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APPENDIX B 
 

THE NEWTON-RAPHSON ITERATION TECHNIQUE 

Since the value for f  in the Colebrook equation cannot be explicitly extracted from the 
equation, a numerical method is required to find the solution. Like all numerical methods, 
we first assume a value for f, and then, in successive calculations, bring the original 
assumption closer to the true value. Depending on the technique used, this can be a long 
or slow process. The Newton-Raphson method has the advantage of converging very 
rapidly to a precise solution. Normally only two or three iterations are required. 
 
The Colebrook equation is: 
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The technique can be summarized as follows: 
 
1. Re-write the Colebrook equation as: 
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2. Take the derivative of the function F with respect to f: 
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3. Give a trial value to f. The function F  will have a residue (a non-zero value). This 
residue (RES) will tend towards zero very rapidly if we use the derivative of F  in the 
calculation of the residue. 
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For n = 0 assume a value for f0, calculate RES and then f1, repeat the process until RES 
is sufficiently small (for example RES  < 1 x l0-6 ). 


