Types of Artificial Lift and Multiphase Pumps (MPPs)

- Electric Submersible Pumps (ESP’s) - Centrifugal
- Progressive Cavity Pumps (PCP’s) - Positive Displacement
- Helico-Axial Pumps - Centrifugal
- Twin Screw – Positive Displacement

Progressing Cavity Pumps (PCPs)

Electric Submersible Pumps (ESPs)

Helico-axial

MPP
7-stage helico-axial
125,000 bpd
700 hp motor w/ VFD (3600 rpm)

Progressing Cavity Pumps (PCPs)

Helico-axial Pump

MECHANICAL SEAL
BEARINGS
Helico-Axial Rotor Assembly

Hydraulic Helico-axial
- Special design of helico-axial Pump with a multistage hydraulic turbine fed by a remote high pressure pump
- Turbine and pump integrated on a common shaft in a cartridge barrel casing

Slide 16.

Slide 19.

Buffer Tank

Hydraulic Helico-axial

Slide 17.

Slide 20.

Helico-axial Subsea Pump

Slide 18.

Slide 21.
Twin Screw - Timing Gears

Upstream Applications
- Eliminate Flaring at Reduced Cost
- Reduce Backpressure at Wellhead and Increase Production at Wellhead
- Pump Gas & Liquid Mixtures up to 100% GVF (usually when designed for specific time periods)
- Reduced Installed Cost vs Traditional Systems

MPP Drives
- Usually Motors with VFDs, especially for positive displacement pumps (PCPs and Twin Screws)
- Engines (Natural Gas, Diesel)
- Hydraulic Turbines

Downstream Applications
- Flare KO Drums
- Any highly gaseous liquid stream
- Replace centrifugal pumps that have cavitation problems due to excessive gas

General Applications

Advantages and Disadvantages of Different Types of MPPs
Sample List of Chevron Applications

- Venezuela: Boscan – Surface Twin Screws 40% GVF
- Venezuela: Hamaca – Down-hole PCPs
 - Surface Twin Screws 90% GVF
- California: Midway Sunset – Surface Twin Screws 59 to 90% GVF
- California: Midway Sunset – Surface Twin Screw
 - Charge to heater treater
 - Slugs of 100% Gas

Indonesia Light Oil Steam Flood (LOSF)

- 60,000 BPD
- 250 hp motor, 4 poles
- 480V YFD
- API plan 32 seal flush
- Enlarged bearing housing
- Air-cooling for bearing lube oil cooling, with blower installed at coupling hub
- Boxed screws
- 6 chambers screws
- Stellite 12 over weld liner

Humble’s Twin Screw Pump

Indonesia - Twin Screws and Sand

- Natural sand build-up on inlet section
- No evidence of sand accumulation inside liner
- Stellite Liner: 65 HRC

Indonesia LOSF Multiphase Pumps

MPP Primary Functions:
Collect and boost 95% GVF
Steam to Eliminate Flaring

California - Midway Sunset Twin Screw
Twin Screws in Chad

Twin Screws and Particulate

Multiphase Pump Solution

Current Best Technology
- Screws nitrided or borided to depth of 0.003
- Casing coated with tungsten carbide or stellite
- Pump designed with replaceable liner

Twin Screw - Subsea Pump

Mechanical Seals
- Use correct API flush plan
- Use correct seal faces
 - Hard Particulate: hard face vs. hard face
 - Softer Particulate or none: carbon vs. tungsten or silicon carbide
Indonesian Experience

- Multiphase production and the installation costs of the traditional system demands simpler and smaller installation and a more cost effective production system.

- Twin Screw multiphase pumping application in heavy oil steam flood in sandy environment is proven to be feasible.

- To date, operational reliability satisfies if not exceeds acceptable industrial standard.

Slide 52.

MULTIPHASE BOOSTING

Slide 55.

Sample Economics

Slide 53.

Typical Production Increases

Slide 56.

Multiphase Installation Advantages

Slide 54.

Production Increase Due to Reduced Backpressure on Wells

Slide 57.
Economics, MPP Case

- Net Present Value (NPV) = $56.6 MM
- Discounted Profitability Index (DPI) = 1.66
- Internal Rate of Return = 36.0%
- Payback = 5.1 years

Reasons to Use MPPs Offshore (or Onshore)
- No need to have separation vessel
- One MPP vs. liquid pump and gas compressor
- Smaller installed footprint (especially for offshore rigs)
- Less weight (especially for offshore rigs)
- One COMBINED liquid/gas line (especially for offshore rigs and Subsea installations)

Duri Production Increases with MPPs

Escravos 3B Project: MPP Process
- The Team narrowed MPP down to four platforms for investigation...Malu, Opolo, Ewan & Isan
- Sought technical support from Chevron ETC. other SBUs experiences
- Preliminary GVF ranged from Opolo (81%) to Isan (97.2%). Opolo and Malu (95%) were considered positive based on CVX field experience.
- Received technical proposals from Bornemann and Leistritz
- Revised Gas forecast...May 2004 gives GVF above 98%

Offshore Economics Example

- Opolo - Potential capex savings would be about $6MM.
Subsea Developments

Summary
- MPPs have been used to:
 - Eliminate Flaring at Reduced Cost
 - Reduce Backpressure at Wellhead
 - Increase Production
 - Pump with Low Shear & Decreased Emulsion Formation
 - Pump with Low NPSHA
 - Reduce Installed Cost and Maintenance Costs vs Traditional Systems

Multi-phase Pumps: Subsea Efforts
- Twin Screw
- Helico-axial
- Hydraulic Turbine Helico-axial

The End

Summary
- MPPs have been used to pump multi-phase fluids that have:
 - Temperatures from ambient to 300°F
 - Suction pressures from 6 psig
 - Discharge pressures to 2000 psig
 - GVF’s to 100% (for designed time periods)
 - Particulate concentrations to 0.5%
 - Almost any viscosity