

INTRODUCTION TO SAMPLING FOR MINERAL PROCESSING

Part 2 in a series "Sampling Basics"

SERIES CONTENTS

1 - Introduction to course and sampling

- Course objectives
- Course introduction
- Objectives for sampling

2 - Sampling Basics

- Some definitions
- 3D/2D/1D Sampling
- Delimitations / Extraction
- Rebounding / Cutter Speed and geometry

3 - Sampling Errors

- Delimitations / Extraction
- Bridging / Cutter issues / Multiple cutters
- Back pressure

4 - Metallurgical Samplers

- Belt Samplers / Crushers
- Linear Samplers and enclosures
- Rotary Vezin / Arcual Samplers
- Secondary / Tertiary Samplers

5 - Process Control Samplers

- Launder / Pressure / Poppet sampler
- Analyzer s (XRF or particle)

6 - Effects on Mass Balancing

- Some aspect of the AMIRA code
- Detrimental effects and metallurgist responsibility
- Sampling errors in launder / pressure sampler
- Mass balance effects

7- Effects on Recovery and NSR

- OSA and sampler errors
- Grade and Recovery targets
- Recovery Error propagation
- Net Smelter Return Error propagation (loss of revenues)

Sampling

- Is used for resource definition, optimising resource utilisation, process control, metallurgical accounting and ultimately maximising profitability. Sampling is where the measurement process begins (Holmes)
- This last statement also applies to On Stream Analyzers

Definitions - Sampling

- Sampling is based on applied statistics and probability theory
- The process of collecting a set of primary increments for a sampling unit in such a manner that measurements on the test or analysis sample are significant for the sampling unit (J. W. Merks)

Sampling - Golden Rule

- If this is respected at the outset, then extraction of representative samples is largely assured. (Holmes)
- If this is not respected then sample bias is easily introduced (Holmes)
- no amount of replicate sampling and analysis will reduce bias once it is present (Holmes).

Definitions – Precision vs Accuracy

Definitions - Sample

- A quantity of material taken from an ore and which represents the quality characteristics of the ore from which it was taken from for a specific sampling lot
- Examples of Sampling lot
 - 12 hour shift
 - 20,000 mt lot
 - Stockpile

Definitions - Increment

- A quantity of material collected by a single operation of a sampling implement
- A sample is made up of 1 or more increments

Sampling System

- Composed of the sampling implement and the sampling protocol
- Must collect samples representative of a sampling lot or unit.
- Sampling systems must be flexible enough to permit adjusting the number of increments collected for each sampling lot

3D Sampling

- These are ore deposits, stockpiles, slurry in tanks or any container that does not permit equal access to all particles
- Surface sampling, (core samples)
- Prone to BIAS for non-homogeneous ores
- Transform into 2D or 1D sampling situation

2D Sampling

- These are railcars, trucks, ships' hold, bulk storage
- Divide the surface into a grid and sample to the bottom of each unit using a probe
- Not practical for ores with particles over ½ inch
- Large amount of sample, poor precision
- Transform into 1D sampling situation

2D Sampling - Example

Concentrate Railcar Sampler

1D Sampling

- This is the easiest and optimally the best. Locations are at the discharge points of conveyor belts or head chutes, and at the exit point of a slurry pipe or transfer points
- Sample increment Remove entire strata of material, cuts across entire stream using a cross-stream cutter
- Access to each particle permitted

1D Sampling - Example

MILL TAILS SAMPLING

PRIMARY - MODEL 1330 w/ ICE® SECONDARY - MODEL 4500 VEZIN SAMPLING THREE 12" LINES)

Increment Delimitation

- Samplers should cut a "slice" of material of constant thickness. Proportionate amount collected from each part of the stream
- The "slice" should cross the complete stream at a constant speed, Electric drives are optimum for this purpose.
- The cutter should intersect the stream perpendicular to the trajectory of the stream.
- Every particle must have the same probability of being collected

Increment Delimitation

1, 2, 3 **CORRECT**

4, 5 INCORRECT

Correct Increment Delimitation

Cross Stream Cutter well designed and clean

Correct Increment Delimitation

Circular Path Cross Stream Cutter

Increment Extraction

- Cutter aligned to the trajectory
- Cutter blades should be perpendicular to stream trajectory

Correct Increment Delimitation

Increment Extraction

Cutter Edge Geometry

- Cutter edges should be perpendicular to the stream
- Rebounding fragments that belong to the increment must pass inside the cutter
- Cutter opening (t) = minimum 3X top size
 -top size defined as screen size passing 95%

Increment Extraction

The Rebounding Rule

- Cutter edges and speed may alter the extraction probability of some fragments
- Max. cutter speed for linear cutters 0.6 m/s

For more information you can always contact us at: www.heathandsherwood64.com

PROVEN METALLURGICAL SAMPLING SOLUTIONS

