Rigid Frame Truck vs. ADT
Grant Martin
Agenda

• Load/Haul System
• Maximizing Production in Haul Trucks
• Rigid Frame Trucks vs. Articulated Trucks
 • Overview
 • Haul Road
 • Body Design
 • Frame Design
 • Drive-Train
 • Payload
• Owning and Operating Costs
Load/Haul System

• Key factor in any haulage system
 • Understand the application
 • Utilize the correct loading tool
 • Achieve ideal pass match with selected haul trucks
 • Typically less than or equal to 4.00 passes
 • Maximize the loading tools utilization
 • Insure the loading tool is trucked properly
Maximizing Haul Truck Production

1. Haul over the shortest possible distance when moving materials
2. Minimize the handling of materials
3. Expend the minimum amount of energy to move the maximum amount of material
4. Equipment must maximize utilization and return on investment
5. Select equipment appropriate to the terrain and weather
Overview

- **Rigid Frame Truck**
 - Maintained Haul Road
 - Greater Payload Capabilities
 - Rear Wheel Drive
 - Steep Grades are a Concern
 - Heavy Duty Frame
 - Heavy Duty Body Design

- **Articulated Truck**
 - Poorly Maintained Haul Road
 - Limited Payload Capacities
 - All Wheel Drive
 - Negotiates Steep Grades
 - Lighter Frame
 - Lighter Body
Haul Road

• **Rigid Frame Trucks - Disadvantages**
 • Require a well maintained haul road
 • Typically requires support equipment
 • Motor Grader
 • Wheel Loader
 • Must protect tires
 • Reasonably level loading and dumping conditions
 • Frame and cab do not oscillate (rigid)
 • Want to minimize the twisting on frame and suspension
 • **Poor under footing conditions effect production**
 • Makes rigid frame trucks uneconomical to operate
 • **Must maintain the proper grade; less than 12.0%**
 • Can operate on up to 20.0% grades
Haul Road, Cont.

• Rigid Frame Trucks - Advantages
 • Based on a well maintained haul road
 • Capable of very high speeds
 • Both loaded and unloaded
 • Can haul across greater distances
 • Greater than 1.0 mile (Approx: 1.5 km)
Haul Road, Cont.

- Articulated Trucks - Disadvantages
 - Inefficient on long flat hauls
 - Maximum hauling speed is limited
 - Limited to short distance hauls
 - Typically less than 1.0 mile (1.5 km)
 - Maximum speed on grade is limited
 - Long uphill hauls
 - Limited Payload
 - Typically a maximum of 40.0 tons
 - Rumors of moving to 50.0 tons
Haul Road, Cont.

• **Articulated Trucks - Advantages**
 • Well suited for unmaintained roads
 • Good speed on poor terrain
 • **Gradability is excellent**
 • Maximum grade of 35.0%
 • **Loading and dumping on uneven terrain**
 • **Excellent flotation**
 • Can work in very sloppy conditions
Earth moving systems

<table>
<thead>
<tr>
<th></th>
<th>General capabilities</th>
<th>Grades</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCRAPERS</td>
<td>Suitable for a broad range of material and underfoot conditions.</td>
<td>Single engine, usually limited to 15%.</td>
<td>Best applied in soil and clay materials, but usable with caution in rocky</td>
</tr>
<tr>
<td></td>
<td>Highly maneuverable. Work-alone capability</td>
<td>Tandem powered to 25%</td>
<td>materials.</td>
</tr>
<tr>
<td>ARTICULATED TRUCKS</td>
<td>Two axle units fit most poor underfooting and carrier rockier material. Three-axle units carry less rocky material, but have better flotation.</td>
<td>Can work on grades as steep as 35%.</td>
<td>Designed for flotation and traction in construction and well-shot quarry applications. Use caution with hard rocks.</td>
</tr>
<tr>
<td>RIGID-FRAME TRUCKS</td>
<td>Broad material appetite and matches a variety of loading tools. Well-maintained haul roads are desirable.</td>
<td>Limited to 8 to 10% on continuous grades. Can climb short grades as steep as 20%.</td>
<td>Ton-mile-per-hour important on long hauls. Proper match with loading tool is important.</td>
</tr>
</tbody>
</table>

SOURCE: Caterpillar
<table>
<thead>
<tr>
<th>Site Condition</th>
<th>WHEELED TRACTOR SCRAPERS</th>
<th>ARTICULATED TRUCKS 2- or 3-axle</th>
<th>RIGID TRUCKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard Surface</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Soft Ground</td>
<td>Fair</td>
<td>Good</td>
<td>Excellent</td>
</tr>
<tr>
<td>Greasy Surface</td>
<td>Poor</td>
<td>Good</td>
<td>Excellent</td>
</tr>
<tr>
<td>Steep (25%+) Grades</td>
<td>Poor</td>
<td>Good</td>
<td>Excellent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Haul Length</th>
<th>WHEELED TRACTOR SCRAPERS</th>
<th>ARTICULATED TRUCKS 2- or 3-axle</th>
<th>RIGID TRUCKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>More than 5 km</td>
<td>Poor</td>
<td>Poor</td>
<td>Fair</td>
</tr>
<tr>
<td>1.5 to 5 km</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>0.1 to 1.5 km</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>WHEELED TRACTOR SCRAPERS</th>
<th>ARTICULATED TRUCKS 2- or 3-axle</th>
<th>RIGID TRUCKS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dirt</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Sand and Gravel</td>
<td>Good</td>
<td>Good</td>
<td>Excellent</td>
</tr>
<tr>
<td>Shot Rock less than 300 mm</td>
<td>Fair</td>
<td>Fair</td>
<td>Very Good</td>
</tr>
<tr>
<td>Shot Rock between 300 to 500 mm</td>
<td>Poor</td>
<td>Poor</td>
<td>Fair-Good</td>
</tr>
<tr>
<td>(with liners)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shot Rock more than 500 mm</td>
<td>Not</td>
<td>Not</td>
<td>Not</td>
</tr>
</tbody>
</table>

SOURCE: Caterpillar
Body Design

• **Rigid Frame Truck**
 • Body is built for quarry applications
 • Thicker steel utilized in floor and sides
 • Utilize horizontal floor and side rail stiffeners
 • Great at absorbing impact
 • Shot rock larger than 500 mm
 • Provides loading tool operator a large target area
Body Design

- **Articulated Truck**
 - Utilizes a lighter body
 - Ribbed body design
 - **Steel in body is not as thick**
 - Must maintain low GMW
 - Governed by tires
 - **Impact loading is a huge concern**
 - Shot rock less than 300 mm
 - Must add heavy duty body liners
Frame Design

- **Rigid Frame Truck**
 - Full fabricated, box section main frame
 - Utilize high strength alloy steel
 - Superior resistance to bending and torsional loads
 - Built to support increased payload
Frame Design

- Articulated Truck
 - Body and cab move independently of one another
 - Entire truck can flex as it moves over uneven terrain
 - Helps increase the tractive effort when moving through tough terrain
 - Overall lighter frame
Drive-train

- Rigid Frame Truck
 - Simple flow of energy from engine to drive axle
 - Steering and transmission components are well protected
 - Ground clearance
 - Extended service life on main components
Drive-train

- Articulated Truck
 - More complex power flow from the engine to the wheel
 - More drive-train components
 - Increased maintenance
 - Drive-train and steering components are subject to a shorter life
- Some models have 3 axles
 - Increased maintenance
Drive System

• **Articulated Truck**
 • Utilizes AWD Drive
 • Provides better traction during adverse conditions
 • Allows the truck to traverse very muddy conditions
 • Utilize a diff-lock system to deliver torque to tires which need it
 • All weather capabilities

• **Rigid Frame Truck**
 • Utilizes Rear Wheel Drive
 • Allows for higher speeds
 • Requires optional equipment for adverse conditions
 • Utilize traction control
Payload

- **Rigid Frame Trucks**
 - Quarry Trucks: 40.0 to 100.0 tons
 - Mining Trucks: 150.0 to 400.0 tons
 - Utilize electric drive system
 - Greater fuel efficiency
 - Economy of scale
 - Significant Productivity Gains

- **Articulated Trucks**
 - Maximum payload of 50.0 tons
 - Lacks Economy of Scale
Owning and Operating Costs

• **Rigid Frame Trucks**
 • Economical Life of 40,000 hours
 • Some mines and quarries = 100,000 hours

• **Articulated Trucks**
 • Economical Life of 8,000 to 10,000 hours
 • Typically due to shorter drive train life
Owning and Operating Costs

- **Owning Cost**
 - Based on Capital Consumption and Holding Cost
 - Only differences in price and useful life
 - All other values held constant
 - Taxes, Insurance, Trade in Value

<table>
<thead>
<tr>
<th>Equipment</th>
<th>List Price</th>
<th>Useful Life</th>
<th>Owning Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.0 Ton Rigid Frame Truck</td>
<td>$617,910</td>
<td>40,000 hours</td>
<td>$21.11/hr</td>
</tr>
<tr>
<td>40.0 Ton Articulated Truck</td>
<td>$555,160</td>
<td>10,000 hours</td>
<td>$27.12/hr</td>
</tr>
</tbody>
</table>
Owning and Operating Costs

- Consult Study
 - Haul Road
 - 1000 feet and 5500 feet
 - Grades of 8.0% and -8.0%
 - Rolling resistance of 2.0%
Owning and Operating Costs

<table>
<thead>
<tr>
<th>Equipment</th>
<th>HR Length</th>
<th>Cycle Time</th>
<th>Production (tons/hr)</th>
<th>Cost Per Ton (US$/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigid Truck</td>
<td>1000’</td>
<td>3.530 min</td>
<td>1,156.40</td>
<td>$0.221/ton</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.67 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.50 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Artic Truck</td>
<td>1000’</td>
<td>4.069 min</td>
<td>1,074.42</td>
<td>$0.365/ton</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.92 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.59 min</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Owning and Operating Costs

<table>
<thead>
<tr>
<th>Equipment</th>
<th>HR Length</th>
<th>Cycle Time</th>
<th>Production (tons/hr)</th>
<th>Cost Per Ton (US$/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigid Truck</td>
<td>5500’</td>
<td>8.229 min</td>
<td>1,156.40</td>
<td>$0.366/ton</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.69 min</td>
<td>2.18 min</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loaded</td>
<td>Unloaded</td>
<td></td>
</tr>
<tr>
<td>Artic Truck</td>
<td>5500’</td>
<td>11.455 min</td>
<td>1,074.42</td>
<td>$0.713/ton</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.92 min</td>
<td>2.97 min</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loaded</td>
<td>Unloaded</td>
<td></td>
</tr>
</tbody>
</table>
Owning and Operating Costs

• Consult Study
 • Haul Road
 • 1500 feet – Overburden Stripping
 • Grades of 15.0% and 18.0%
 • Rolling resistance of 12.0%
Owning and Operating Costs

<table>
<thead>
<tr>
<th>Equipment</th>
<th>HR Length</th>
<th>Cycle Time (min)</th>
<th>Production (tons/hr)</th>
<th>Cost Per Ton (US$/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigid Truck</td>
<td>1500’</td>
<td>8.383</td>
<td>1,035.87</td>
<td>$0.609/ton</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.84 min Loaded</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.98 min Unloaded</td>
</tr>
<tr>
<td>Artic Truck</td>
<td>1500’</td>
<td>6.690</td>
<td>1,157.98</td>
<td>$0.513/ton</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.55 min Loaded</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.78 min Unloaded</td>
</tr>
</tbody>
</table>
Summary

<table>
<thead>
<tr>
<th></th>
<th>Rigid Frame Truck</th>
<th>Articulated Truck</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haul Road</td>
<td>Well Maintained Haul Road</td>
<td>Unmaintained Haul Road, Rough Terrain</td>
</tr>
<tr>
<td>Body Design</td>
<td>High Strength Steel, Built for Impact Loading</td>
<td>Lighter Body, Impact Loading is a Concern</td>
</tr>
<tr>
<td>Frame Design</td>
<td>Large Steel Frame, Resists Bending and Torsional Loads</td>
<td>Body and Cab move independently of one another, allows the frame to flex over uneven terrain</td>
</tr>
<tr>
<td>Drive-train</td>
<td>Simple system, Well Protected Components</td>
<td>Complex Power Flow from Engine to Wheels, Components subject to a shorter life</td>
</tr>
<tr>
<td>Drive System</td>
<td>Rear Wheel Drive</td>
<td>AWD</td>
</tr>
<tr>
<td>Payload</td>
<td>Payloads up to 400.0 tons</td>
<td>Limited to a Maximum Payload of 50.0 tons</td>
</tr>
</tbody>
</table>
Questions?
www.quarryacademy.com

IMPROVING PROCESSES. INSTILLING EXPERTISE.