Today’s speaker

Rob Coleman

• 20 years in the Mineral Processing industry
• PhD in Flotation modelling and simulation
• Benchmarked and optimized flotation operations globally working for AMIRA, The JKMRC, JKTech and Outotec
• Presented and published papers at major Mineral Processing conferences
• Originally from South Africa, now based in Brisbane, Australia.
Ask yourself this…

Is your flotation plant performing at the optimum level?

Has your flotation plant been measured in the last 6 months?

Do you know where to look to make improvements?

If you answered “NO” to any of these questions, you NEED to watch this…

I guarantee your flotation plant is not running as well as it could…
Challenges

Common challenges found on operating flotation plants include:

- Ore type
- Throughput
- Concentrate quality requirements
- Pulp chemistry
- Worn parts or old technology

Affecting the performance parameters:

- Reduce residence time
- Reduce recovery
- Lower concentrate grade
- Increase operating costs
Agenda

- Types of opportunities that exist
- Understanding the equipment
- Flotation control
- Maintenance
- Modernizations
- Identifying issues and making improvements
Types of opportunities to improve profit

- Cost saving – reducing the operating cost
- Higher revenue – improving efficiency and availability

Economic and Environmental Benefits

<table>
<thead>
<tr>
<th>Benefit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost saving</td>
<td>€ 2 459 150 / annum</td>
</tr>
<tr>
<td>CO$_2$e</td>
<td>-574 TONS / annum</td>
</tr>
</tbody>
</table>

574 tons of CO$_2$e reduction equals to:

- 121 cars removed from the streets
- 14 705 planted trees
- 2 483 air miles

<table>
<thead>
<tr>
<th>Scenario</th>
<th>As is €</th>
<th>Upgrade €</th>
<th>Difference t/a</th>
<th>Value €</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased recovery</td>
<td>196 748 698 €</td>
<td>199 063 388 €</td>
<td>1 783 t/a</td>
<td>2 314 691 €</td>
</tr>
<tr>
<td>Decreased power cost</td>
<td>518 359 €</td>
<td>373 899 €</td>
<td>1 445 MWh/a</td>
<td>144 460 €</td>
</tr>
</tbody>
</table>
Biggest opportunities on sites

- Flotation cell maintenance practices
- Matching froth crowding to duty
- Improving circuit control
- Updating / replacing old equipment (modernizing)
- Empowering / up-skilling site people

Webinar | Finding and eliminating bottlenecks in flotation plants, Rob Coleman

© Outotec – All rights reserved
Understanding these opportunities
Requirements of a flotation machine

- Slurry
- Air
- Bubbles
- Particles
- Froth
Types of flotation equipment

• Mechanical flotation cells – about 90% of installed capacity
 • TankCell®, U-Cells and R-cells - Outotec
 • Wemco, Dorr-Oliver, FFE Minerals - FLSmidth
 • RCS – Metso
 • BGRIMM
 • Woodgrove SFR

• Pneumatic flotation cells
 • Column cells
 • Jameson cells

• Flash flotation machines
 • SkimAir® - Outotec
Conventional cell
Flotation Mechanism (Rotor & Stator)

Bearing Unit

Valve Actuator and Rod

Internal Concentrate Launder

Internal Dart Valve

Valve Box

Feed Box or Channel

Drive Rack

Bridge

Electric Motor

eDrive
Launders and crowding

• Flotation machine focused on the pulp zone

• The froth is critical

• Froth zone has an effect on grade and plant operability

• Opportunities exist to improve froth collection
Launders and crowding

- Changing tank top configuration changes performance.

- If large amounts of froth
 - More area
 - More lip length
 - Little or no crowding

- If small amounts of froth
 - Less area
 - Less lip length
 - More crowding
Flotation mechanism

• Heart of the flotation cell

• Consists of
 • Drive – belt or gearbox option
 • Lower shaft
 • Rotor and stator

Opportunities exist to reduce energy consumption, reduce wear and improve process performance (recovery)
Reducing wear and energy consumption

\[\text{Power} = N_p \cdot \rho \cdot N^3 \cdot D^5 \]

- \(N_p \) = power number for mechanism
- \(\rho \) = pulp density
- \(N \) = rotational speed
- \(D \) = impeller diameter

• More efficient rotor-stator arrangements allow rotational speed (or rotor diameter) to be reduced - this can reduce power
• Wear is proportional to rotor speed: slower speed = longer wear life

10% lower rotation speed equals 25% power saving
Improving process recovery

- The mixing affects major sub processes:

 - Particle suspension
 - Air dispersion
 - Particle-bubble detachment
 - Froth stability
 - Particle-bubble collision

- Change mechanism and/or rotation speed to optimize
Flotation control

1. Manual operation
 Grade-recovery curve determines flotation performance

2. Stabilization
 Ability to run process closer to target

3. Optimization
 Higher recovery because of better process conditions (less turbulence, constant mass pull etc.).

Typical recovery increase 1-3%
Basic flotation control

An example of base-layer control loops in the flotation process

Elemental analysis sample points
Air control

- Air is the most important operating variable
- Each cell has an air flow meter
- Air is produced by the low pressure blowers
- Air control has a major effect on grade and recovery
Air control
Level control

• Controlling the pulp level (or froth depth) is an important tool in controlling cell operation

• Level is measured with a mechanical or ultrasonic level transducer

• The discharge valve(s) are controlled by a feedback loop to maintain level

Poor level control setup makes cells difficult to operate and affects grade and recovery produced
Level control
Control: There are many tools that can help
Importance of maintenance

- Equipment is designed to operate a certain way - production may suffer if it doesn’t
- Different groups on site (maintenance, operations, metallurgy) have different ways of looking at machines
- Need improved equipment monitoring and to quantify the impact of poor condition on production to justify changes
- Regular maintenance inspections and tracking equipment condition is a good start
Importance of maintenance
General modernization opportunities

• Flotation cell technology has come a long way in the last 20 years

• Newer cells generally larger, more efficient mixing and air dispersion and better control

• Older equipment usually requires higher maintenance – higher operating costs

• Cost benefit analysis of existing install against replacing it with fewer larger cells

General modernization opportunities

- Plant wide Automation & Optimization
- Reagent Dozing Systems
- Drive Units
- Air control systems
- Dart Valves & Level Control Systems
- Launiders & Froth cones
- Mixing Mechanisms & FlowBoosters
- Analyzers, Sampling systems & Advanced Instrumentation
- Conditioner upgrades
- Service platforms
- Overall retrofit for other brand cells
 Flow sheet reconfigurations
 Capacity increases & Expansions
- Service platforms
Identifying problems

- Flotation is a complex process with many variables

Harris, 1975
Identifying problems

• Complex process so not easy to find cause

• Various techniques exist depending on nature of problem

• Conduct sampling campaign of operating equipment coupled with laboratory flotation tests on circuit feed

• Results of the survey combined with kinetic data give good picture of how equipment is working

• Generate information to predict effects of changes so that changes can be assessed to see if financially viable
Case study – Cobar Mine, Australia

• Challenge - existing scavenger circuit - 30 old small flotation cells requiring significant maintenance to operate properly
• Solution - replace with 3 x TankCell-30
• Benefits – higher recovery, improved control, lower maintenance and reduced energy consumption (3 x 45kW vs 6 x 30kW)

Before installation

Outotec TankCells during installation

After installation
Summary

• Complexity of flotation plants

• Options for improving performance

• Basics first
 → maintenance
 → process control

• You can’t change what you can’t measure!
References / further reading

• Moilanen and Remes, 2008 , Control of the flotation process, in proceedings Procemin 2008 International Mineral Processing Seminar, Chile pp 305-313.

Webinar’s to come

If you enjoyed today’s talk there are more detailed sessions planned on each of the topics touched on here today

- **April 29**: Optimizing froth area of the flotation cell – froth crowding and launder arrangement
- **June 3**: Best maintenance practices to give best metallurgical performance in flotation – flotation maintenance practices
- **July 8**: Boosting flotation productivity with modern technology – modernization and upgrade opportunities
- **August 5**: Stabilization versus optimization – insights to flotation process
Contact us

Presenter
Rob Coleman BSc (Eng), PhD (MinPro) MAusIMM
Account Director - SEAP
Brisbane, Australia
rob.coleman@outotec.com

General flotation enquiries flotation@outotec.com
Local office contact details www.outotec.com/Contacts

Follow us:

© Outotec – All rights reserved