Drilling Roy Rathner and Arne Lislerud

Improving Processes. Instilling Expertise.

Agenda for drilling operations

- well planned operations and correctly selected rigs yield low cost drilling
- technically good drilling (good drill settings) and correctly selected rigs yields low cost drilling
- straight hole drilling yields safe and low cost D&B operations

The most common drilling methods in use

Drilling consists of a working system of:

bits

- drill string
- boom or mast mounted feed
- TH or DTH hammer / Rotary thrust
- drill string rotation and stabilising systems
- powerpack
- automation package
- drilling control system(s)
- collaring position and feed alignment systems
- flushing (air, water or foam)
- dedusting equipment
- sampling device(s)

Selecting drilling tools

- bit face and skirt design
- button shape, size and carbide grade
- shanks, rods, tubes, ...
- grinding equipment and its location

Guidelines for selecting cemented carbide grades

avoid excessive button wear (rapid wearflat development)

- => select a more wear resistant carbide grade or drop bit RPM
- avoid button failures (due to snakeskin development or too aggressive button shapes)
 - => select a less wear resistant or tougher carbide grade or spherical buttons
 - => use shorter regrind intervals

Selecting button shapes and cemented carbide grades

Optimum bit/rod diameter relationship for TH

Optimum bit/guide or pilot (lead) tube relationship for TH

Jobsite KPI's for drill steel

- drill steel component life
- bit regrind intervals
- bit replacement diameter
- component discard analysis
- costs in € per drm or m³

Trendlines for bit service life

Bit regrind intervals, bit service life and over-drilling

Tube drilling for TH – avoid:

- bending of drill string leads to premature tube failure
- hardrock drilling or bit service life < 1750 drm leads to poor tube life</p>
- jerky drill string rotation leads to an unstable bit which initiates drill-hole deviation

Mechanics of percussive drilling

Flushing of drill-cuttings

Insufficient air < 15 m/s

- Iow bit penetration rates
- poor percussion dynamics
- interupt drilling to clean holes
- plugged bit flushing holes
- stuck drill steel
- "circulating" big chip wear

Too much air > 30 m/s

- excessive drill steel wear
- erosion of hole collaring point
- extra dust emissions
- increased fuel consumption

Correction factors

- high density rock
- badly fractured rock (air lost in fractures - use water or foam to mud up hole walls)
- high altitude (low air density)
- large chips require additional air as well

Foam flushing – an aid for drilling in caving material

Chip formation by bit indentation and indexing

Indentation with multiple chipping

Energy transfer efficiency η related to rock chipping

No energy retained in rock after off-loading for $\gamma = 1.0$ (all elastic energy in rock returned to drill string)

$$\eta = W_{rock} / W_{incident}$$
$$= \eta_{impedance} \cdot (1 - \gamma)$$
$$\eta_{impedance-max} \approx 0.90$$

How does this apply to practical drilling?

Energy transfer efficiency η related to impedance matching

QUARRY ACADEMY

How do we study drill string energy transfer issues?

- strain gauge measurements on rods/tubes while drilling
- numerical modelling
 - => the tell-tale items we are looking for:

Energy transfer chain – video clip cases

cavity

"perfect" bit / rock match

bit / rock gap – i.e. underfeed

bit face bottoming – caused by:

- drilling with too high impact energy
- drilling with worn bits i.e. too low button protrusion

Energy transmission through threads

Energy transfer can be divided into:

energy transmission through the drill string

- optimum when the cross section throughout the drill string is constant
- length of stress wave
- weight of bit

energy transmission to rock

- bit indentation resistance k_1
- bit-rock contact

The most critical issue in controlling stress waves is to avoid high tensile reflection waves.

Tensile stresses are transmitted through couplings by the thread surfaces - not through the bottom or shoulder contact as in the case for compressive waves.

High surface stresses combined with micro-sliding result in high coupling temperatures and heavy wear of threads.

Feed force rquirements

Matching drill settings to site conditions

Drilling in variable rock mass conditions

Jobsite KPI's for drilling operations

- drilling capacities in drm/ph or drm/eh
- production capacity in drm/shift
- avg. percussion pressure
- fuel consumption l/eh
- drill steel consumption & costs
- drill-hole straightness
- geological conditions
- costs in € per drm or m³

Predicting bit penetration rates - TH

Predicting bit penetration rates - DTH

			6" RF	1550 (M) 1550 (M)	50) 60)	140 I 165 I	mm mm	5.5 [°] 6.5"	
rock mass drillability, DRI									
percussion power of hammer			3	8" RH55	0 (M30)	89 mm	3	.5"
bit diameter and type				4" RH55	0 (M40))	115 mm	4	.5"
hole wall confinement of gauge buttons				5" RH55	0 (10160))	203 mm	8	
goodness of hole-bottom chipping				o" [(MQ5)	25	1 mm	7/9"
✓ bit face design and insert types				0 1	11330 ((1000)	25		110
✓ drilling parameter settings (RPM, feed)	(ui	Г	T	TT					
flushing medium and return flow velocity	m/m	1.6							
	L)	1.4							
	ate	1.2							
	u v	1.0							
	tio	0.8							
	tra	0.6							
	ne	0.0							
	be	0.4							
	Bit	0.2							
		L	20	30) 4	40	50	60	70
						- D-			
MY						RO	ck dri	liabili	ty, DR

Gross drilling capacities (drm/h)

2.6 % per tube

- time for rig setup and feed alignment per drill-hole
- collaring time through overburden or sub-drill zone
- drill-hole wall stabilisation time (if required)
- rod handling times (unit time and rod count)
- bit penetration loss rate percentage i.e.
 - ✓ rods and couplings 6.1 % per rod
 - ✓ MF rods 3.6 % per rod
 - ✓ tubes
- effect of percussion power levels on:
 - ✓ bit penetration rates
 - ✓ drill steel service life
 - ✓ drill-hole straightness
- time for tramming between benches, refueling, etc.
- effect of operator work environment on effective work hours per shift
- rig availability, service availability, service and maintenance intervals

Bit penetration rate, BPR₂ (m/min)

Typical breakdown of longterm rig usage and capacities

Limestone Quarry – Drilling Report DI550 / Ø140mm

Commonw	Deille	maatar.		
1 Net drilling time		103101: 39 5	XXXX Net drilling time (drn	a/ph) - percussion bours
2. Moving :	10,7	00,0	net anning time (ann	
3. Total 1+2	53,7>	31,6	Gross drilling time (d	drm/h) - incl. time for moving on bench
4. No-productive time	6,1h	Waiting:	h	
		Re-dress:	h	Maintenance: 4,1h
		Re-fuel:	h	Repair: 2,0h
	-	Total:	h	Total: 6,1h
5. Driving time	4,3h			
6. Shift time 3-5 (wihout breaks)	70,50>	24,1	drm/shift hour	
	Efficiency (NG)	: '	76%	Availability: 89%
7. Fuel consumption	Oper. ratio <u>(eh/s</u>	sh) :	80%	
Total consumption:	3131,0 L> >	1,84 53,98	l/drill meter l/engine hour	

Can we drill straight holes?

Ventilation Shaft, Olkiluoto Nuclear Power Plant

Shaft diameter, Section I
Shaft length
Rock type
Contour hole size
Contour hole charging
Contour hole spacing
Contour row burden

Ø6.5 m 15 m Quartz Diorite Ø60 mm 80 g/m det. cord 0.4 m 0.7 m

What happens when we shoot holes that look like spaghetti?

- floor humps
 - poor loading conditions, uneven floors
- poor walls
 - unstable walls
 - difficult 1st row drilling
- flyrock
 - safety issue

- safety, dust, toes, ...
- blast direction
 - quality of floors and walls
- shothole deflagration / misfires
 - safety
 - Iocally choked muckpiles (poor diggability)
- good practise
 - max. drill-hole deviation up to 2 3 % for production drilling

How do we go about drilling straighter holes?

- understand the many issues leading to drill-hole deviation
- technically good drill string
- technically good drill rig, instrumentation, ...
- motivate the drillers!

Accurate drilling gives effective blasting

Sources of drilling error

- 1. Collar position
- 2. Hole inclination and direction
- 3. Deflection (bending)
- 4. Hole depth
- 5. Omitted or lost holes
- 6. Shothole diameter (worn out bits)

Examples of drill-hole deviation

Drill string deflection caused by gravitational pull or sagging of drill steel in inclined holes in syenite

Examples of drill-hole deviation

Deflection with and without pilot tube for Ø89 mm DC retrac bit / T51 in micaschist

Floor hump due to explosives malfunction caused by drill string deflection

Shothole diameter error control

- bits loose diameter due to gauge button wear
- typical diameter loss for worn out bits is ~ 10%
- diameter loss effect on drill patterns

	Diameter new bit	Ø102mm
	Diameter worn out bit	Ø89mm
	Diameter loss	(102-89)/102 = 12.8%
=>	Drill pattern too big	$(102/89)^{1.6} = 24\%$

Drill-hole diameter, d (mm)

Collar position error control

- use tape, optical squares or alignment lasers for measuring in collar positions
- use GPS or total stations to measure in collar positions
- collar positions should be marked using painted lines – not movable objects such as rocks etc.
- completed drillholes should be protected by shothole plugs etc. to prevent holes from caving in (and filling up)
- use GPS guided collar positioning devices e.g. TIM-3D

Difficult 1st row drilling

Lafarge Bath Operations, Ontario

- Rock type
- Bench height
- Bit
- Drill steel
- Hole-bottom deflection
- Gross drilling capacity
- Drill pattern
- Sub-drill
- Stemming
- No. of decks
- Deck delays
- Charge per shothole
- Explosives
- Powder factor

limestone, 1.6 Mtpa 32 m Ø115 mm guide XDC Sandvik 60 + pilot tube < 1.5 % or 0.5 m 67 drm/h 4.5 x 4.8 m² (staggered) 0 m (blasted to fault line) 2.8 m 3 (stem between decks 1.8 m) 25 milliseconds 236 kg ANFO (0.95 & 0.85 g/cm³) 0.34 kg/bm³

QUARRY ACADEMY

Inclination and directional error control

How bit face designs enhance drill-hole straightness

When the bit first starts to penetrate through the joint surface on the hole bottom - the gauge buttons tend to skid off this surface and thus deflect the bit.

More aggressively shaped gauge inserts (ballistic / chisel inserts) and bit face gauge profiles (drop center) reduce this skidding effect by enabling the gauge buttons to "cut" through joint surfaces quickly - thus resulting in less overall bit deflection.

How bit skirt designs enhance drill-hole straightness

Drill-hole deflection error control

- select bits less influenced by rock mass discontinuities
- reduce drill string deflection by using guide tubes, etc.
- reduce drill string bending by using less feed force
- reduce feed foot slippage while drilling since this causes a misalignment of the feed leading to excessive drill string bending
- avoid gravitational effects which lead to drill string sagging when drilling inclined shot-holes (> 15°)
- avoid inpit operations with excessive bench heights

Drill-hole deflection trendlines in schistose rock

QUARRY ACADEMY

Selecting straight-hole drilling tools - TH

- optimum bit / rod diameter relationship
- insert types / bit face and skirt
 - ✓ spherical / ballistic / chisel inserts
 - ✓ normal bits
 - ✓ retrac bits
 - ✓ drop center bits
 - ✓ guide bits
- additional drill string components
 - ✓ guide tubes / pilot (lead) tubes

Drill pattern at quarry floor

Drill pattern at quarry floor

Vertical projection of Row 1

Prediction of drill-hole deviation errors

- direction of deviation can not be "predicted"
- magnitude of deviation can be predicted

Rock mass factor, k _{rock}	
massive rock mass	0.33
moderately fractured	1.0
■ fractured	2.0
mixed strata conditions	3 .0
Bit design and button factor, k _{bit}	
normal bits & sph. buttons	1.0
normal bits & ball. buttons	0.70
normal X-bits	0.70
retrac bits & sph. button	0.88
retrac bits & ball. buttons	<i>0.6</i> 2
retrac X-bits	<i>0.6</i> 2
guide bits	0.38

	Drill-h	ole De	viation	Predictic erud	n	
Location				Bench H = 33m		
Rock type				Granitic gneis	SS	
Bit type				Retrac bit		
Bit diamet	er (mm)			dbit	76	
Rod diame	eter (mm)			detring 45		
Guide tube	e diameter ((mm)		dguide / No	No	
Total de	flection fa	octor		kdef	1,34	
	rock mass			k rock	1,30	
	drill-string	stiffness		k stiffness	0,138	
	bit wobblin	g		kw obbling	0,592	
	quide tube	s for rods		kquide	1,000	
	bit design	and button	factor	kbit	0,88	
	constant			krod	0,096	
Inclinatio	on and dii	rection er	ror factor	ki+d	47,8	
Drill-hole	e deviatio	n predicti	ion			
	Drill-hole	Drill-hole	Drill-hole	Drill-hole	Drill-hole	
	Length	Inc + Dir	Deflection	Deviation	Deviation	
	L	∆LI+D	∆Ldef	∆Ltotal	∆Ltotal / L	
	(m)	(mm)	(mm)	(mm)	(%)	
	9,3	444	116	459	4,9	
	13,4	640	241	684	5,1	
	17,6	840	415	937	5,3	
	21,7	1036	631	1213	5,6	
	34,1	1628	1559	2254	6,6	

Factors affecting drill-hole deviation

- drill string startup alignment
- bit will follow a joint if at sharp angle to bit path
- drill string stiffness and "tube" steering behind bit
- deviation increases with impact energy
- button shape, bit face and bit body design
- drilling with dull buttons (worn bits)
- bit diameter checks when regrinding
- feed foot slippage while drilling
- removal or controlled drilling through prior sub-drill zone
- drilling control systems, i.e.
 - applied feed, torque and percussion dynamics
- operator motivation!

Wall control drilling Macon Quarry, GA

Wall control D&B Chadormalu Iron Mine

www.quarryacademy.com

Improving Processes. Instilling Expertise.

