Drill & Blast Controls

Arne Lislerud

Energy transfer efficiency η related to impedance matching between bit and drill steel forces

Matching drill settings to site conditions

Drilling in variable rock mass

Jobsite KPI's for drilling operations

- drilling capacities ft/ph & ft/eh
- drilling capacities in ft/shift
- avg. percussion pressures
- fuel consumption in gal/eh
- drill steel consumption & costs
- drill-hole straightness
- geological conditions
- cost in \$ per ft or yd³

Improving operator productivity and skills

training facilities

- traditional inpit
- simulator for DPi series
- vocational schools
- objectives
 - improve overall drilling performance
 - increase skills as to drilling in difficult rock mass conditions

Operator requirements as to drills

Quarries and D&B Contractors

- equipment flexibility and reliability
- **D&B** as to aggregate production requirements
- ability to handle difficult ground conditions
- availability of local / on-call field service
- system for tracking engine hours, production rates, schedule service times, ...

Mines and Mining Contractors

- wall control blasting (plus dewatering, depressurisation and bolting holes)
- grade control (sampling, MWD, ...)
- system for tracking consumables, engine hours, production rates, ...
- inpit remote controlled / automated drills
- availability of service contracts

Predicting bit penetration rates - TH

- rock mass drillability, DRI
- percussion power level in rod(s)
- bit diameter
 - ✓ hole wall confinement of gauge buttons

- ✓ bit face design and insert types
- ✓ drilling parameter settings (RPM, feed)

flushing medium and return flow velocity

2"

3"

4"

2.5"

3.5"

3.5"

4.5"

3"

4"

5"

3.5"

4.5"

3"

2.5"

HL510/HLX5T 51 mm **HL600** 64 mm HL710/800T 76 mm HL1500/1560T 102 mm HL510/HLX5T 64 mm **HL600** 76 mm HL710/800T 89 mm HL1000 89 mm HL1500/1560T 115 mm HL510/HLX5T 76 mm HL600 89 mm HL710/800T 102 mm HL1000 115 mm 50 60 70 HL1500/1560T 127 mm

Predicting bit penetration rates - DTH

- rock mass drillability, DRI
- percussion power of hammer
- bit diameter

✓ hole wall confinement of gauge buttons

- goodness of hole-bottom chipping

 ✓ bit face design and insert types
 ✓ drilling parameter settings (RPM, feed)
- *flushing and return flow velocity*

5"	RH550 (M50)	140	mm	5.5"
6"	RH550 (M60)	165	mm	6.5"
	3" RH550 (M	30)	89 mm	3.
	4" RH550 (M	40)	115 mm	4.
	6" RH550 (M	60)́	203 mm	8"

8" RH550 (M85)	251 mm	9 7/8"
----------------	--------	--------

Gross drilling capacities (dr-ft/h)

- *rig setup and feed alignment time per drill-hole*
- collaring time through overburden or sub-drill zone
- drill-hole wall stabilisation time (if required)
- rod handling times (unit time and rod count)
- bit penetration rate loss percentage i.e.
 - ✓ rods and couplings
 ✓ MF rods
 ✓ tubes
 ✓ 5.1 % per rod
 ✓ 3.6 % per rod
 ✓ 2.6 % per tube
- effect of percussion power levels on:
 - ✓ bit penetration rates
 - ✓ drill steel service life
 - ✓ drill-hole straightness
- **rig tramming times between benches, refueling, etc.**
- effect of operator work environment on effective work hours per shift
- rig availability, service availability, service and maintenance intervals

- ✓ very broken rock
- ✓ terrain benches winching
- $\checkmark\,$ very low or very high benches
- ✓ very poor collaring conditions

Bit penetration rate, BPR₂ (ft/min)

Typical breakdown of longterm rig usage and capacities

Criteria for selecting drills

- *annual production requirements in bm³ or t*
- critical diameter of explosive
- flexibility in usage
- application costing
- level of automation

ing Processes, Instilling Expert

- operator training and support
- operator comfort and safety
- ease of transport between pits

- => hole size big enough?
- => different types of work?
- => D&B costs per t

How drilling and blasting affect downstream operations

What happens when we shoot holes that look like spaghetti?

floor humps

- poor walls
- flyrock
- blowout of stemming
- blast direction
- shothole deflagration / misfires
- good practice

- => poor loading conditions, uneven floors
- => unstabile walls
- => difficult 1st row drilling
- => safety
- => safety, dust, toes, ...
- => quality of floors and walls
- => safety
- => locally choked muckpiles (poor diggability)
- => max. drill-hole deviation up to 2 3% for production drilling

- Drill-hole collar positions
- Drill-hole positions at hole bottom

Shothole diameter error control

bits loose diameter due to gauge button wear
typical diameter loss for worn out bits is ~ 10%
diameter loss effect on drill patterns

	Diameter new bit	Ø102mm – 4"	
	Diameter worn out	Ø89mm – 3½"	
	Diameter loss	$(4-3\frac{1}{2})/4 = 12.8\%$	
=>	Drill pattern too big	$(4/3\frac{1}{2})^{1.6} = 24\%$	

Collar position error control

- use tape, optical squares or alignment lasers for measuring in collar positions
- use GPS or total stations to measure in collar positions
- collar positions should be marked using painted lines – not movable objects such as rocks etc.
- completed drillholes should be protected by shothole plugs etc. to prevent holes from caving in (and filling up)
- use GPS guided collar positioning devices e.g. TIM-3D

drilling

Open corner and mudseam damage

Side-break due to open corner damage

Where do boulders originate?

- primarily from the uncharged portion of blasts
- poorly blasted backwalls (now front rows), sidewalls and corners
- seams / dykes within blasts
- poor field performance of explosives
- poorly drilled patterns (drill-hole deviation)

"Charged" bench height ratio, f_{CL}

 $\boldsymbol{k}_{50\text{-shotrock}} = \boldsymbol{k}_{50\text{-}CL} / \boldsymbol{f}_{CL}^{0.76}$

Quality feed – effect of micro-fracturing

Occupational health and safety

work related accidents for:

mobile equipment hazardeous work areas

- emissions control
- noise control
- dust control

JARRY

- fly rock / charging / straight-hole drilling
- falling rocks / wall control
- ⇒ safety is linked as much to equipment as it is to attitudes
- ⇒ health, safety and environmental
 issues are everyone's concern

the ultimate safety target is zero harm – not just a mimimum occurrence of accidents RY

Assessment of some work related health risks

Safety of inpit operations

- unwanted incidences do not just happen they have root causes
- actions can be taken so as to reduce frequency and consequences of unwanted occurrences
- the relationship between complexity and knowledge in the workforce is often unbalanced - e.g. operator hazard training is a must!

Safety of inpit operations

new equipment requirements for the future?

Safety of inpit operations

Fire in motor

Drilling into dynamite

Mina Alumbrera -Double bench presplitting

Mina Alumbrera -Pitwall scanlines

www.quarryacademy.com

