Drilling Management – Wall Control

Wall control drilling – Macon Quarry, GA

Drilling Management – Wall Control

Wall control drilling - Macon Quarry, GA

	ΔL	%	$\Delta x = \Delta y$	α	β
Max error	1.48 ft	1.8	1.05 ft (≈ 2d)	0.75°	12.0°
Median error	0.49 ft	0.6	0.36 ft (≈ d)	0.25°	4.2 °

Inclination and directional error control

Drill-hole deflection error control

- select bits less influenced by rock mass discontinuities
- reduce drill string deflection by using guide tubes, etc.
- reduce drill string bending by using less feed force
- reduce feed foot slippage while drilling since this will cause a misalignment of the feed and lead to excessive drill string bending
- avoid gravitational effects which lead to drill string sagging when drilling inclined shot-holes (> 15°)
- avoid inpit operations with excessive bench heights

How bit face designs enhance drill-hole straightness

When the bit starts to drill through the fracture surface on the hole bottom - the gauge buttons tend to skid off this surface and thus deflect the bit.

More aggressively shaped gauge inserts (ballistic / chisel inserts) and bit face profiles (drop center) reduce this skidding by allowing the gauge buttons to "cut" through the fracture surface thus resulting in less overall bit and drill string deflection.

How bit skirt designs enhance drill-hole straightness

As the bit cuts through the joint surface - an uneven bit face loading condition arises; resulting in bit and drill string axial rotation - which is proportional to bit impact force imbalance.

A rear bit skirt support (retrac type bits) reduces bit and string axial rotation by "centralizing" the bit.

Other counter measures:

- longer bit body
- add a pilot tube
- lower impact energy
- rapid drilling control system reacting
- to varying torque and feed conditions

Drill-hole deflection trendlines in schistose rock

Selecting straight-hole drilling tools - TH

- optimum bit / rod diameter relationship
- insert types / bit face and skirt
 - ✓ spherical / ballistic / chisel inserts
 - ✓ normal bits
 - ✓ retrac bits
 - ✓ drop center bits
 - ✓ guide bits
- additional drill string components
 - ✓ guide tubes / pilot (lead) tubes

Vertical projection of Row 1

Summary of H = 33m bench drill-hole deviation errors

Target inclination	14.0°
Average inclination	14.4°
Standard deviation	1.4 °
Target azimuth	0.0 °
Average azimuth	-7.6 °
Standard deviation	7.7°

Bench	Drill-hole	Inclin. and directional	Deflection	Total deviation	Deviation
height, H	length, L	errors, 🛆 L _{I + D}	errors, ⊿ L _{def}	errors, <u>A</u> L _{total}	⊿ L _{total} / L
(((mm)	(mm)	(mm)	(%)
9	9.3	440 <mark>(140)</mark>	120	420	4.5
13	13.4	640 (210)	240	650	4.9
17	17.6	840 (275)	400	900	5.1
21	21.7	1040 <mark>(340)</mark>	610	1190	5.5
33	34.1	1630 <mark>(530)</mark>	1470	2270	6.7
	()	values where the systematic azin	nuth error has been e	excluded	

Prediction of deviation errors

- direction of deviation can not be "predicted"
- magnitude of deviation can be predicted

Rock mass factor, k_{rock}

massive rock mass	0.33
moderately fractured	1.0
■ fractured	2.0
mixed strata conditions	3.0

Bit design and button factor, k_{bit}

- normal bits & sph. buttons 1.0
- normal bits & ball. buttons 0.70
- normal X-bits 0.70
- retrac bits & sph. buttons 0.88

0.62

0.38

- retrac bits & ball. buttons 0.62
- retrac X-bits
- guide bits

	Drill-h	ole De	viation 3.xls/A. Lisl	Predictio	n	
Location	Location			Bench H = 33m		
Rock type				Granitic gneiss		
Bit type				Retrac bit		
Dit diemet	ou (nono)			du u	70	
Bit diamet	er (mm)			dbit	/6	
Rod diame	eter (mm)			dstring	45	
Guide tube	e diameter ((mm)		dguide / No	No	
To do Later					4.04	
l otal del	lection fa	ctor	1	Kdef	1,34	
	rock mass			Krock	1,30	
	drill-string	stiffness		Kstiffness	0,138	
	bit wobbling			kw obbling	0,592	
	guide tubes for rods			kguide	1,000	
	bit design	and button	factor	kbit	0,88	
	constant			Krod	0,096	
Inclinatio	on and dir	ection er	ror factor	k I + D	47,8	
Drill-nole	e deviatio	n predicti	on			
	Drill-hole	Drill-hole	Drill-hole	Drill-hole	Drill-hole	
	Length	Inc + Dir	Deflection	Deviation	Deviation	
	(m)		ALder (mm)			
	0.3	(1111)	116	/50	(/0)	
	13.4	640	241	684	5.1	
	17.6	840	415	937	5.3	
	21.7	1036	631	1213	5.6	
	34.1	1628	1559	2254	6.6	

Factors affecting drill-hole deviation

- button shape, bit face and bit body design
- applied impact energy and strike frequency
- feed foot slippage
- removal or controlled drilling through prior sub-drill zone
- drilling control systems, i.e.
 - applied feed, torque and percussion dynamics
- drill string stiffness and "tube" steering capabilities
- drill string startup alignment

How drilling errors affect down-stream operations

Drilling	reduced drill steel life
Blasting	 danger of poor explosives performance in neighbouring shotholes due to deflagration or deadpressing
	 danger of flyrock due to poor control of front row burden
Load and Haul	poor loading conditions on "new floors" with reduced loading capacities due to toes and quarry floor humps and locally choked (tight) blasts
Good practice	max. drill-hole deviation up to 2-3 %

Mechanics of percussive drilling

Energy transfer efficiency in TH drilling

The energy transfer chain in TH drilling

Matching site drilling to transfer efficiency curve - TH

Drilling Management Drilling in variable rock mass

Summary of some topics in percussive drilling

Drill bits

- ✓ induce rock chipping
- ✓ sets conditions for impact energy transfer efficiency in TH drilling
- ✓ clean hole bottoms flushing
- ✓ self stabilising bit bodies enhance straight hole drilling

Bit regrinding – extended bit life

- ✓ remove snakeskin avoid premature button breakage
- ✓ reshape topworn buttons reduce bit forces and button breakage
- ✓ avoid flat buttons, low protrusion and bit bottoming

Drill steel

- ✓ impact energy transfer efficiency in TH drilling
- ✓ flushing return air velocity
- ✓ tubes or pilot tube/rods straight hole drilling

Drilling control systems

- ✓ bit feed speed control
- ✓ flushing flow control
- drill string anti-jamming
- ✓ feed force and impact power control
- ✓ feed alignment, hole length and rig positioning systems

0 001 002 003 004 005 0.06

✓ input source for condition monitoring and MWD

www.quarryacademy.com

Improving Processes. Instilling Expertise.