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ABSTRACT 

 
Tunnels in deep mines are subjected to high stresses. Fracture and failure of the rock mass around an 

opening can occur when mining-induced stresses are high. In burst-prone grounds, mining-induced seismicity can 
cause additional dynamic loading which can further increase the stress around the tunnels. When the dynamic stress 
reaches the rock mass strength, fracturing can occur and rockburst may happen (depending on loading stiffness 
around the failed rock mass). Rock support installed in the tunnel must be capable of dissipating dynamic energy 
and holding the failed rocks. Hence, it is important to estimate the depth of failure for rock support design. This 
paper focuses on how to model depth of failure under dynamic loading. In the modeling, two scenarios of rock 
failure are considered. In the first scenario, rock failure occurs under static loading and subsequent dynamic loading 
further increases the depth of failure. In the second scenario, no failure occurs under static loading but in the 
subsequent dynamic loading, failure around the tunnel is created. 
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INTRODUCTION 
 
Under high static stresses, fracture and damage of rock mass around an opening can result from high 

mining-induced stresses, leading to brittle rock failure around the excavation boundary. In burst-prone grounds, 
mining-induced seismicity can cause additional dynamic loading which may further increase the stress around the 
tunnel, leading to more failure, loosening, sudden release of elastic strain energy stored in the failing rocks and the 
surrounding rock masses, and violent ejecting of the failed rock masses (Kaiser et al., 1996). 

Once the anticipated seismic damage risk is recognized, it is important to control the potential damage 
caused by the seismic event. First, the demands that will be imposed on the support systems need to be estimated. 
Then, rock support with sufficient capacity must be designed and installed to control the potential failure zone, to 
provide a safe environment for the underground workers, and to avoid disruption to mine production. One method to 
estimate the support capacity under dynamic loading is the energy approach which is based on the estimation of the 
maximum ejection velocity (Stacey & Ortlepp, 1993). Another method relies on a reasonable estimate of the 
ultimate depth and extent of the failed rocks under both static and dynamic loadings; to achieve this goal, it is 
important to anticipate the brittle rock failure zone around the excavation under both static and dynamic loadings.  

 
PURPOSE OF THE STUDY 

 
The depth of failure is an important factor to be considered when designing rock support systems (Cai et 

al., 2012; Hoek & Bieniawski, 1965; Hoek et al., 1995; Kaiser et al., 2000; Martin et al., 1999). The depth of failure 
under static loading can be estimated empirically and/or numerically. The empirical approach utilizes an equation 
summarized by surveying actual field tunnel failure of some underground openings around the world (Kaiser et al., 
1996; Martin et al., 1999).  The numerical approach emphasizes on predicting the depth of failure using either a 
suitable numerical tool and/or a suitable failure model. For example, the cohesion-weakening frictional-
strengthening (CWFS) model (Hajiabdolmajid et al., 2002), the spalling failure model (Diederichs, 2007), and brittle 
Mohr-Coulomb model (Golchinfar & Cai, 2012) had been used to simulate brittle rock failure near excavation 
boundary.  

Similarly, the depth of failure under dynamic loading can be estimated using either the empirical approach 
or the numerical approach. One empirical method considers adding a dynamic stress increment to the total 
excavation-induced tangential stress at the tunnel boundary to estimate the depth of failure due to dynamic loading, 
using the same empirical equation for static loading (Kaiser et al., 1996). The influence of seismic and dynamic 
loading on stress changes around the opening and consequently on the depth of failure has previously been 



investigated (Vasak & Kaiser, 1995; Wang, 1993; Lanzano et al., 2009). Some results played the role of developing 
the empirical relationship for estimating depth of failure under dynamic loading. 

It is observed that further research is needed to model rock failure under dynamic loading properly. This 
observation is largely driven by the fact that new understanding about brittle rock failure has been gained in recent 
years. In the work by Vasak and Kaiser (1995), a strain-softening model was used in FLAC to simulate the rock 
mass failure. However, the behavior of a rock mass under low confining conditions, such as those near the tunnel 
boundary, is brittle, which means that there is a sudden reduction of rock mass strength from peak to residual once 
failure occurs (Golchinfar & Cai, 2012). In a recent study, Golchinfar and Cai (2012) demonstrated that brittle 
failure near underground excavation boundary under static loading can be successfully simulated using a brittle 
material model and this approach was verified using the well-documented case history of the Mine-by tunnel at the 
Underground Research Laboratory (URL) in Canada.  Because brittle rock failure is more likely to occur under 
dynamic loading, we are motivated to conduct a study to investigate the dynamic rock failure near excavation 
boundaries using a brittle material model. 

 
DESCRIPTION OF THE MODELING PROCEDURE 

 
In this study, a modeling approach using brittle rock strength parameters will be used to simulate the depth 

of failure around a circular tunnel under dynamic loading. In particular, we focus on assigning more realistic 
strength parameters to the model with peak and residual strength envelopes properly defined. To demonstrate the 
effect of dynamic loading on rock failure, we utilize the model geometry and boundary condition of a tunnel similar 
to the Mine-by tunnel. This was based on the observation that the strength parameters should first be calibrated 
using field monitoring data such as notch breakout before commencing the dynamic modeling. The Mine-by tunnel 
provided all the data required to achieve the objective of model parameter calibration. Because the Mine-by tunnel 
experienced no rockburst or seismic event, it is not possible for us to verify the simulated depth of failure around the 
tunnel under dynamic loading. The underlying assumption here is that because we use a calibrated brittle model for 
the dynamic stress analysis, it is expected that we would have a better chance to capture the depth of failure 
accurately if a similar dynamic loading were to occur.  

To that end, several intensities of dynamic stress wave are applied to the model and the corresponding rock 
failure patterns are studied. For comparison, we also conduct numerical modeling using a strain-softening model. 

 
Dynamic loading and boundary conditions 

 
Fault slips cause the largest seismic events encountered in a mining environment (Ortlepp, 1997). In the 

present study, the simulation will consider seismic waves generated by a large seismic event travelling in the rock 
mass, reaching the tunnel, and causing dynamic stress increase in the rock mass around the tunnel. Coupled with the 
excavation-induced stress, the total stress may cause the rock mass to fail. Usually, the stress waves generated by 
large magnitude seismic events have a dominant low frequency, ranging between 10 and 50 Hz (Aswegen & Butler, 
1993; Hedley, 1992). Because p-waves are the fastest seismic waves, they will usually be the first ones to appear on 
a seismograph. The next set of seismic waves to appear on the seismogram is the s-waves, which have high ground 
motion amplitudes and are therefore the main forces that cause large stress change in the rock. For simplicity, only 
the s-waves will be considered in this study. 

FLAC is chosen as the modeling tool because its internal programming language, FISH, allows us to 
manually assign material property parameters to the model. It is a finite difference, explicit solution scheme method 
based numerical package, which is suitable for solving dynamic and non-linear deformation problems. 

The effect of stress wave loading on rock failure around the tunnel is simulated by applying a dynamic 
shear stress boundary at the lower boundary of the numerical model shown in Figure 1. The diameter of the circular 
tunnel is 3.5 m and the model size is 40 by 40 m. To propagate stress wave through the model without boundary 
reflections, free-field boundaries are applied along the vertical and top boundaries of the model to absorb energy. 
Because the dynamic input is a stress boundary, quiet (absorbing) boundaries are assigned in the direction of wave 
propagation to the top and lower boundaries to avoid the reflection of outgoing wave back to the model and the 
movement of the entire model downwards due to gravity acceleration. 



 
Figure 1: Model geometry and boundary conditions for the dynamic failure analysis. 

 The dynamic input is applied as a shear stress wave, and the peak shear stress sτ  is obtained from Eq. (1): 

ppvCss )(2 ρτ =  (1) 

where ρ  is the mass density (kg/m3) and ppv is the peak particle velocity which can be determined using a 

design scaling law (Kaiser et al., 1996):  

 

(2) 

where M0 is the seismic moment in GN⋅m (Seismic moment can be related to the event magnitude), R is the 
distance between the tunnel location and the seismic source in m, and a* and C* are empirical constants. Finally, sC  
is the s-wave propagation velocity of the medium which can be obtained from Eq. (3): 

ρ/GCs =  
(3) 

where G is the shear modulus of the rock mass. 

In the present study, the shear stress is multiplied by a sinusoidal time history function, pulsing at 10 Hz 
frequency, to create a synthetic stress wave similar to the wave form illustrated in Figure 2 (ppv = 0.65 m/s, G = 24 
GPa, ρ  = 2500 kg/m3). Using the synthetic stress wave, it is easy to validate the stress wave transmission through 

the model. To ensure that the shear stress wave has a maximum influence on rock failure, the stress wave needs to 
be applied in a 45° angle relative to the maximum in-situ principal stress direction (Owen & Scholl, 1981). In the 
model shown in Figure 1, the synthetic stress wave is applied to the bottom boundary, in the horizontal direction. To 
maximize the effect of the stress wave on dynamic stress increase, instead of applying the wave in a misaligned 
angle, the in-situ stress field defined by σxx and σyy, as illustrated in Figure 1, is rotated by 45°. In this way, a 
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combination of static and dynamic stresses will induce maximum tangential stresses at locations A and B indicated 
in the figure.  

 

 
Figure 2: The synthetic stress wave form used in this study. 

 
An elastic stress analysis is conducted first for an in-situ stress field of 1σ  = 60, 2σ  = 45, and 3σ  = 11 

MPa.  2σ  is parallel to the tunnel axis, and 1σ  and 3σ  are oriented in the x and y directions, respectively. Under this 

in-situ stress condition, the maximum tangential stress occurs at point C (see Figure 1). When the in-situ stress 
components are rotated 45° from the horizontal, the maximum tangential stress occurs at points A and B. The 
Young’s modulus and Poisson’s ratio of the rock are 60 GPa and 0.25, respectively. As a result of the shear wave 
loading (Figure 2), the variation of the maximum tangential stresses over time at points A (in-situ stress rotated) and 
C (in-situ stress not rotated) are plotted in Figure 3. Before the stress wave arrives, the maximum principal stresses 
at points A and C are 165.45 MPa and 158.9 MPa, respectively. The difference in stress magnitude is attributed to 
the outside boundary effect. When the in-situ stress is rotated 45° from the horizontal, the diagonal distance of point 
A to the outside boundary is larger than the horizontal distance of point C to the outside boundary. When the shear 
stress wave arrives, more stress change occur at point A than at point C. Coupled with the static stress, it is seen that 
for the case with the in-situ stress rotated 45° from the horizontal, more stress disturbance will be induced to the 
rocks near the tunnel boundary at point A (and B).  

 

 
Figure 3: Comparison of the stress change caused by the same seismic wave at point C (black line, without in-situ 

stress rotated 45°) and point A (red line, with in-situ stress rotated 45°). 
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Wave transmission through the model 

 
As explained above, the dynamic loading is a sinusoidal shear stress wave applied at the base of the model 

in the x-direction. The magnitude of the stress wave is a function of ppv (see Eq. (1)) and the wave frequency is 10 
Hz. For the given rock, the shear wave velocity calculated from Eq. (3) is 3098 m/s. The largest zone dimension (∆l) 
of the numerical model is 0.1 m. The relation between the longest wave length (λ) and the maximum frequency is: 

l

CC
f ss

∆
==

10λ
 

(4) 

 
Using Eq. (4), we find that the maximum frequency which can be modeled accurately is over 3000 Hz. 

Therefore the current zone (mesh) size is small enough to allow wave at the input frequency (10 Hz) to propagate 
accurately in the model. In addition, to increase the accuracy of the dynamic analysis, the mesh needs to be as 
uniform as possible throughout the model. The mesh used for the dynamic modeling in this study is shown in Figure 
4. 

 
Figure 4: The uniform fine mesh utilized in this modeling approach 

DYNAMIC RESPONSE 
 
Two scenarios of rock failure are considered in the study. In the first scenario, rock failure in the form of 

notch breakout occurred under static stress loading. The incoming dynamic stress wave further expands the failure 
zone. In the second scenario, the rock strength is higher than the maximum stress under static loading on the tunnel 
boundary. Hence, no failure will occur when the tunnel is excavated. When the dynamic stress wave is applied to the 
model, a dynamic stress increase will be generated in the rock around the tunnel. If the combined stress (static plus 
dynamic stresses) is high enough, failure will occur around the tunnel. 

It is understood that the material properties under dynamic loading are different from those under static 
loading. Rock strength is generally higher under dynamic loading than under static loading (Olsson, 1991; Cai et al., 
2007). However, the loading rate of the dynamic stress generated by a seismic event (or ppv) is not high. For 
simplicity we assume that the same peak and residual rock strength envelopes calibrated under static loading are 
applicable to dynamic loading.   

  
Deepening of depth of failure by dynamic loading 

 
From back analyses of well-documented case histories, we have built confidence on modeling brittle rock 

failure under static stress loading (Golchinfar & Cai, 2012; Diederichs, 2007; Edelbro, 2010). In the present study, 
we will first simulate the extension of the notch failure of the tunnel under dynamic stress loading. The purpose is to 
use a calibrated model to understand how the rock will respond under dynamic loading, which can be generated by 
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fault-slip induced by rockbursts or natural earthquakes. The insight gained from such a failure process analysis will 
assist us to design better rock support systems for underground construction. 

The modeling procedure is as follows. First, we run the model under static loading and let the model reach 
equilibrium. A static equilibrium can be obtained only if sufficient cycling steps are taken. In general, about 50,000 
cycling steps are required before the unbalanced force reaches an insignificant value. This is especially important in 
an analysis in which rock failure occurs. The failure zone around the tunnel is plotted and compared with the field 
observation data. The model parameters are adjusted to match the modeling results to the field observation. 

Next, we initiate the dynamic analysis and run the model until the stress wave input is finished, then further 
run the model until the stress wave passes the top boundary. Failure due to dynamic loading is then analyzed. The 
material parameters are listed in Table 1. For comparison, we conducted numerical modeling using both the brittle 
and the strain-softening models. The tensile strength and dilation angle are 30 MPa and 30 degrees, respectively. 

 
Table 1: Peak and residual strength parameters for both the brittle and strain-softening models 

 

Under static loading with an in-situ stress field of 1σ  = 60 MPa and 3σ  = 11 MPa, where 1σ  is rotated 45° 

from horizontal, the failure zones around the tunnel when the tunnel is excavated are plotted with green filling in 
Figure 5a and b, for the strain-softening and the brittle material models, respectively. The peak and residual strength 
envelopes of the two models are shown as inserts in the figures. The peak and residual uniaxial compressive 
strengths of the strain-softening model and the brittle model are 100 MPa and 78 MPa, 143 MPa and 2.75 MPa, 
respectively. In the strain-softening model, the characteristic strains for cohesion and friction angle are 0.2% and 
0.5%, respectively. As discussed in Golchinfar and Cai (2012), the brittle rock model is more appropriate for 
simulating brittle rock failure because for fractured rocks, the residual strength is purely frictional strength.   

The 10 Hz frequency sinusoidal shear waves with two stress intensities (ppv = 0.65 and 1.3 m/s) are applied 
to the model which has been in equilibrium statically. In this case, notch failure has already occurred under static 
loading. Hence, the dynamic stress wave loading will increase the failure zone. The failure zone increases are shown 
in Figure 5 by blue and red colors for the wave intensities of ppv = 0.65 m/s and 1.3 m/s, respectively. The stronger 
shear wave indicated with the red zone extends further over the blue zone in Figure 5a, where a strain-softening 
material is used. In Figure 5b, where the brittle material model with parameters specified in Table 1 is used, the red 
zone extends differently compared with that in the strain-softening material. 
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Figure 5: Influence of dynamic loading on the depth of failure: (a) strain-softening model; (b) brittle model. 

As shown in Figure 5a and b, the same dynamic wave will induce different degrees of additional failure to 
the rock depending on the strength models used. In the strain-softening model, the failure zone depth and extent are 
larger than that in the brittle model, when only judged by the elements that enter plastic deformation. It is not 
appropriate to determine the failure zone based on the yielded element plot alone from a numerical exercise without 
mentioning the strength model used. Depending on the peak and particularly the residual strength parameters used, 
the residual stresses in the failure zone can be very different.  In Figure 6, we plotted the differential stress 
distributions after the tunnel is excavated for both the strain-softening and the brittle models. The strength 
parameters in the strain-softening model were calibrated by Hajiabdolmajid (2001). Although the failure zone 
indicated by yielded elements matches the Mine-by tunnel notch shape obtained from field observation, the residual 
differential stresses inside the notch are still very high, in the range of 60 to 100 MPa in the strain-softening model 
results (see Figure 6a). This is not in agreement with the field observation. In reality, in the zone where notches 
eventually formed, the stress should have been zero because failed rocks had fallen out (in the back of the tunnel). 
On the other hand, the residual differential stress distribution given by the brittle model is much smaller, mostly in 
the range of 0 to 20 MPa (see Figure 6b). In a continuum model, it is not possible to completely release all the 
stresses in the failure zone. However, lower residual stresses in the failure zone indicate that the material model 
captures the failure better than the ones with high residual stresses in the failure zone. 
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(a) (b) 

Figure 6:  31 σσ − stress distribution in the rock when the notches are formed under static stress loading: (a) strain-

softening model, (b) brittle model. 

The dynamic loading of a seismic wave further increases the stress in the rock. In the strain-softening 
model, the stresses in the notch failure zone (under static loading) are high. Therefore, elements just outside the 
notch boundary can carry high stresses and this makes it easier for these elements to fail under additional dynamic 
loading, leading to failure zone expansion as shown in Figure 5a. In the brittle model, on the other hand, the stress 
concentration zone is located at the tip of the notch failure zone (see Figure 6b) and additional stress increase 
induced by the seismic wave will cause additional failure in the highly stressed areas. When ppv is equal to 0.65 m/s, 
the shape of the additional failure zone due to dynamic loading is similar to that in the strain-softening model, but 
the depth of failure is smaller. For ppv = 1.3 m/s, wing-shaped failure zones are created by the dynamic loading in 
the brittle model, which is different from that in the strain-softening model (red and blue areas in Figure 5).  

Creation of rock failure due to subsequent dynamic loading 

 
In many underground openings and mines, tunnels were stable after excavation because the rock strength 

was higher than the maximum excavation or mining-induced stress. However, when a fault-slip event occurred, the 
seismic wave could cause rock failure in tunnels located away from the seismic source. In the following discussion, 
we study rock failure in a tunnel located in a weaker rock with a different in-situ stress field from the previous 
example. The peak and residual strength parameters of both the brittle and strain-softening models are presented in 
Table 2. The model parameters are chosen in such a way that upon the tunnel excavation, there will be no rock 
failure. Rock failure is only induced by subsequent dynamic loading. In the example shown above, the ratio of the 
principal in-situ stresses (Ko ratio) is 5, which is extremely high. For this simulation, 

1σ  = 30 MPa and 
3σ  = 15 

MPa (Ko = 2) are used. Again, to maximize the stress increase due to dynamic stress loading, the maximum 
principal stress is rotated 45° from the horizontal. The shear stress wave is applied to the bottom boundary of the 
model (Figure 1).  
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Table 2: Strength parameters for the brittle and strain-softening models 

 
 

Figure 7 presents the differential stress distributions and the failure zone distribution in the rock for the 
brittle and the strain-softening models. As expected, no rock failure occurs under static loading using either 
modeling approach, which means that after tunnel excavation, the maximum tangential stress at the tunnel wall is 
less than the wall strength of 62 MPa. Under dynamic loading, new rock failure zones are formed in the direction in 
which the combined tangential stress is the maximum. The depth of failure is higher for the case with higher 
dynamic stress increase (Figure 7).  

Figure 7 shows that when the peak and residual strengths of the brittle and strain-softening models are the 
same (see Table 2), respectively, the depth of failure zone by the brittle model is similar to that of the strain-
softening model while the extent is larger. On the other hand, the results shown in Figure 5 indicate that the failure 
zone by the strain-softening model is larger than that by the brittle model. This is because that the peak and residual 
strengths in these two models are different. The peak strength of the strain-softening model in Figure 5 is lower than 
that of the brittle model, while the residual strength of the strain-softening model is higher.  
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Figure 7: Depth of failure under static and dynamic loading for brittle and strain-softening models. 
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Kaiser et al. (1996) presented a chart which plots the normalized depth of failure (df/a) as a function of 
normalized tangential wall stress to the uniaxial compressive strength of the original rock (σmax/σc) and ppv. Here, a 
is the radius of the tunnel, σmax is maximum tangential stress, and σc is the strength of the rock mass. When the 
stress to strength ratio σmax/σc and ppv are known, the depth of failure due to dynamic loading can be estimated 
using the chart.  

Based on the numerical modeling results, we plot a few contour lines relating depth of failure to the stress 
to strength ratio and ppv in Figure 8 for the strain-softening (blue lines and blue markers) and the brittle models (red 
lines and red markers). The empirical static contour line given by Kaiser et al. (1996) is shown in Figure 8 as a solid 
black line.Under static loading (ppv = 0), the depth of failure predicted by both models is in reasonable agreement 
with that of the empirical relation given by Kaiser et al. (1996). Although there are some differences between the 
results of the strain-softening and the brittle models, the differences are nevertheless small when the stress to 
strength ratio is low (σmax/σc = 1). 

 

Figure 8: Comparison of the simulated depth of failure by a brittle model (red lines and markers) and a strain-
softening model (blue lines and markers) 

Under dynamic loading, when the stress-to-strength ratio is high, the slopes for the depth of failure 
contours by the numerical modeling vary depending on the material’s post-peak behavior and the intensity of input 
dynamic wave. For example, when the stress to strength ratio is higher than 1, the strain-softening model predicts a 
larger depth of failure than the brittle model, under ppv = 0.65 m/s dynamic loading (thick solid lines). On the other 
hand, the depth of failure under ppv = 1.3 m/s dynamic loading (dashed lines) shows a steady rise with increasing 
stress-to-strength ratio, regardless of the post-peak behavior of the rock. 

 
SUMMARY 

 
A parametric study with two different intensities of input stress wave was carried out, employing both the 

brittle and the strain-softening models. For each case, the dynamic depth of failure was plotted as a function of the 
ratio of maximum tangential stress to the rock mass strength as well as the dynamic stress wave intensity expressed 
by the peak particle velocity. By comparing the numerically simulated depths of failure under dynamic loading, we 
noted that:  
• The simulated depth of failure depends on the material model used as well as the strength parameters. Both the 

brittle and the strain-softening models can be used to simulate rock failure under dynamic loading. When both 
the peak and residual strengths are the same in the brittle and strain-softening models, the depth of failure by the 
brittle model is larger than that of the strain-softening model. However, the depth of failure given by the brittle 
model with a high peak strength and a low residual strength can be smaller than that given by the strain-
softening model with a low peak strength and a very high residual strength. Therefore, judging the depth of 
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failure only by the yielded elements in the numerical model can be misleading. One needs to examine the type 
of strength model used and the strength parameters applied. 

• Under static stress loading conditions, the depths of failure given by the current numerical model with the 
calibrated material parameters are in reasonable agreement with those given by the empirical relations, 
regardless of the post-peak behavior of the rock. 

• Under dynamic stress loading conditions, when the stress to strength ratio is as low as unity and when the peak 
and residual strengths are the same in both brittle and strain-softening models, the difference between 
numerically simulated depths of failure, using either modeling approach is minimal. Only when the stress to 
strength ratio is high, do the dynamic depths of failure follow different increment trends depending on the 
intensity of input dynamic wave and the post-peak behavior model. 

• Because of the discrepancy identified, we recommend that further research is needed to collect field data with 
ground motion and failure monitoring to verify the numerical simulation and empirical results. 
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