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ES 3210  ECONOMIC MINERAL 
DEPOSITS 

• Relevant Chapter in Mineral Deposits of Canada:

⇨ SEDEX Deposits, Goodfellow & Lydon



SEDEX – DEFINITIVE 
CHARACTERISTICS 

• Occur in marine sedimentary sequences of 
intracontinental rifts – or similar environments

• Spatially associated (interbedded) with (clastic) basinal 
sedimentary rocks

    ⇒ ore often stratiform, at least in part

• Ores deposited on seafloor in tectonically controlled 
second or third order basins

• ⇒ another class of definitively submarine deposits

after Lydon, 2004 and Goodfellow & Lydon 2007



SEDEX – DEFINITIVE 
CHARACTERISTICS 

• Main ore metals are Zn, Pb & Ag

   ⇒ usually in sphalerite and galena

• Cu is minor or subsidiary

• Ore is interbedded with Fe sulphides (pyrite or pyrrhotite)

• Typically tabular or wedge-shaped bodies 

after Lydon, 2004 and Goodfellow & Lydon 2007



SEDEX – DEFINITIVE 
CHARACTERISTICS

• Genetic Model

•  Deposited on the seafloor, and in associated sub-
seafloor vent complexes, from hydrothermal fluids 
vented into reduced sedimentary basins 

•  Analogous to modern “Red Sea” environment

after Lydon, 2004 and Goodfellow & Lydon 2007



Goodfellow & Lydon, 2007

Note: BHT (“Broken Hill-Type”) and VSHMS (“Volcanogenic Sediment-
Hosted MS”) categories include many deposits in the Besshi-Type Class 

of VMS



VMS - SEDEX - MVT 
• VMS

•  Occur in submarine volcanic-sedimentary belts 

• Formed from convective hydrothermal fluids (seawater-derived) driven by a sub-
volcanic intrusion - driven by magmatic heat. 

• Fluids are generally reduced. 

• Formed by hydrothermal systems that vented fluids onto the seafloor - age difference 
between ores and immediate host rocks is always small 

• Temperature of fluids 200
o
C-380

o
C. 

• SEDEX

• Occur within (or on the platform margins of) a thick sedimentary basin as a result of 
migration of (connate) basinal saline fluids – sub-volcanic heat source implied.  
Normal geothermal gradient can drive fluid flow (not always need for magmatism).   

• Sediments are usually clastic. 

• Brines are oxidized.   

•  Formed by hydrothermal systems that vented fluids onto the sea floor - age 
difference between ores and immediate host rocks is always small 

• Temperature of fluids <250
o
C.



VMS - SEDEX - MVT 

• SEDEX

• Occur within (or on the platform margins of) a thick sedimentary basin as a result 
of migration of (connate) basinal saline fluids – sub-volcanic heat source implied.  
Normal geothermal gradient can drive fluid flow (not always need for magmatism).   

• Sediments are clastic. 

• Brines are oxidized.   

•  Formed by hydrothermal systems that vented fluids onto the sea floor - age 
difference between ores and immediate host rocks is always small (i.e., syngenetic) 

• Temperature of fluids >250
o
C. 

• MVT

•  Occur within (or on the platform margins of) a thick sedimentary basin as a result 
of migration of (connate) basinal saline fluids.   

• Sediments are mostly carbonates.  

• Brines are oxidized. 

•  Formed in the (continental) subsurface - age difference between ores and host 
rocks can be very large (i.e., epigenetic).



Goodfellow & Lydon, 2007

Known SEDEX Deposits in N. America

*Bryson
*Balmat

*Franklin

*SEDEX affinity debated



Goodfellow & Lydon, 2007

Faro   58 Mt 
Grum    31 Mt 
Vangorda  7.5 Mt

Key point: often big with lots of contained metal.



SEDEX – GRADE AND TONNAGE

• The proportion of world primary production of Zn and Pb 
from SEDEX deposits is 31% and 25%, respectively (2006)

• The size (in tonnes of Pb + Zn metal) of SEDEX deposits is 
on average an order of magnitude greater than that of 
VMS deposits (Goodfellow et al., 1993)



International Zinc Association, 2011



Zinc reserves (A), Zinc resources (B) & Zinc production (C) in 2004. 
Broken down by deposit-type. 

(From “Zinc and Lead Costs – Mines and Projects to 2018”, Brook Hunt, 2004)

Goodfellow & Lydon, 2007



Goodfellow & Lydon, 2007

Grade vs. Tonnage Plots 

SEDEX - Including Irish-type 
& BHT deposits worldwide 

Big deposits - lots of metal =  
attractive targets for mining 
and exploration companies



VENT-PROXIMAL VS VENT-DISTAL

• Morphology of SEDEX deposits is controlled by the 
proximity of seafloor sulphide deposition to fluid 
discharge vents + temperature and salinity of fluids.

• Vent-proximal deposits typically form from buoyant 
hydrothermal fluids 

•  Vent-distal deposits form from fluids that are denser 
than seawater and pool in remote depressions



Robb (2005); Figure 3.23a; after Sato 
(1972)

Sato buoyancy models for VMS (and hydrothermal fluids, in 
general)



From 

Sangster 
(2002)



Goodfellow & Lydon, 2007

Vent-Proximal SEDEX Deposit 

(e.g., Tom, Jason - MacMillan Pass)



VENT-PROXIMAL DEPOSITS

• Characterized by four distinct facies:

• 1) Bedded sulphides 

• 2) Vent complex 

• 3) Sulphide stringer zone (feeder zone) 

• 4) Distal hydrothermal sediments

after Goodfellow & Lydon, 2007



VENT-PROXIMAL DEPOSITS

• Near the center of fluid up-flow represented by the 
stringer zone, the bedded sulphides are characteristically 
infilled, veined & replaced by a high-T mineral assemblage

⇒ producing the vent complex (Goodfellow et al., 1993)

• Distal hydrothermal sediments probably represent plume 
fallout dispersed by bottom currents - or clastic sulphides 
from reworked/eroded bottom deposits

after Goodfellow & Lydon, 2007



VENT-PROXIMAL DEPOSITS

• Characteristically zone-refined due to the reaction of hot 
hydrothermal fluids with pre-existing stratiform sulphides 
overlying the vents

• An increase in the Zn:Pb ratio away from the vent 
complex is the most pronounced and consistent evidence 
of zone-refining

⇨ e.g., Tom (Goodfellow and Rhodes, 1990), Jason (Turner, 
1990), Cirque (Jefferson et al., 1983), Sullivan (Hamilton et 
al.,1982), Red Dog (Moore et al., 1986)

after Goodfellow & Lydon, 2007



Zone Refining: Photographic 
Evidence



Vent-Distal SEDEX Deposit

after Goodfellow & Lydon, 2007



From Sangster 
(2002)



VENT-PROXIMAL VS VENT-DISTAL

• Vent-distal deposits, however, are typically weakly zoned, 
well bedded and conform to the basin morphology

• There is no evidence of the type of zone refining that 
accompanies veining, infilling and replacement of bedded 
sulphides by a typically higher temperature assemblage 
that characterizes vent-proximal deposits



Lydon, 2007  MDD; Lydon & Reardon, 2000

Polished slab of ore from 
the “B-Band”,  3200SE 
Crosscut, Sullivan Mine. 

Illustrating the typical 
laminated nature of 

pyrrhotite-rich bedded 
ores. 

From Lydon and Reardon, 
2000. 



High grade, galena-rich, relatively un-reworked layered ore from the 
upper part of the main sulphide body in the Vent Complex, Sullivan Mine

Lydon, 2007  MDD



Goodfellow & Lydon, 2007



SEDEX – OTHER COMMON 
CHARACTERISTICS 

• Bulk of sulphide mineralization in most SEDEX deposits 
resides in bedded ore facies

• Other associated hydrothermal sediments:

•  Mn- & Ca-carbonates 

•  Calcium phosphate 

•  Silicate-oxide-carbonate facies iron formations



SEDEX – OTHER COMMON 
CHARACTERISTICS 

• Dominant sulphide mineral in most deposits is pyrite

⇨ In some deposits (e.g., Sullivan and Mt. Isa) it is pyrrhotite

• Barite, when present, occurs in significant amounts (i.e., 
>25% of the hydrothermal product) and is present in ~25% 
of Proterozoic and ~75% of Phanerozoic SEDEX deposits 
(Goodfellow et al., 1993).

• Silica (usually chert), is ubiquitous in most stratiform ores 
and is, in part, hydrothermally derived



SEDEX – VENT COMPLEX

• In contrast to the regularly layered appearance of the 
bedded ore facies, the vent complex is extremely 
heterogeneous

• Can contain massive zones, replacement patches, 
irregular veins and/or disseminations of sulphides, 
carbonates, & silicates (mostly quartz)

• Mineral assemblage dominated by pyrite, pyrrhotite, 
galena, sphalerite, ferroan carbonate, dolomite, quartz, 
tourmaline

• Lesser muscovite, chlorite, chalcopyrite, arsenopyrite, 
and sulphosalt minerals



SEDEX – FEEDER ZONE

• Feeder zone underlying vent complexes is a discordant 
zone composed of sulphide, carbonate & silica veins, 
impregnations & replacements that transects the footwall 
sedimentary sequence

• Feeder zone at many deposits appears rooted in a syn-
sedimentary fault zone

• Fault-scarp breccias, debris flows, & abrupt facies 
changes associated with SEDEX deposits indicate that 
faulting was active before, during, and/or after sulphide 
formation (e.g. Jason and HYC deposits, Large et al., 
1998; Turner,1990)



Goodfellow & Lydon, 2007

Vent-Proximal SEDEX Deposit



Goodfellow & Lydon, 2007

Vent-Distal SEDEX Deposit



o

Robb (2005); Figure 3.23a; after Sato 
(1972)

Sato Buoyancy Models – developed for VMS



VENT-PROXIMAL VS VENT-DISTAL

• Further to the Sato models, behaviour changes somewhat 
between VMS deposits and SEDEX deposits 

• Due to the presence of a reactive, H2S-rich, anoxic 
ambient bottom water.

• Vent-proximal deposits typically form from buoyant 
hydrothermal fluids. 

•  Vent-distal deposits form from fluids that are denser 
than seawater and pool in remote depressions.
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Hackett & Bischoff, 
1973

Cross-section of Metalliferous Mud Facies, Atlantis II Deep, Red Sea

Based on this cross-section - does the Atlantis II Deep appear to 
represent a proximal, or distal, SEDEX deposit?



SEDEX Model
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We have brines. We 
have metals. But how 

do we induce 
precipitation?

Goodfellow and Lydon 
(2007)



ORE PRECIPITATION – SEDEX 
ENVIRONMENTS

ZnCl2 + H2S(aq) = ZnSsphalerite + 2H- + 2Cl-

PbCl2 + H2S(aq) = PbSgalena   + 2H- + 2Cl-

⇨ Metals (Zn, Pb) arrive as chloride complexes in the exhaled 

hydrothermal fluid 

⇨ They react with H2S in the anoxic bottom waters of the rift basin to 

precipitate sulphide ores 

⇨ H2S originates from the bacterial reduction of (seawater) sulphate 

common in these environments



SEDEX Model
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SEDEX – AGE SIGNIFICANCE



Goodfellow & Lydon, 2007

Note coincidence of SEDEX 
deposits with periods of 

stratified anoxic ocean basins



FLUID INCLUSION TEMPERATURES

• Good fluid inclusion studies are sparse

⇨ Since SEDEX material is often fine-grained

• Tom, Jason Deposits (Gardner & Hutcheon, 1985; Ansdell et al, 
1989)

• Thavg=260 ºC 9 wt.% NaClequiv

• Sullivan (Leitch, 1992)

• Th= 150-320 ºC 8-36 wt.% NaClequiv

• These temperatures generally compatible with inferred values for 
modern Red Sea system

• >200-250 ºC up to 26 wt.% NaClequiv



SOURCE  
(of metals)

SINK 
(deposition)

Post-Depositional 
Processes

TRANSPORT  
(of metals)

Layne, 2007

SEDEX Ore Deposit



Summary so far

• SEDEX - sediment-hosted Zn-Pb

• Vent proximal (descriptive info knowledge required)

• Vent distal (descriptive info knowledge required)

• Extensional basins - convective hydrothermal circulation.

• Basinal brines (oxidized, SO4-rich, Cl-rich) - 150-250oC.

• Need H2S at the site of deposition - anoxic/euxinic basins.



ALTERATION

• Hydrothermal alteration associated with SEDEX deposits 
commonly extends for 100s of m into the pre- and post-
ore sedimentary sequence and up to several km laterally 
from the deposit. 



Goodfellow et al, 
1995

Post-Ore Hydrothermal 
Alteration



Goodfellow et al, 
1995

Sullivan SEDEX Deposit Cross-Section



ALTERATION

• HOWEVER, compared to VMS deposits, feeder pipes and 
associated alteration underlying SEDEX deposits are relatively 
subtle/harder to detect:

• Lower volume of deposited sulphide in pipe 

• Less reactive siliciclastic sediments vs glassy volcanic 
rocks ⇨ alteration less obvious 

• Limited shallow seawater recharge through the low 
permeability hemi-pelagic mud hosting most deposits ⇨ 
alteration less laterally extensive 

• Diagnostic hydrothermal assemblages  - such as clay 
alteration minerals - easily obscured by later metamorphism 
⇨ alteration more cryptic



ALTERATION

• Nevertheless, alteration can extend over great distances 
from the deposit itself

• Sericite alteration at Sullivan extends more than 200 m 
below the ore, ~4 km E-W along the Kimberley Fault, and 
~6 km S along the Sullivan-North Star corridor.



Goodfellow & Lydon, 2007

Sullivan SEDEX Deposit Map View of 
Major Alteration Facies



ALTERATION

• The best documented example of post-ore hydrothermal 
alteration anywhere is the albite-chlorite alteration of 
turbiditic sedimentary rocks overlying the Sullivan 
deposit (Hamilton et al, 1982; Turner et al, 2000).

•  Late albitization of the vent complex and feeder zone is 
also apparent - clear evidence that post-ore hydrothermal 
fluids utilized the same conduits as the ore-forming fluids



Goodfellow & Lydon, 2007

Sullivan SEDEX Deposit Cross-Section



NON-ORE MINERALIZATION

• Post-ore hydrothermal mineralization can also persist 
100s of m into hanging wall stratigraphy (an important 
guide for mineral exploration), for example:

•  Laminated and disseminated barite and pyrite (e.g. 
Tom, Jason, Rammelsberg, Meggen) 

•  Manganese and iron carbonates (e.g. Meggen, 
Silvermines, McArthur River (HYC)) 

•  Phosphatic and pyritic chert (e.g. Howards Pass, 
Anniv) 

•  Metal-rich laminated pyrite (e.g. HYC, Mt. Isa, Tom, 
Jason)

Goodfellow & Lydon, 2007



Goodfellow et al, 
1995

Non-Ore Hydrothermal 
Mineralization



NON-ORE MINERALIZATION

• These same styles of non-ore hydrothermal mineralization 
often also form aprons that extend several km laterally 
from the ore zone of vent-proximal deposits 



Lydon, 
1995

A Useful Plan-View Schematic of a SEDEX Deposit



FAULTING & ORE LOCALIZATION

• SEDEX deposits typically occur in second-order or local 
third-order sedimentary basins.

•  Vent-proximal deposits are associated with active 
faults that commonly define the margins of local 
basins (and the deposit) 

•  Vent-distal deposits form in bathymetric depressions 
on the seafloor



after A.K. Lobeck, Geomorphology, McGraw-Hill, 
1939

Graben: Dropped Fault Block

Horst: Upthrown Fault Block



Robb (2005); Figure 3.25

Setting(s) of SEDEX Pb-Zn Ore Formation



Goodfellow & Lydon, 2007



SEDEX Summary

• Extensional sedimentary basins 
• Control by faults 
• Vent proximal vs. vent distal 
• Zoning of ore facies (above)

• Alteration - footwall and hanging 
wall



SULLIVAN DEPOSIT

• The Sullivan Deposit has all of the definitive 
characteristics of a SEDEX class deposit

• However, it also has some (somewhat) unusual additional 
features and geological history



Goodfellow & Lydon, 2007

Sullivan SEDEX Deposit Cross-Section



SULLIVAN DEPOSIT

• It occurs quite early in the rift-fill sequence of an 
intracratonic rift – and there are proximal, coeval gabbroic 
sills in the host rock sequence.

• For next module - what VMS class does this resemble?

• Besshi-type or Bathurst-type setting (or BHT-type 
deposits)



SULLIVAN DEPOSIT

• Recent genetic models for Sullivan (e.g.,Lydon, 2004) 
propose that ore-deposition was preceded by a period of 
mud volcano activity.

• Mud volcanoes were provoked by the intrusion of the 
gabbroic sills in to wet, un-indurated soft sediments 
within the early rift basin

• Mud volcano activity – rather than typical scarp talus 
debris – was responsible for forming the footwall 
conglomerate and chaotic breccia units of Hamilton 
(1983).



Goodfellow et al, 
1995

Sullivan SEDEX Deposit Cross-Section



SULLIVAN DEPOSIT

• There is also a suggestion that the pronounced zone of 
tourmalinization below the deposit was also caused by 
pre-ore fluids related to mud volcano activity.

• However, once mud volcano activity ceased, subsequent 
hydrothermal activity utilized the same conduit(s), 
producing a classical vent-proximal SEDEX deposit.



Robb (2005); after Moore et al, (1986)

Robb (2005) Box 3.4 (p.188-189) on the Red Dog, AK example of a SEDEX 
deposit. It should make sense to you in terms of the Lecture discussions.



Robb (2005); after Moore et al, (1986)


