APPENDIX C

THE DETERMINATION OF SLURRY DENSITY BASED ON THE VOLUME AND WEIGHT CONCENTRATION OF THE SOLID PARTICLES

C • 2 APPENDIX C

APPENDIX C

THE DETERMINATION OF SLURRY DENSITY BASED ON THE VOLUME AND WEIGHT CONCENTRATION OF THE SOLID PARTICLES

This section explains how the specific gravity of a slurry (SG_M) is related to the solid's particle weight and volume concentration.

Figure C-1 Variables related to the calculation of the specific gravity of a slurry.

Definitions

V_M: volume the slurry mixture M_M: mass of the slurry mixture

 V_L : volume of the liquid portion of the mixture M_L : mass of the liquid portion of the mixture V_S : volume of the solid portion of the mixture M_S : mass of the solid portion of the mixture

 C_{V} : concentration by volume of the solid particles in the mixture or the \emph{ratio} of the volume of the solids to the total mixture volume

 C_{W} : concentration by weight of the solid particles in the mixture or the \emph{ratio} of the weight of the solids to the total mixture weight

 SG_S : specific gravity of the solids portion of the mixture SG_L : specific gravity of the liquid portion of the mixture

SG_M: specific gravity of the mixture

 ρ_S : specific gravity of the solids portion of the mixture ρ_L : specific gravity of the liquid portion of the mixture

 ρ_{M} : specific gravity of the mixture

 ρ_{WA} : specific gravity of water at standard conditions

M : mass flow rate q : volumetric flow rate

The mass of the solid particles (M_S) is:

APPENDIX C C ● 3

$$M_{s} = \rho_{s} V_{s}$$

and the solids density ρ_S can be expressed as a specific gravity. Specific gravity is a ratio of the density of the substance to the density of water at standard conditions ρ_{wa} :

$$\rho_{s} = SG_{s} \quad \rho_{WA}$$

By definition $C_w = M_S/M_M$

The volume of the mixture can be expressed as the sum of the solids volume and the carrying liquid volume:

$$V_{T} = \frac{C_{W} M_{M}}{\rho_{S}} + \frac{(1 - C_{W}) M_{M}}{\rho_{L}}$$

If we divide both sides of the equation by M_M we obtain:

$$\rho_{M} = \frac{1}{\frac{C_{W}}{\rho_{S}} + \frac{(1 - C_{W})}{\rho_{L}}}$$
[C-1]

It is often easier to use the specific gravity (SG) of the substance instead of the density. Since $\rho_S = SG_S \ x \ \rho_{WA}$, $\rho_M = SG_M \ x \ \rho_{WA}$ and $\rho_L = SG_L \ x \ \rho_{WA}$ then

$$SG_M = \frac{1}{\frac{C_W}{SG_S} + \frac{(1 - C_W)}{SG_L}}$$

Similarly the weight of the mixture can be expressed as the sum of the solids weight and the carrying liquid weight:

$$M_{M} = C_{V} V_{M} \rho_{S} + (1 - C_{V}) V_{M} \rho_{L}$$

If we divide both sides of the equation by V_M we obtain:

$$\rho_{M} = C_{V} (\rho_{S} - \rho_{L}) + \rho_{L}$$
 [C-2]

and expressed in terms of specific gravity:

$$SG_M = C_V (SG_S - SG_L) + SG_L$$

C • 4 APPENDIX C

We can establish a relationship between C_{V} and C_{W} without using the specific gravity of the mixture SG_{M} . Notice that the right hand sides of equations C-1 and C-2 are equal, therefore:

$$C_{V}(\rho_{S}-\rho_{L})+\rho_{L}=\frac{1}{\frac{C_{W}}{\rho_{S}}+\frac{(1-C_{W})}{\rho_{L}}}$$

and expressed in terms of specific gravity and If the liquid is water with ρ_L/ρ_{WA} = 1 then the above simplifies to:

$$C_V(SG_S - 1) + 1 = \frac{1}{\frac{C_W}{SG_S} + \frac{(1 - C_W)}{1}}$$

$$C_{V} = \left(\frac{1}{\frac{C_{W}}{SG_{S}} + \frac{(1 - C_{W})}{1}} - 1\right) \times \frac{1}{(SG_{S} - 1)}$$

$$C_{V} = \left(\frac{1}{C_{W}(\frac{1}{SG_{S}} - 1) + 1} - 1\right) \times \frac{1}{(SG_{S} - 1)}$$
 [C-3]

By definition $C_V = V_S/V_M$ and $V_S = C_W \times M_M / \rho_S$

Therefore by substitution

$$C_V = \frac{C_W \rho_M}{\rho_S} = \frac{C_W SG_M}{SG_S}$$

or

$$SG_M = \frac{C_V SG_S}{C_W}$$
 [C-4]

which means that there is a direct relationship between the specific gravity of the mixture SG_M and C_V and C_W if you know the density of the solids.

APPENDIX C C ◆ 5

Usually the concentration by volume (C_V) , the concentration by weight (C_W) and the specific gravity (SG_S) of the solid particles will be given or known for a particular slurry. This is enough information to calculate the specific gravity of the slurry (SG_M) using equation [C-3].

Often the purpose of the slurry mixture is to pump solid particles in a fluid form to a discharge point at a distance. In that case, we are mainly interested in the amount of tons per hour of solids that are transported.

The mass flow rate is given by:

$$M = \rho_s \quad C_V \quad q \quad = \quad SG_S \quad \rho_{WA} \quad C_V \quad q$$

The density of water at standard condition is 62.34 lbm/ft³ using the appropriate units to obtain Imperial tons per hour (2000 lb/h):

$$M\left(\frac{ton}{h}\right) = SG_S \times \frac{62.34 \ lbm}{ft^3} \times C_V \times q\left(\frac{USgals.}{min}\right) \times \frac{60 \ min}{h} \times \left(\frac{ft^3}{7.48USgals.}\right) \times \frac{ton}{2000 \ lbm}$$

After simplification, the mass flow rate is:

$$M\left(\frac{ton}{h}\right) = 0.25 \ SG_S \ C_V \ q\left(\frac{USgals.}{\min}\right)$$
 [C-5]