Stages of downsizing rock

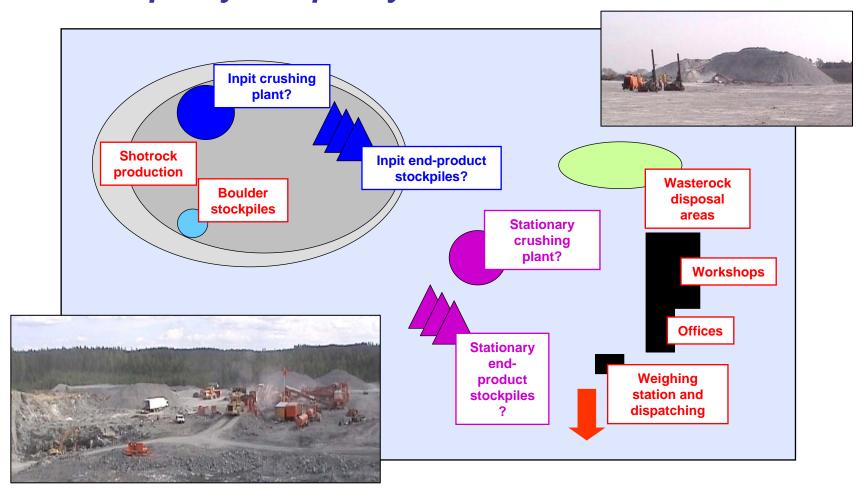
- property location and relationship to neighbours
- rock mass properties versus potential aggregate quality and waste percentage
- pit planning and design

- inpit operations drilling blasting loading hauling
- fleet maintenance
- safety issues
 dust & noise
 flyrock
 airblast
 ground vibrations
 accidents

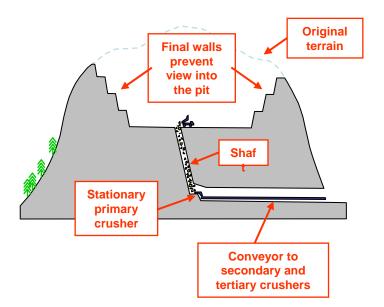
- crushing, shaping and screening operations
- mobile versus stationary crusher plants
- dispatching end-products
- end-product cost, quality and pricing

Stages in the life of a quarry

- market studies of aggregate requirements and price levels
- exploration and feaseability studies
 - geological mapping and terrain modelling
 - **technology assessment and profitability analysis**
- planning and development
 - **mining rights**
 - permits, Environmental Impact Statements, encroaching urbanisation, ...
 - **I** financing
 - Example 10 construction of plants, selection of equipment and transport systems, ...
 - development for exploitation (roads, opening benches and ramps, drainage, shafts, ...)
- exploitation
 - **Inpit production**
 - **processing and dispatching**
- · decommissioning and reclamation
 - I restoring the quarrying area to an acceptable state of safety & environmental condition

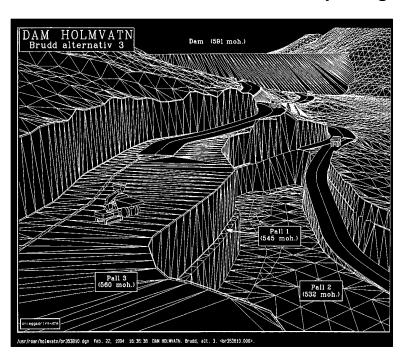


General quarry and pit layout alternatives



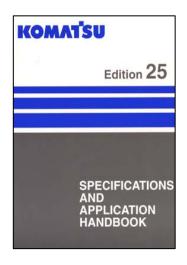
Quarry and pit layout solutions

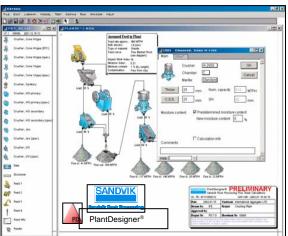
- mountain tops
- mountain slopes
- developing industrial estates
- flat terrain
- UG quarries in urban areas

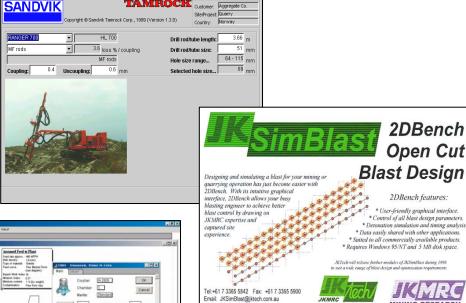


Pit planning and design

- 3D CAD capability for bench excavation scheduling and computation of volumes
- bench, roadway, dam and water-table, tip or stockpile localization
- overall quarry drainage design
- combined 3D CAD and aerial photography visualisation of pit, roadways or rockfill dam







Quarry process planning and equipment selection tools

- pit slope stability
- drilling operations
- blasting operations
- loading and hauling operations
- crushing and screening operations
- stockpiling
- dispatching and transport

Wehsite: www.iktech.com.au

Today's enabling technologies for operations optimization

Pit planning and layout

- 3D terrain modelling
- geological mapping

Pre-blast

- marking of drill patterns or GPS guided feed collar positioning device
- measurement-while-drilling, MWD
- sampling of cuttings
- 3D drill patterns by combining laser scanning of highwalls and drill-hole deviation measurements
- actual charge weight per hole

During blast

- velocity of detonation, VOD
- high speed videos
- ground vibration monitoring
- air blast monitoring

Post-blast

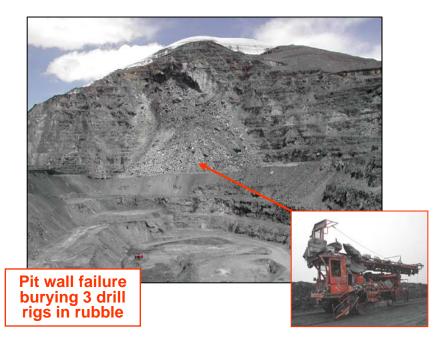
- shotrock fragmentation photo image analysis
- muckpile profiles throw, heave and swell
- monitoring of load & haul operations
 - bucket load, payload, loading time, haul travel times, tip time, ...
- online vehicle condition monitoring

Crushing and screening

- continuous feed flow
- monitor power consumption and capacities
- continuous weighing
- continuous video image analysis
- metal parts detection

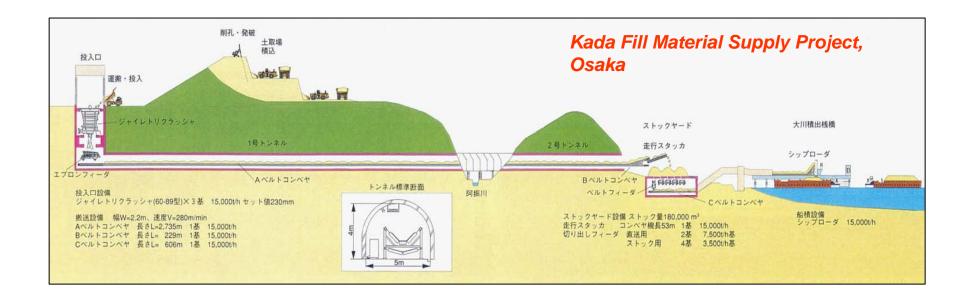
Stockpiles, aggregate quality & dispatching

- laser profiling of stockpiles
- aggregate cubicity
- aggregate micro-fracture density
- weighbridges and billing



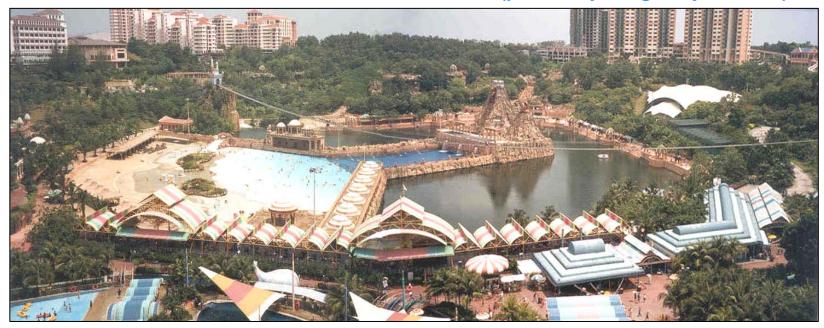
Safety issues of inpit operations

- pit planning and operations supervision
- safety consciousness of workforce
- operator hazard training
 - => minimum occurrence of accidents



Dispatching and transport of aggregates

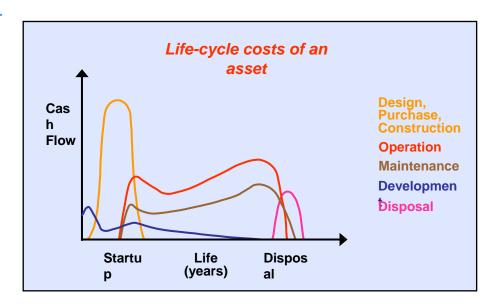
- Medium sized quarries
 - highway truck transport to local markets for distances up to 100 km depending on quality
- Super quarries
 - **ship** transport to export markets
 - **I** rail or barge transport to metropolitan markets



Alternative solutions for quarry and pit end-usage

- housing and industrial development areas
- garbage disposal and biogass production
- toxic waste disposal
- recreational development areas

Sunway Lagoon Resort, Kuala Lumpur (previously Sungeiway Tin Mine)



Long-term fiscal planning and investment evaluation

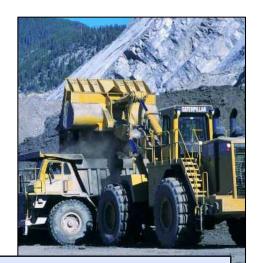
- local market analysis as to annual saleable volumes and price levels
- property assessment
- cash-flow analysis and quarry life time costs
- investments into pit development and production equipment
- especially investments into materials transport equipment vary with quarry and pit layout:
 - shaft to stationary primary crusher
 - truck transport to stationary primary crusher
 - in-pit mobile primary crusher
 - conveyor transport to secondary crusher
- end-usage of mined out pits

Operational targets for aggregate producers

- · low-cost producer in markets with flatrate end-product pricing
- high end-product quality producer in markets with premium end-product pricing

Typical price levels for aggregates

Product	Fraction (mm)	Price _{VAT} (EUR/tonnes)		
Wearing course	0 - 16	7.9	A.	
Base course	0 - 32	6.7	- Symmunas	
Road base	0 - 150	5.8		
Asphalt	0 - 16	7.9		
	5 - 11	10.0		
Concrete	8 - 16	9.0		
	16 - 32	8.8		
Transport		0.035 EUR/t & km		


Lafarge Exshaw Cement Quarry

Annual production 1.6 mill. tonnes

Rock types limestone / dolomite

Density 2.6 g/cm³

Primary gyratory crusher 54" / 1370 mm - opening 150 mm

Base Line 1997

Bench height 11 m

Drill-hole diameter Ø200 mm

Drill pattern 6 x 7 m² (rectangular)

Sub-drill 1.5 m

Stemming 6.0 m (0 - 19 mm matr.)

Burden delay 25 ms/m Spacing delay 6.0 ms/m

Explosive ANFO (1.05 g/cm³)

Charge per shothole215 kgPowder factor 0.47 kg/bm^3 Back-breakup to 11 mShotrock fragmentation $d_{90} = 630 \text{ mm}$

Secondary crusher 995 tph

Finer Fragmentation 1998

Bench height 11 m

Drill-hole diameter Ø102 mm

Drill pattern 3 x 3.5 m² (staggered)

Sub-drill 1.0 m

Stemming 2.0 m (with stem plugs)

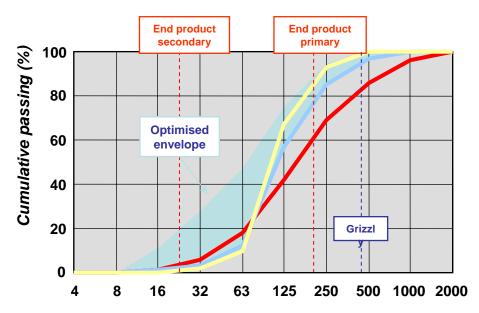
Burden delay 31 ms/m Spacing delay 7.1 ms/m

Explosive ANFO (0.95 g/cm³)

Charge per shothole 78 kg

Powder factor 0.67 kg/bm^3 Back-breakavg. 2.9 mShotrock fragmentation $d_{90} = 300 \text{ mm}$

Secondary crusher 1150 tph


Crushing plant 30% power reduction

Lafarge Exshaw Cont.

Fragment dimension H (mm)

		Base Line 1997	Finer Frag. 1998	Nonel 2000	Electronic 2000
Drill & Blast	Shothole diameter, mm	200	102	102	102
	Drill pattern, m2	6 x 7	3 x 3,5	3,5 x 3,5	3,5 x 3,5
	ANFO density, g/cm3	1,05	0,95	1,05	1,05
	Powder factor, kg/bm3	0,47	0,67	0,63	0,63
Firing	Initiation system	NONEL	NONEL	NONEL	Daveytronic
	Downhole delay, ms		500	500	None
	Inter-hole delay, ms	42	25	17	17
	Inter-row delay, ms	150	92	92	92
Shotrock Fragmentation	90% passing - d90, mm	630	300	351	220
_	Grizzly retain (> 480 mm), %	18	5	5	0
Ground Vibrations	Distance, m	375	375	280	270
	Peak particle velocity, mm/s	> 8	4,75	6,97	4,51
	Main frequencies, Hz	9 - 21	14 - 21	10 - 21	11 - 39
Plant Production	Peak - 1 hour average, tph	834	980	980	1050
	Power consumption, kW	2259	1808	1979	1858
	Specific energy, kWh/t	2,71	1,84	2,02	1,77
	3 day average, tph	625	725	676	722
	Power consumption, kW	1645	1342	1370	1283
	Specific energy, kWh/t	2,63	1,85	2,03	1,78

Mt. Coot-tha Quarry, Brisbane

Annual production 0.4 mill. tonnes

Rock type hornfels with fissure spacing ~ 0.5m

UCS 200 MPa
Density 2.73 g/cm³

Primary jaw crusher 42" x 48" / 1065 x 1220 mm²

Quarry field test program

Bench height 14 m

Drill-hole diameter Ø102 mm

Drill pattern 3.5 x 4.0 m² (stagg.)

Sub-drill 0.5 m
Burden delay 18.6 ms/m
Spacing delay 4.3 ms/m

Explosives Watergel (1.2 g/cm³)

Charge per shothole120 kgPowder factor 0.61 kg/bm^3 Shotrock fragmentation $k_{50} \sim 224 \text{ mm}$ Primary crusher300 tonnes/hour

Oversize (L = 1200mm) ~ nil

Current program

Bench height 14 m

Drill-hole diameter Ø 102 mm

Drill pattern 3.8 x 4.3 m² (staggered)

Sub-drill 0.5 m

Burden delay 17.1 ms/m Spacing delay 5.8 ms/m

Explosives Watergel (1.2 g/cm³)

Charge per shothole 120 kg

Powder factor 0.52 kg/bm^3 Shotrock fragmentation $k_{50} \sim 269 \text{ mm}$ Primary crusher280 tonnes/hour

Oversize (L = 1200 mm) 5 - 7 %

