SANDVIK ROCK PROCESSING

THE ART OF CRUSHING

What is a C&S system ?

Raw material?
How big? (Size of rawmaterial)
How much? (Capacity)
Final products?
Contamination?

Feedcurves Max Topsize Impact Work index (W_i) Abrasion index (A_i) Type of rock / geology Density $-W_{i \text{ measured}} \times B.D./1.6 = W_{i \text{ real}}$ Moisture **Contamination**

Crushing Rock

- Limited reduction
- Cubical shape
- Over- and undersize is important
- Flexibility
- Crushing and screening
- Range of products

Crushing Gravel

- Limited reduction
- Cubical shape
- Over- and undersize is important
- Flexibility
- More screening than Crushing
- **Contamination?**
- Range of products

Crushing Ore

- Maximum reduction
- Shape of no importance
- Over- and undersize of no importance
- Flexibility of minor importance
- More crushing -less screening
- One or two products

- **Sellable Products !**
- Sellable Products !
- Product to further processing !

Final Products - Specifications

Railway ballast

Curve limitations

✓ Shape of material

No contaminations

Over and undersize

Asphalt / Concrete

- Shape of material
- Over and undersize
- ✓ No contamination

Base course / Sub base

Curve limitations

Different in all countries

Product properties

SANDVIK

Reduction Ratio (1)

SANDVIK

Reduction Ratio (2)

Reduction Ratio (3)

Using reduction ratio to predict required no. of crushing stages

2-stage Impact Plant: 10x7 = 70P₈₀ Feed: 400 mm OK, Only for Ai <0.15 P₈₀ Products: 16 mm 2-stage Jaw/cone Plant 3x4=12 Min. required plant NOT OK reduction ratio: 3- stage Jaw/cone Plant <u>400</u> = 25 3x3x4=3616 OK

Reduction Ratio 3

Impactors VS Compresive crushers

- Impact crusher
 - High reduction ratio
 - Low investment
 - ✓ High wear cost
 - Max A_i= 0.15
 - Jaw / Cone crusher
 - Low reduction ratio
 - Big investment
 - Low wear cost

ReJosepson to a

Primary Crusher station

Primary Crusher station

Primary Crusher station

Intermediate storage

- Quality producing part of plant independent of Primary crushing and loading operation
- Even out variations in the material distribution. Uneven load gives problems in all machines coming after.
- Better total availability for the Plant
- Recommended stockpile volume for 2 shifts operation

Intermediate Storage (2)

Secondary Circuit

Big feed opening
High capacity
Controlled feed

Secondary Crushers

Hydrocone H / S

Secondary Impactor

Production of railway ballast

Screening

Open / Closed circuit

Open Circuit

- Screening ahead of a crusher avoids packing.
- Less wear in the crusher.
- Higher total capacity.
- The product is controlled by the screening cloth and the setting of the crusher.

Open Circuit – Examples

Closed Circuit

- Calibrated product
- > Higher reduction ratio.
- Better cubical shape
- More machines
- Lower capacity

Closed Circuit

- Closed circuit ~ 1/5 of screen feed circulating recommended
- Smaller or same setting (CSS) as separation.
- Higher wear
- Cubical shape
- Big screen
- discrepancy:
 - Short jobs
 - Prod of sand

Closed Circuit – Examples

Screening after crusher

Screening ahead of crusher

Screening ahead of and after crusher

SCREENNING SUMMARY

Final Crusher

Demands:

- Optimised feed
- Capacity
- Product shape

FINAL CRUSHER - Hydrocone

- Good Flexibility
- > Higher crushing forces
- Limited good shape range
- Uniform reduction ratio

FINAL CRUSHER- Merlin VSI

- Better shape
- Uneven Reduction
- Limited topsize capacity
- > High fines production

HYDROCONE – MERLIN RP

Storage at Crusher

Choke fed Crusher;

- > Higher Reduction
- Better shape (cubical)
- Better utilization of mantle and liners
- Bin volume; 5-10 min operation

Crusher feed

Process Control

Stationary / Mobile

Stationary

- Long term Contracts
- Valuable products
- Range of products
- Production on demand
- Flexibility with many stages
- High Production control

Mobile

- Contract crushing
- Crushing at construction site
- Low product demands
- Few products
- Flexibility with Fleet

Mobile Units (1)

Mobile Units (2)

Mobile Units (3)

Mobile Units (4)

Application examples

SUMMARY

Product distribution

Product	0-4 mm	4-8 mm	8-16 mm	16-32 mm
2-stage	33 t/h	19 t/h	41 t/h	107 t/h (*)
3-stage	43 t/h	29 t/h	66 t/h (*)	62 t/h *
4-stage	61 t/h	35 t/h *	54 t/h *	50 t/h *
4-stage, VSI	88 t/h	38 t/h *	44 t/h *	30 t/h *

* Good shape

<u>2-stage</u> Cheap Easy to move Bad shape Low flexibility

<u>3-stage</u> Medium expensive Could be moved Medium shape Good flexibility

<u>4-stage</u>

Expensive Difficult to move Very good shape Very good flexibility

Mining Plant

86841 mov - 1

Science and se

