Case Study – Uncommon, Very Effective Solution to PD Pump Pulsation & Vibration Problem

Eugene "Buddy" Broerman

Senior Research Engineer

Southwest Research Institute

Agenda

Introduce System & Problem

• Steps taken to Solve Problem

• Summary & Lessons Learned

Pump Description Details

Pumps Details

8 parallel pumps (plunger)

3 plungers per pump

2.25" bore (5.7 cm)

5" stroke (12.7 cm)

303 rpm

75 gpm (17 m³/hr)

Pump Operating Conditions

160 psig (11 barg)

80 F (26.7 C)

3000 psig (207 barg)

140 F (60 C)

Original Pumps Discharge Piping System Layout

Existing Pumps Outlet Vessel Internals

Problems

Suction and discharge piping vibrations

- Failures
 - Drain connections
 - Gussets on discharge vessel
- General suction and discharge piping vibrations

Issues above raised safety & reliability concerns

Steps Taken to Solve Problem

• Field vibration & pulsation data acquired

Pulsation analysis performed

More effective acoustic filter bottle recommended

Pump Piping System – Vibration & Pulsation Test Points

Pump Piping System – Vibration Test Points

Discharge valve flange

Field Vibration and Pulsation Data

- Some vibrations excessive (magnetic dynamic velocity probes)
 - Discharge valve flange ~27 mils p-p at ~15 Hz
 - Discharge recycle valve ~19 mils p-p at ~15 Hz
- High pulsations (PCB dynamic pressure probes used)
 - Drain (see below)
 - Vessel outlet piping ~60 psi pk-pk at ~15 Hz

Southwest Research Institute Screening Piping Vibration Severity Chart

Field Vibrations on Vibration Guideline Chart

Field measured vibrations in "Correction" region

Pulsation Analysis/Modeling

- High amplitude pulsations predicted
 - Pump manifold (see below)
 - Vessel outlet piping ~30-40 psi pk-pk at ~15 Hz

Solution – Acoustic Filter Recommended

- Overall result = Excellent acoustic filtering (filter response placed well below 1x, which is 3 x running speed for triplex pump)
- Owner satisfied with reduction of system vibration --> installed recommended filter vessel on all 8 units

Solution – Acoustic Filter Details

- Actual installed bottle: Approximately same volume as above, but shorter & larger diameter (& ~2-feet longer choke)
- Longer choke (more elbows) --> pressure drop ≈ original vessel 14

Equation – Acoustic Filter

- Info needed for calculating Helmholtz (acoustic filter) frequency
 - Speed of sound in liquid
 - Geometry dimensions

$$f_H = \frac{c}{2\pi} \left(\frac{\mu}{V_1} + \frac{\mu}{V_2} \right)^{\frac{1}{2}} \qquad \mu = \frac{A}{L}$$

 f_H = Helmholtz frequency (Hz)

A = Cross-sectional area of choke (ft²)

L = Acoustic length of choke (ft)

c = Velocity of sound (ft/sec)

 V_1 = Volume of cylinder bottle or chamber (ft³)

V₂ = Volume of filter bottle or chamber (ft³)

General Concept of an Acoustic Filter

- Analogous to lowpass electrical filter or mechanical system
 - Volume = Spring
 - Choke tube = Mass

Pulsation Analysis/Modeling – Modified System

- Lower pulsations predicted
 - Pump manifold (see below)
 - Vessel outlet piping ~5-10 psi pk-pk at ~15 Hz

Summary and Lessons Learned

- Introduce System & Problem
 - High piping vibrations
 - Piping and gussets failures

- Steps taken to Solve Problem
 - Field study vibration and field data
 - Pulsation analysis

- Summary & Lessons Learned
 - Well designed acoustic filter significantly reduces system pulsations

Questions/Comments?

Please ask. If you have a question, someone else in the room probably has a question also.