THICKENER DESIGN

A continuous thickener is to be designed to deal with the effluent from the last question. It will treat 1000 m3 per day of suspension fed at 3% v/v solids concentration and is to discharge underflow at 13.8% v/v solids. Use the settling curve and the following relation:

$$C_0 H_0 A \rho_s = C_1 H_1 A \rho_s$$

to complete the following table.

<table>
<thead>
<tr>
<th>Conc (v/v):</th>
<th>0.03</th>
<th>0.039</th>
<th>0.045</th>
<th>0.049</th>
<th>0.056</th>
<th>0.067</th>
<th>0.074</th>
<th>0.092</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height for H_1 (cm):</td>
<td>28</td>
<td>21.5</td>
<td>18.7</td>
<td>17.1</td>
<td>15</td>
<td>12.5</td>
<td>11.4</td>
<td>9.1</td>
</tr>
<tr>
<td>Velocity (m s$^{-1}$):</td>
<td>3.2×10^{-5}</td>
<td>1.7×10^{-5}</td>
<td>1.3×10^{-5}</td>
<td>1.1×10^{-5}</td>
<td>8.6×10^{-6}</td>
<td>5.8×10^{-6}</td>
<td>3.5×10^{-6}</td>
<td>2.1×10^{-6}</td>
</tr>
<tr>
<td>Batch flux (m$^{-1}$):</td>
<td>9.5×10^{-7}</td>
<td>6.5×10^{-7}</td>
<td>6×10^{-7}</td>
<td>5.4×10^{-7}</td>
<td>4.8×10^{-7}</td>
<td>3.9×10^{-7}</td>
<td>3.3×10^{-7}</td>
<td>2.7×10^{-7}</td>
</tr>
</tbody>
</table>

Note that the batch flux is the product of the settling velocity and the solid concentration.

Plot the batch flux curve below.

Now a flux balance on a thickener provides the following result:

$$A(TC_u) = FC_0 = YC_u$$

where A is the thickener area, (TC_u) is the critical thickener flux which is the intercept of a line drawn as a tangent to the batch flux curve and going through the desired underflow concentration, F and Y are the volume feed and underflow rates respectively, C_0 and Cu are the volume fraction feed and underflow concentrations respectively. Note that T is, in effect, the velocity of solid movement in the thickener caused by underflow withdrawal at the solid concentration Cu.

The critical flux in this thickener giving an underflow discharge concentration of 13.8% v/v solids is (m s$^{-1}$):

- a: 10×10^{-7}
- b: 8.5×10^{-7}
- c: 7.2×10^{-7}
- d: 5.8×10^{-7}

The minimum thickener area for this duty is (m2):

- a: 480
- b: 29000
- c: 16000
- d: 960

If the thickener is circular in cross-section the minimum thickener diameter is (m):

- a: 25
- b: 190
- c: 140
- d: 35

The underflow rate is (m3 hour$^{-1}$):

- a: 1.25
- b: 2.4
- c: 4.6
- d: 9.1

The overflow rate is (m3 hour$^{-1}$):

- a: 40.4
- b: 39.3
- c: 37.1
- d: 32.6

An existing 5m diameter thickener is to be used to thicken 2400 tonnes per 24 hours of flocculated slurry containing 10% solids by mass (0.037 v/v) in water. The density of the solid is 2900 kg m$^{-3}$. The following batch sedimentation results were obtained:

<table>
<thead>
<tr>
<th>Time (mins):</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface height (cm):</td>
<td>45.6</td>
<td>36.5</td>
<td>28.0</td>
<td>21.6</td>
<td>16.8</td>
<td>14.5</td>
<td>13.2</td>
<td>10.6</td>
<td>9.7</td>
</tr>
</tbody>
</table>

What will be the underflow concentration? (Ans 19% by mass)

Calculate (TC_u) from operating data and draw a tangent to batch flux curve to give 0.075 v/v which converts to 0.19 by mass or 19%. Note flux theory is useful in predicting the behaviour of existing thickeners under differing operating conditions, not just for “paper” designs.