Load & Haul Practical Cost Reduction Volvo Construction Equipment

Improving Processes. Instilling Expertise.

Course Agenda

- Purpose and Goal
- A Test
- Where's the money??
- Practical cost improvement
 - "today"
 - "tomorrow"
- Conclusion

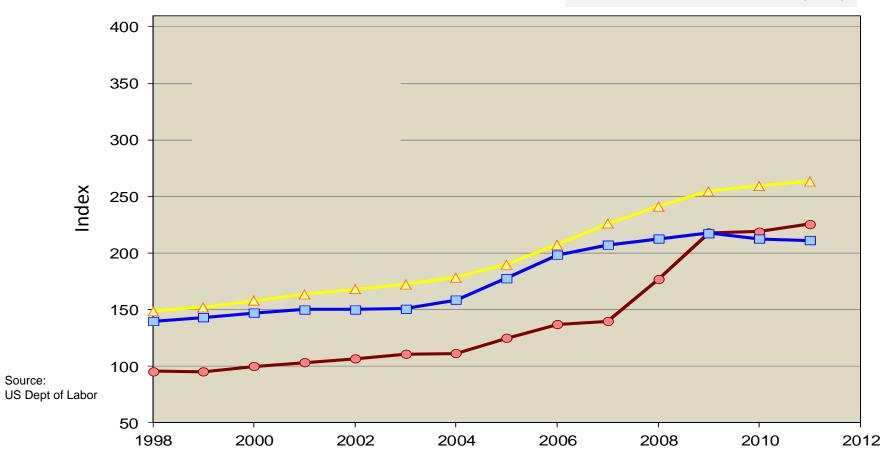
Load & Haul – What can you affect "today"

Course Purpose

- Quick hitting ideas to Improve productivity or lower costs of your current mobile fleet.
- Important This is an open <u>dialogue</u>, not a lecture.

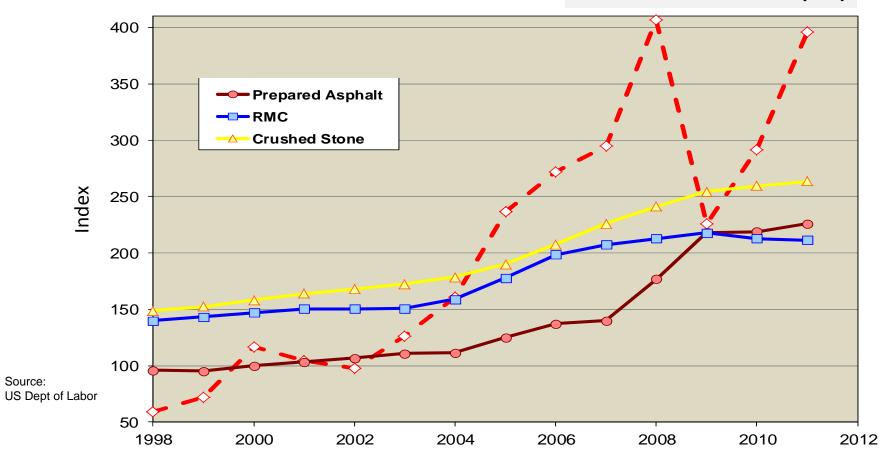
Goal

• Take home at least 2-3 ideas for basic but significant improvement in your operations.



Load & Haul A Test

Producer Price Indices (PPI)



Load & Haul A Test

Producer Price Indices (PPI)

Conclusion

- •**Prices** \rightarrow Moving in the right direction
- •**Cost** \rightarrow Moving also, which direction?
 - \rightarrow with higher fluctuation.

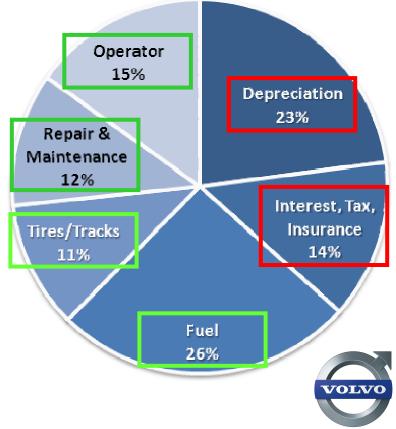
Managing Costs - Key to:

- •Business viability ?
- •Competitive advantage ?

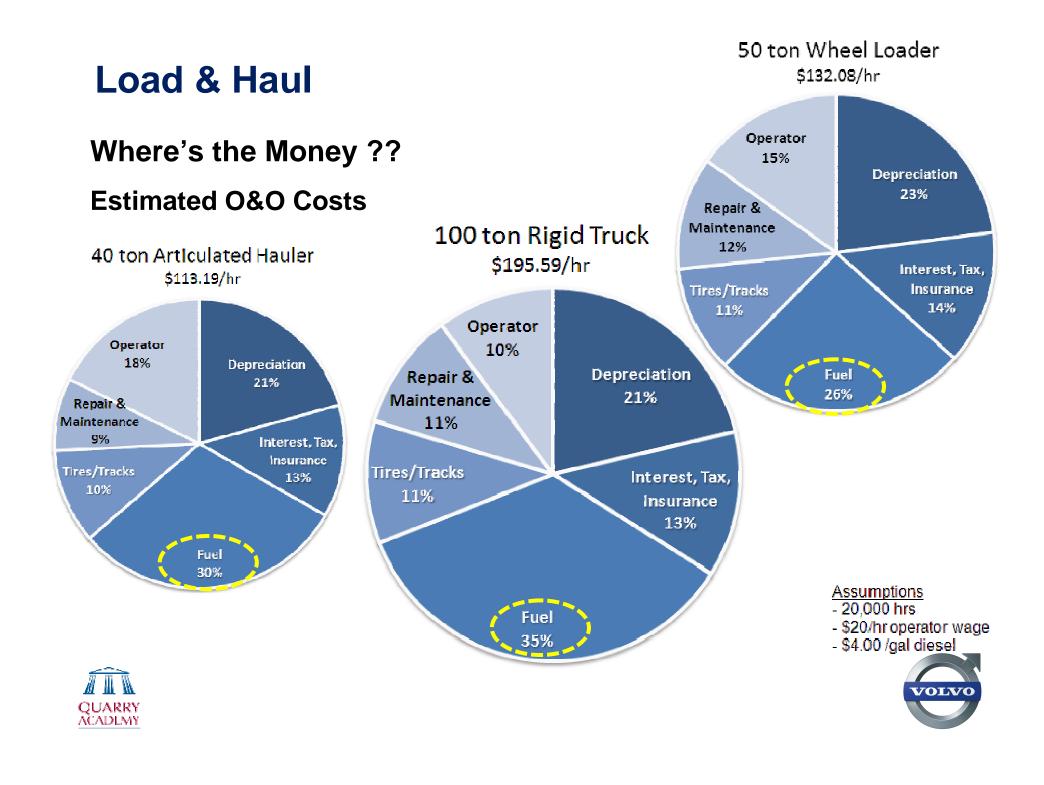
Ways to improve operationally

- •Change what you do,
- •Change **how** you do it,
- •Change what you **use** to do it.

What is an O & O ?

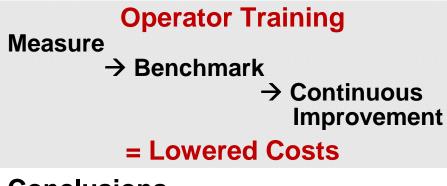

• Est. Ownership and Operating Costs

"Fixed"


Ownership = Cost of capital or asset . . .

"Variable" Operating = Cost of operating the asset .

Usually expressed as \$ per hour.



Where's the Money ??

• Fuel → Consumption is your #1 opportunity, TODAY

What can you do about it ???

Conclusions

- Fuel consumption depends on:
 - What machine is doing
 - Operator efficiency.
- Operators competency depends on:
 - Experience

TRAINING.

Practical Approaches - TODAY

Operator Training

- •Something you can affect, today
- Good for safety, for production, for accounting
- •Good for operators career and well-being.

Success Stories

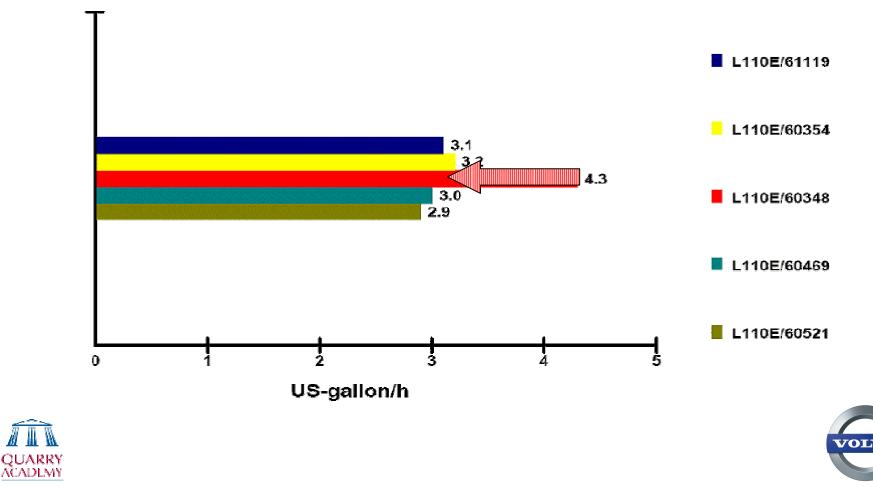
- •Where real, tangible cost reductions were made.
- •Common themes:
 - Measurements
 - Evaluation
 - Fleet benchmarking

Example #1 Sand Plant - 5 x wheel loaders (L110)

• Cost improvement desired by owner.

Actions Taken

- Contacted the local dealer
- Reviewed machine data history
- Checked assumptions
- Made a plan.



Example #1 Sand Plant - 5 x wheel loaders (L110)

Average fuel consumption per hour

Example #1 Sand Plant - 5 x wheel loaders (L110)

- One machine = 1.2 gal/hour more
 - Over 5 years

- ightarrow \$9,600 more cost /year
 - → \$48,000 additional cost.
- Next Actions Taken with dealer
 - Checked machine and operating conditions
 - Provided operator training.
- **Result** \rightarrow Pulled fuel burn back to fleet norm with no loss in productivity.

What Changed?

- Training work with the machine, not against it.
 - Better utilize high torque / low RPM engine & load-sensing hydraulics
 → Noise/smoke don't equal production.
 - Better bucket loading while burning less fuel.

Example #2 Compost Producer - 5 x wheel loaders (L180)

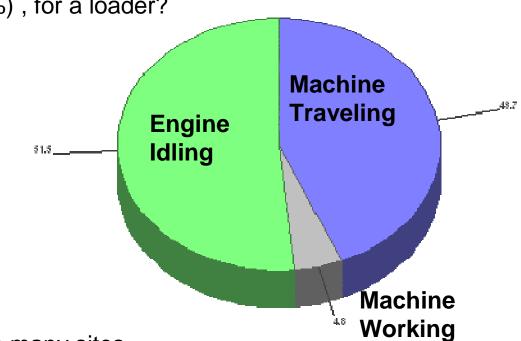
- Operator training provided as part of a continuous improvement program.
- **<u>Before</u>** Operator Training
 - Average fuel consumption
 - Average tire life
- <u>After</u> Operator Training
 - Average fuel consumption
 - Average tire life (est.)

- 6.3 gal/hr
- 2,000 hr per set.
- 4.7 gal/hr (1.6 gal/hr less)4,000 hr per set.
- <u>Result</u> Fuel Savings per fleet up to \$64,000 per year (1.6 gal/hr x 5 units x 2,000 hr x \$4.00/gal)
 - \rightarrow Plus additional savings from improved tire life. . .

Example #2 Compost Producer - 5 x wheel loaders (L180)

What changed?

- Recurring "pedal-to-the-metal" mentality:
 - Expensive in fuel and noise, but
 - Also tire life and component life.
- Utilized on-board data
 - Targeted the training
 - Validated the improvement
 - **Quantified** the improvement
 - \rightarrow Supports a fact-based business case, not opinion.



On-board Data

• Idle time and Engine speed

What is a typical idle time (%), for a loader?

- Idle time -30-55% typical on many sites.
 - ... Waiting on trucks, smoke breaks, lunch, shift change ... it adds up!

Example #3 – Idle Time Impact

Typical Case	•	Improved Case	<u>Example</u>
50% idle time		• 25% idle time	
 2,000 engine hr/year 		→ 1,500 engine hr/year	
ļ		ļ	
After 5 years:		After 5 years:	
 10,000 hrs 		• 7,500 hrs	± \$20,000
– warranty status?		– warranty status?	
- residual value?		- residual value?	
– engine/component life?		– engine/component life?	
Service Expense		 Service Expense 	
– 20 x 500hr services		 – 15 x 500hr services 	±\$ 9,000
(40 x if 250hr intervals)		(30 x if 250hr intervals)	
Operating Expense		Operating Expense	
– Fuel burn?		– Fuel burn: 1500 gal less?	±\$ 6,000
		= The difference \$??	= \$35,000+

Example #4 - Recycling yard 3 x Excavators (EC290)

- Working with grapples, busy jobsite, 3 shift operation
 - Remote-monitoring showed **30% idle time**
- The owner made a trial **operator incentive plan**:
 - Share any fuel savings over a 90 day period.

• Results:

15% reduction in idle time

 \rightarrow saved 3 gal/machine/day period.

 \rightarrow saved 3 gal/machine/day \rightarrow 810 gallons saved over the test

Reduced max engine RPM and utilized the auto-idle feature

 \rightarrow saved 5 gal/machine/day \rightarrow 1350 gallons saved over the test period.

• Total = 2,160 gallons saved over 90 days → \$8,640 saved (\$4.00/gal)

- \rightarrow extrapolate to 1 year = \$34,560
- \rightarrow extrapolate to 5 yrs = \$172,800.

Conclusions

• Expensive technology isn't necessary to save fuel

Optimize operator performance, TODAY

 \rightarrow continuous training, monitor data and evaluate.

 \rightarrow a little training \$ can save a lot \$\$ in fuel.

→ Make an ROI!

- In the training examples, savings potential per unit over 5 years:
 - Ex #1 \$48,000 saved per unit
 - Ex #2 \$64,000 saved per unit
 - Ex #3 **\$ 57,600** saved per unit.

... in fuel alone. Plus tires and other benefits . . .

• How does this compare to your annual training budget??

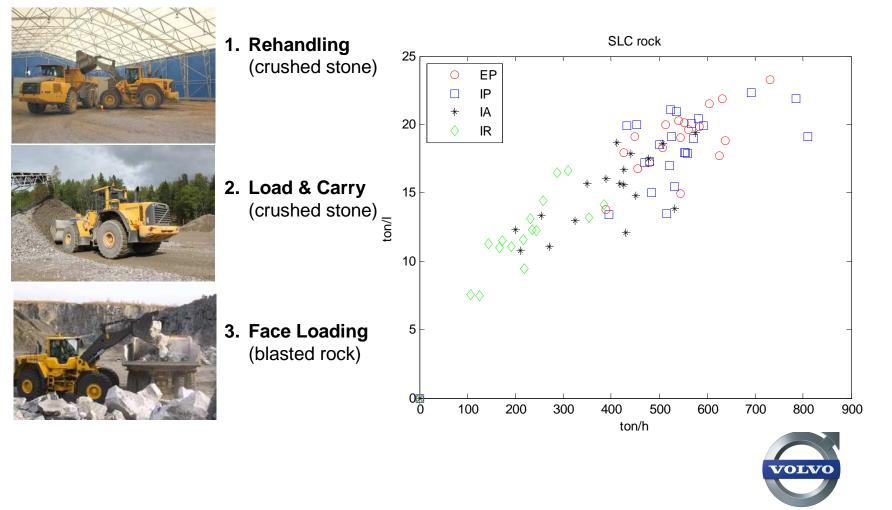
<u>But . . . ?</u>

- "My operators are all professionals . . ."
 - "They get training whenever they need it . . ."
 - "I can rely on them to know what is best . . ."
 - "My guys have 20 years experience. They've seen it all . . ."
 - "We train every year . . ."

Separate Fact from Opinion!

Volvo Operator Evaluation 2012

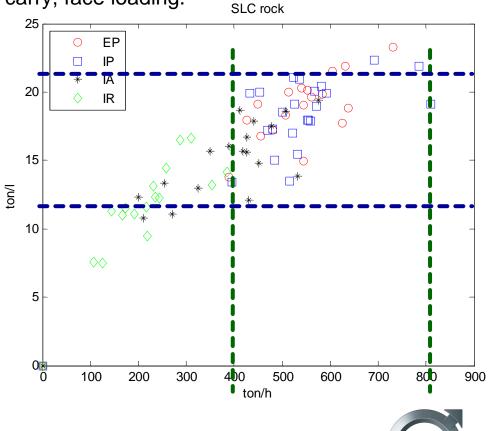
- •Comprehensive, empirical study on behavior, variability, and outcomes
- •Tested 73 operators, classified in 4 skill levels:
 - Novice, average, inside professional, external professional.
- •MetricsProductivity, fuel efficiency, and performance in wheel loader 3 applications.



Load & Haul – Operator Efficiency Volvo Operator Evaluation 2012

• 73 operators : Novice, average, inside professional, external professional.

3 Quarry Applications Tested



Volvo Operator Evaluation 2012

- 73 operators : Novice, average, inside professional, external professional.
- 3 quarry applications: rehandling, load & carry, face loading.

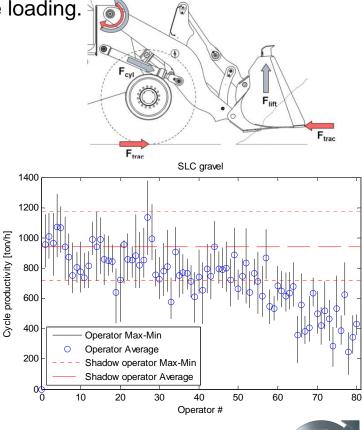
Some Conclusions I

- A. Between 'novices' and 'professionals':
 Productivity varied as much as 700%
 Fuel efficiency varied as much as 200%
- B. <u>Excluding</u> 'novices':
 - Productivity still varied as much as 300%
- Fuel efficiency still varied as much as 150%C. Strong linear relation between
 - experience and results
 - More experience (trained) = better results.
- **D.** Variability within 'professionals' <u>only</u>!
 - Productivity varied over 100%
 - Fuel efficiency varied over 70%.

Volvo Operator Evaluation 2012

- 73 operators : Novice, average, inside professional, external professional.
- 3 quarry applications: rehandling, load & carry, face loading.

Some Conclusions II


- E. Fuel efficiency
 - Filling the bucket is most critical
 - \rightarrow fuel burn, fill factor.

F. Value of experience varies with application

- Face loading most affected → fill factor and time
- Load & carry strongly affected (same reasons)
- Rehandling least affected (easy to fill bucket)
- G. Results can vary, a lot, for an individual operator
 - Productivity can vary +/- 10%
 - Fuel efficiency can vary +/- 15%

[END 1st portion]

Load & Haul – What can you affect "tomorrow"

Course Purpose

- Quick hitting ideas to Improve productivity or lower costs of your current mobile fleet.
- Important This is an open <u>dialogue</u>, not a lecture.

Goal

 Take home at least 1 idea for basic but significant improvement in your operations.

Load & Haul – What can you affect "tomorrow"

Conclusion

•**Prices** \rightarrow Moving in the right direction

•**Cost** \rightarrow Moving also, which direction?

 \rightarrow with higher fluctuation.

Managing Costs - Key to:

•Business viability ?

Competitive advantage ?

Ways to improve operationally

- •Change what you do,
- Change how you do it,
- •Change what you **use** to do it.

 Focus for "tomorrow" or the long(er) term.
 Optimize operations.

Example #5 – Truck Loading

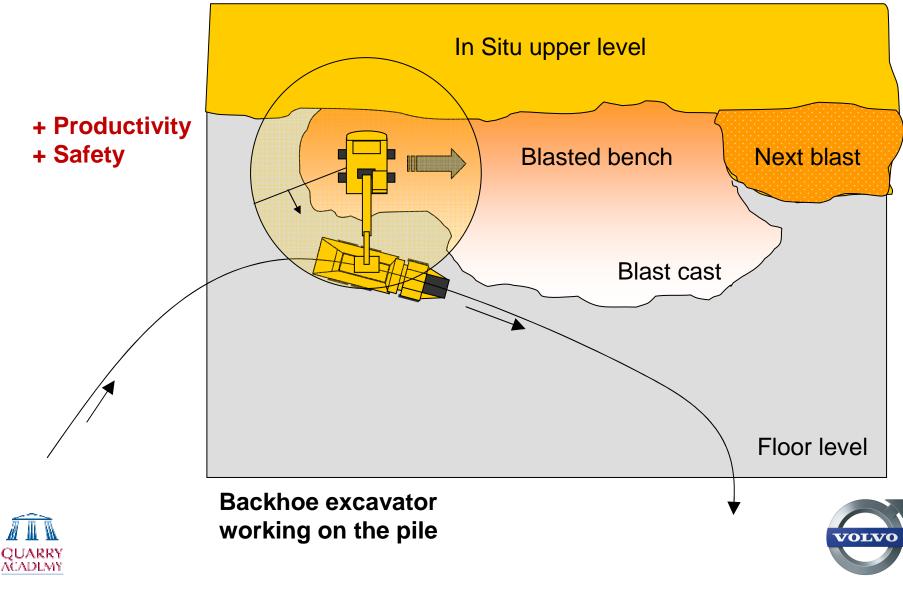
Example #5 – Truck Loading

As shown on video

Max Production (approx) *

- 23 trucks/hour
- 920 tons/hour (835 tph)
 - * 30 second spot time.

What If spot = 15 seconds? Max Production (approx)


- 26 trucks/hour
- 1040 tons/hour (943 tph)
 - → 13% improvement

+120 ton/hr x 8 hr/day = +960 ton/day = \$ _

Example #5 – Truck Loading

Example #5 – Truck Loading

 Backhoe excavator working on the pile

+ Productivity + Safety

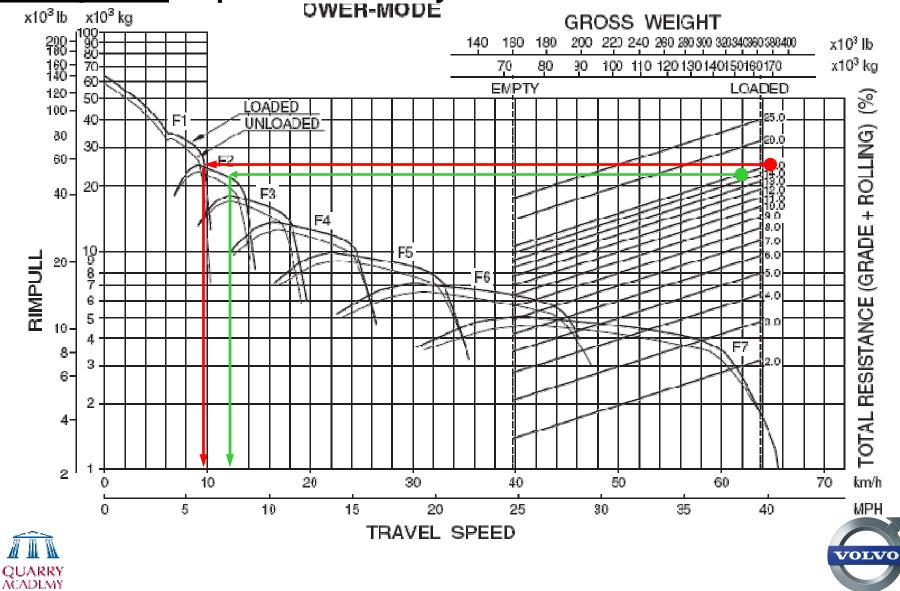
15 second spot time <20 second load cycle

Example #6 – Optimal Truck Payload

• How many passes is best?

Example #6 – Optimal Truck Payload

- **Coal mine**, poor weather conditions
 - Fleet of 90t rigid dump trucks
 - 15.5 yd³ face shovel, poor digging/fill factor
 - 5 pass loading, slight overload
 - 1.2 mile main ramp out of pit
 - 10% grade + 5-7% rolling resistance.
- Truck Fleet Issues
 - Operating costs
 - Unscheduled downtime.



Example #6 – Optimal Truck Payload

Payload

Example #6 – Optimal Truck Payload

Proposed Solution

•4 full pass to 88 ton payload (vs. 5 lite passes to 101 ton).

Results

•Faster cycle time by 12%

•Dramatically less time on grade, utilizing 2 gears instead of one.

•Despite lower payload, unit truck production the same (99%).

Potential Upside

Higher shovel production
→ more fleet production potential.

Case A
5 pass

101

le Time	min	min
e	2.7	2.2
pit floor	1.0	1.0
main ramp	13.3	10.0
top road	2.0	2.0
ip	1.5	1.5
top road	2.0	2.0
main ramp	7.0	7.0
pit floor	1.0	1.0
e	0.5	0.5
Total	31.0	27.2
	e pit floor main ramp top road p top road main ramp p top road main ramp p pit floor pit floor p	pit floor 1.0 main ramp 13.3 top road 2.0 p 1.5 top road 2.0 pit floor 1.5 top road 2.0 p 1.5 top road 2.0 point floor 1.0 pit floor 0.5

Т

88%

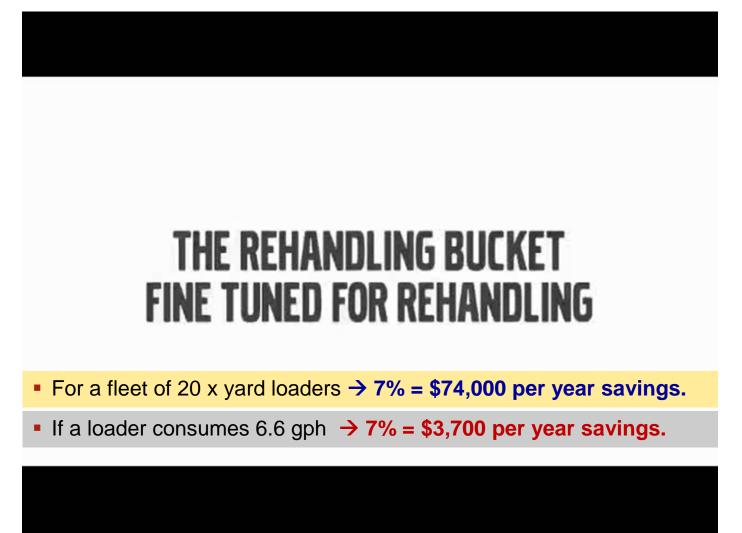
88

Unit Truck Production		
Cycles/50 min hour	1.61	1.84
Unit Production (Tph)	162.9	161.9
		99%

Theoretical Shovel Production	on		
Trucks/Hour Capacity	15	19	
Hourly Production (Tph)	1,239.0	1,340.0	VOLVO
		108%	

Example #7 - The Impact of Attachments

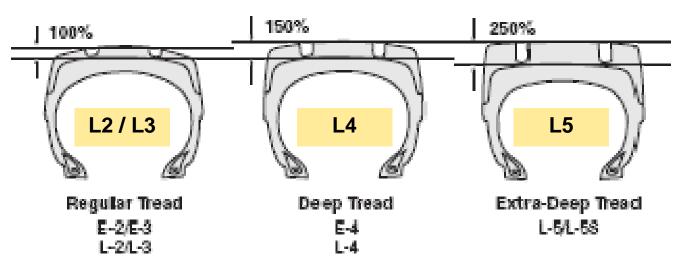
Consider Yard Operations


•Loading crushed stone from a stockpile

- Rehandling = a unique application
 - Old(er) machines, often with a GP or rock bucket?

→ A purpose-built re-handling package = 7%+ efficiency vs. GP bucket.
QUARRY
QUARRY

Example #7 - The Impact of Attachments

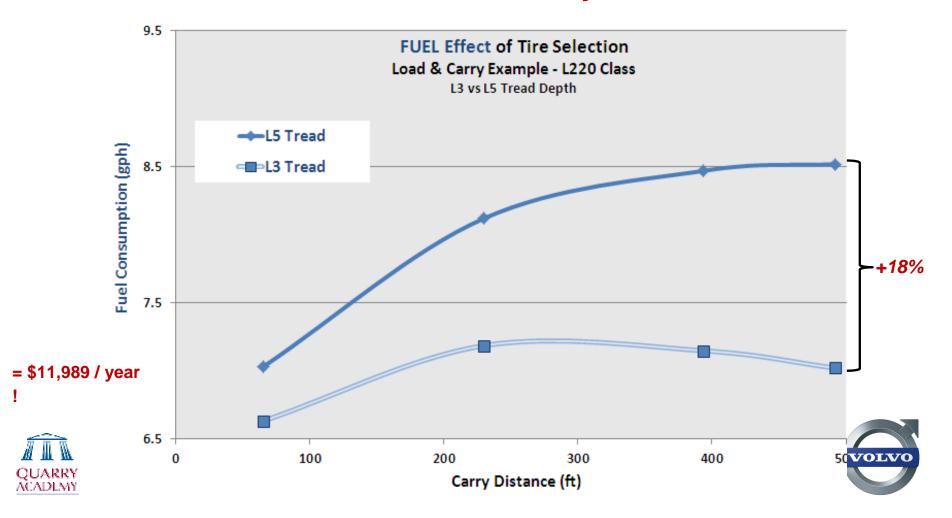


Example #8 - The Impact of Tires

Match the Tire to the Job

•Tread pattern, tread depth, rubber compound.

Consider Load & Carry


- •Which is 'right' for this job?
- •What's the cost of misapplication?


Example #8 - The Impact of Tires

Match the Tire to the Job – Load & Carry

Example #8 - The Impact of Tires

Match the Tire to the Job – Load & Carry

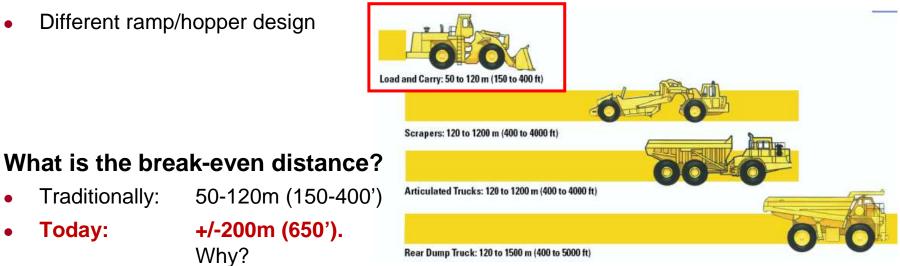
Example #9 – Operational Layout

+/-200m (650').

Why?

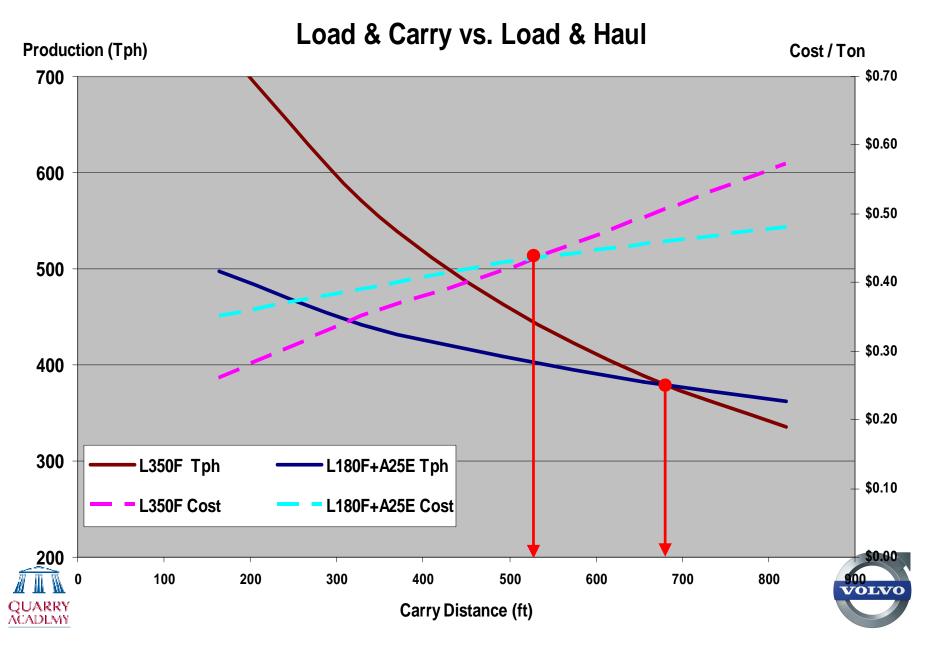
Load & Carry vs. Load & Haul \rightarrow Do you need trucks?

Potential Benefits


- Less operators, less traffic
- Better utilization

Traditionally:

Today:


Different ramp/hopper design

Last Example! – Operational Layout

Purchasing Criteria

- Do you test or demonstrate?
- It can pay to do some homework ...
- A little can mean a lot. Do the math!
- Example:
 - 825 ton per year
 - 1 year (2,000 hr)

Pit Loading	Loader	Loader	Loader	Loader
Test Results	A	B	C	D
Production (Tph)	975	883	848	865
	100%	91%	87%	89%
Consumption (gph)	15.3	19.4	16.8	23.7
Efficiency (Tpg)	63.9	45.6	50.6	36.6
	100%	71%	79%	57%

Example: 825 Tph	Loader A	Loader B	Loader C	Loader D
Gallons Consumed	25,834	36,197	32,615	45,142
Annual Cost	\$ 103,335	\$ 144,789	\$ 130,459	\$ 180,568
Difference		\$ 41,454	\$ 27,124	\$ 77,232

Final Conclusions

Cost efficiency

- Fuel consumption is key
- Invest in your operators it's worth it!
- Leverage monitoring data
- Continuous, systematic training

Optimize operations

- Traffic pattern fundamentals
- Loading match/payload matters
- Get the specs right for the job
 - cost vs. benefit

Future considerations

- Viability of load & carry for short hauls
- Test, if you can!

Thank You! Questions?

David Nus

Director, Global Mining & Aggregates <u>david.nus@volvo.com</u> M: +1 828.301.7654

