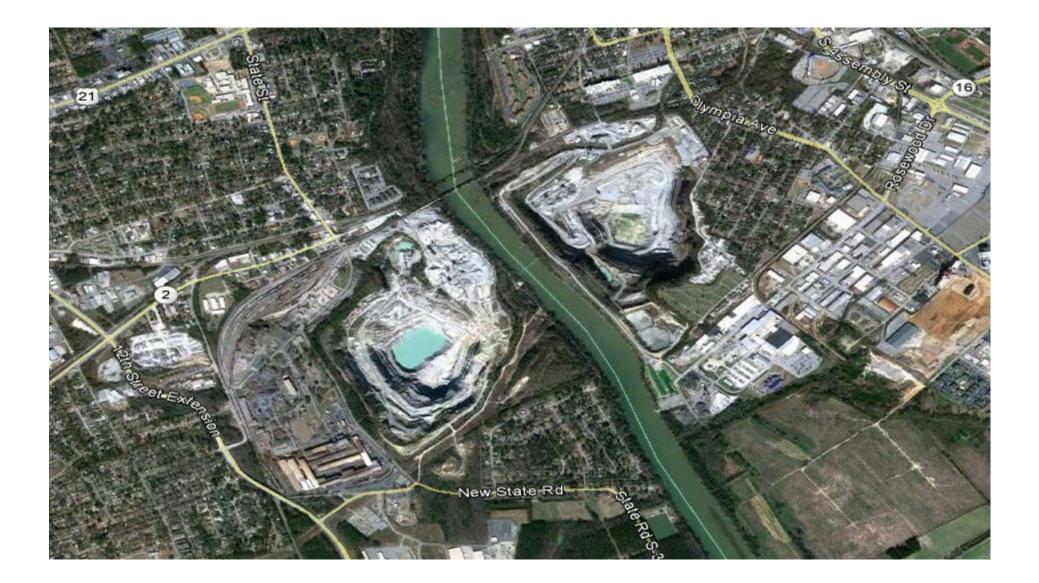
QA 105 - Understanding Fundamentals of Vibration Control

Stweart Brashear

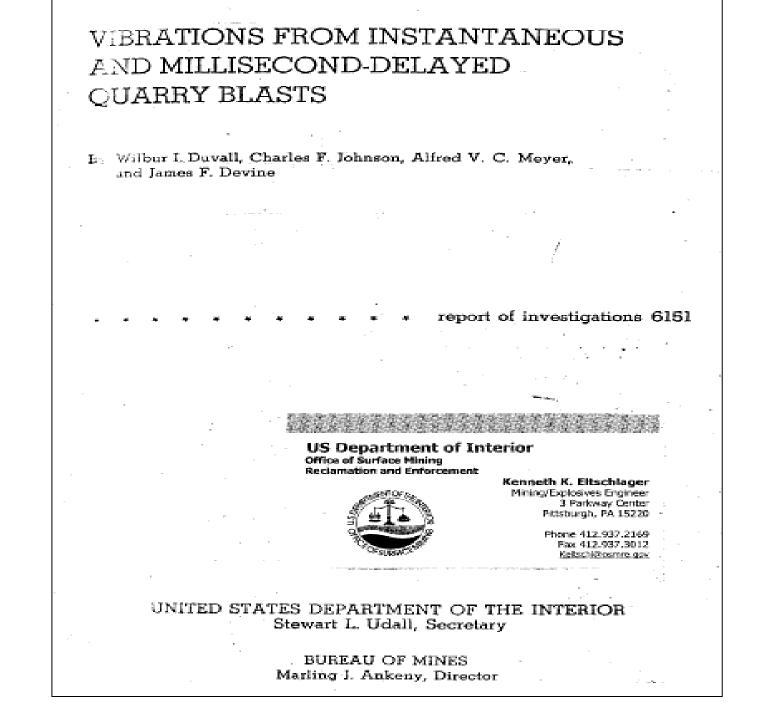
Improving Processes. Instilling Expertise.


Common Blasting Issues

- Productivity
 - Minimizing drill/blast cost
 - Maximizing production
 - Reducing oversize/fines
 - Adjusting drill/blast program to optimize total productivity
- Community Impact
 - Reduce complaints
 - Minimize barriers to expansion/permit renewal
 - Reduce/eliminate litigation costs
- Community Impact may represent most serious challenge to an operations long term viability

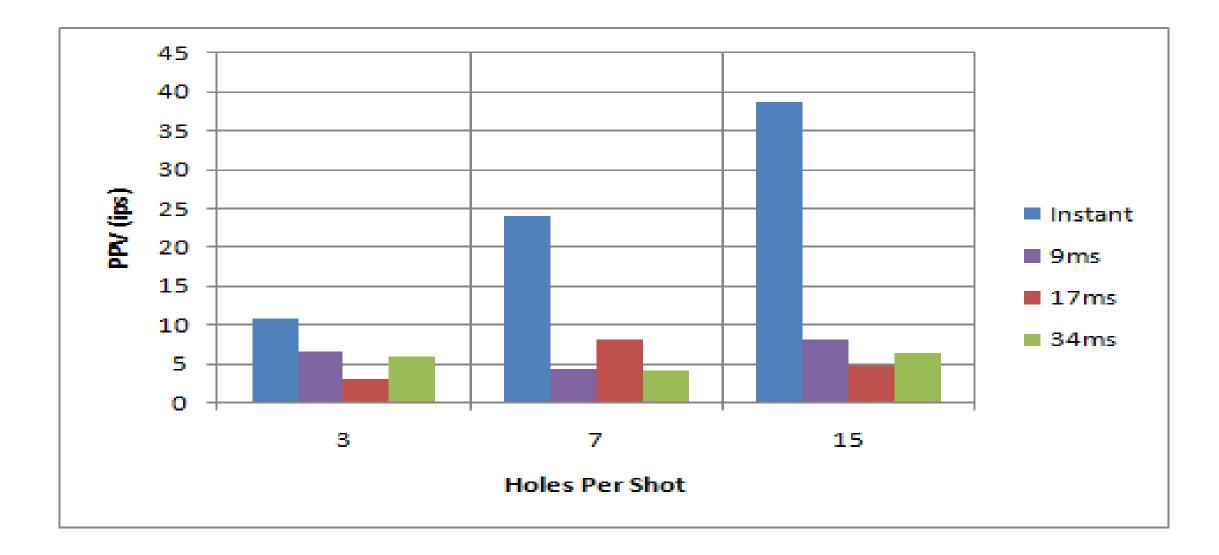
Minimizing Community Footprint

- Reduce community perception of blasting
 - Reduced overpressure
 - Reduced ground vibration amplitude
 - Improved frequency spectra
- Technology available to meet needs
- Can be impacted by regulatory barriers
- Can be negated by lack of understanding of process


Improved Blasting Designs

- Electronic Initiation Systems
 - Precision
 - Programmability
 - Flexibility
- Vibration prediction processes
 - Active vibration cancellation
 - Real time analysis
 - Alternative timing sequences
- Impact can be negated or blocked by regulatory limits based on older technology

Where It All Began


USBM RI - 6151

- Published in 1963
- Measured vibration from single row shots at a single location in Iowa
 - 3 hole shots
 - 7 hole shots
 - 15 hole shots
- Holes detonated with Det Cord (no down hole dets)
- Holes delayed using 9ms and 17ms surface delays
- Delayed shots shows significant vibration reduction
- Scatter for electric seismic caps used was +/- 1 ms
- 8ms was listed as minimum delay

Shot	Number of	Delay interval,	Charge/delay,	Particle-velocity intercepts		
	holes	milliseconds	pounds	Radial	Vertical	Transverse
				in/sec	in/sec	in/sec
14	1	0	100	-	2.15	
4	1	Ο.	200	4.03	2.88	0.94
9	1	0	200	3.62	3.70	.98
18	1	0	200	5.24	3.48	2.39
10	1	0	200	4.24	3.44	1.12
2	3	· 0	600	10.8	7.76	2.28
8		0	1,400	23.9	17.9	3.74
12	15	0	3,000	38.6	22.1	8.99
19	37	9	200	6.66	3.72	1.93
20	7	9	200	4.53	4.35	2.35
21	15	9 \	200	8.24	6.33	3.60
3	3.7	17	200	2.99	3.16	2.65
5		17	200	8.10	7.04	2.42
11	15 3 7	17 .	200	4.83	4.61	2.14
6	3.	34	200	5.81	3.90	1.45
7		34	200	4.14	3.06	1.30
13	15	34	200	6.41	4.71	1.61
27	13	- 17 /	800	14.4	12.3	3.79
32	21	17	1,218	18.2	12.7	4.83

So what did this tell us???

- 0 delay does not work !!!!
- 9ms was never the lowest ppv
- 17ms was not lowest ppv in all cases
- 34ms was not lowest ppv in all cases
- 0 delay ppv did not increase proportionally to charge weight increases.



Bulletin 656

BLASTING VIBRATIONS

AND THEIR EFFECTS ON STRUCTURES

By Harry R. Nicholls, Charles F. Johnson, and Wilbur L Duvall

۰.

-

BUREAU OF MINES

USBM Bulletin 656

- Published in 1971
- Not so much a research report but a summary of previous work
- Single row shots and simple multi row shots
- 0ms, 9ms, 17ms and 34ms delays
- Set vibration limit of 2.00 ips
- Used Scaled Distance to maintain safe blasting limits
- 8 ms criterion again implied based on previous research

Scaled Distance

$$SD = d/(wt)^{1/2}$$

Where:

d = distance to dwelling

wt = max charge per 8ms delay

What else does it say ????

- Electric Caps reduce vibration more compared to cord (accuracy)
- Geology, rock type and orientation effects vibration within Scaled Distance limits
- Seismographs, not scaled distance is recommended to insure safe blasting limits are maintained

Summary of Early Research

- Mostly simple, single row shots
- Simple delay timing achieved with surface delays
- 8 ms criterion simply because 9ms caps available
- No consideration of frequencies
- Based on two assumptions
 - As distance increases, vibration decreases
 - As charge weight decreases, vibration decreases
- Neither assumption is always true
 - Undershooting
 - waveguides

Scaled Distance

 $SD = D / W^{1/2}$

Where

SD = Scaled Distance D = Distance from the blast to structure (ft.) W = Maximum pounds per delay of detonated explosives

SMCRA 38CSR2-6.5.i. and West Virginia 199CSR1-3.6.h. stipulate minimum scaled distance factors or maximum allowable PPV to be used for the protection of structures. These requirements are:

Distance from blast to structure (ft.)	Scaled Distance factor	Maximum PPV allowed (ips)	
0 - 300	50	1.25	
301 - 5,000	55	1.00	
5,000+	65	0.75	

Report of Investigations 8507

Structure Response and Damage Produced by Ground Vibration From Surface Mine Blasting

By D. E. Siskind, M. S. Stagg, J. W. Kopp, and C. H. Dowding

UNITED STATES DEPARTMENT Cecil D. Andrus, Secretary

BUREAU OF MINES Lindsay D. Norman, Director US Department of Interior Office of Surface Mining Reclamation and Enforcement

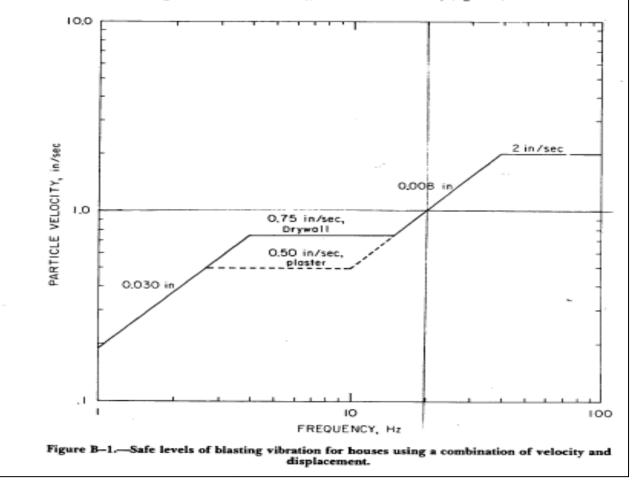
CARDINA -

Kenneth K. Eltschlager Mining/Blasting Engineer 3 Parkway Center Pittsburgh, PA 15220

> Phone 412.937.2169 Fax 412.937.3012 Keitschilkosmre.gov

RI - 8507

- Documented importance of frequency in structure response to blasting
- Created frequency based safe blasting limits
- Used regression to develop vibration prediction formulas
- Still promoted scaled distance concept


APPENDIX B.—ALTERNATIVE BLASTING LEVEL CRITERIA

Safe blasting vibration criteria were developed for residential structures, having two frequency ranges and a sharp discontinuity at 40 Hz (table 13). There are blasts that represent an intermediate frequency case, being higher than the structure resonances (4 to 12 Hz) and lower than 40 Hz. The criteria of table 13 apply equally to a 35-Hz and a 10-Hz ground vibration, although

the responses and damage potentials are very much different.

73

Using both the measured structure amplifications (fig. 39) and damage summaries (figs. 52 and 54), a smoother set of criteria was developed. These criteria have more severe measuring requirements, involving both displacement and velocity (fig. B-1).

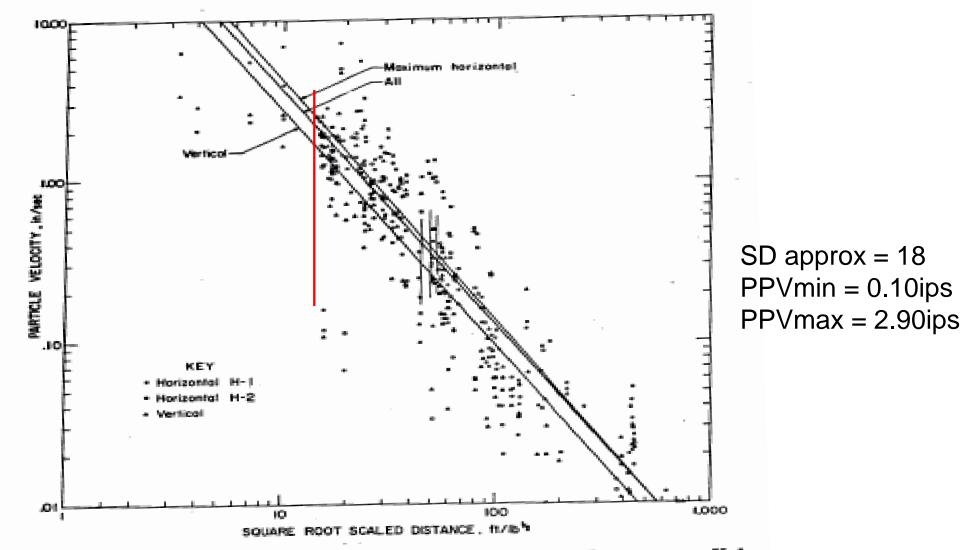


Figure 10.—Summary of ground vibrations from all surface coal mines. The component H-1 approximates "radial" and H-2 "transverse".

So where do we stand now ???

- RI 8507 provides documented, safe blasting criteria
- Still pays homage to scaled distance concept
- Predicted PPV using SD varies widely, not a good predictor at all

So where do we stand now ???

- How can we change SD to impact vibration?
 - Smaller hole size
 - Reduced pattern
 - 1 hole per "delay"
 - Decking
- Most have impact on cost
- Not very effective tool for reducing vibration
- Other options available

Vibration Control

Vibration Control

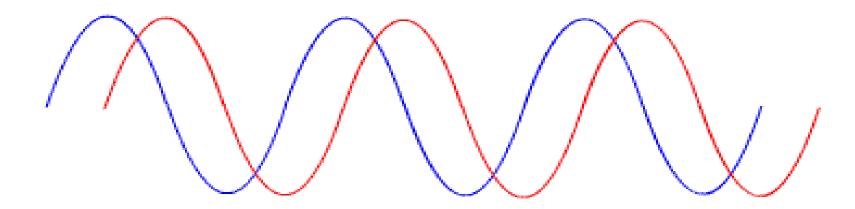
- Passive
 - Reduced charge weights per hole
 - Decking
 - Smaller patterns
 - Smaller hole diameter

Vibration Control

- Active
 - Linear Superpositioning
 - Established concept
 - Enhanced by accuracy of electronic detonators
 - Advanced by new concepts in software design

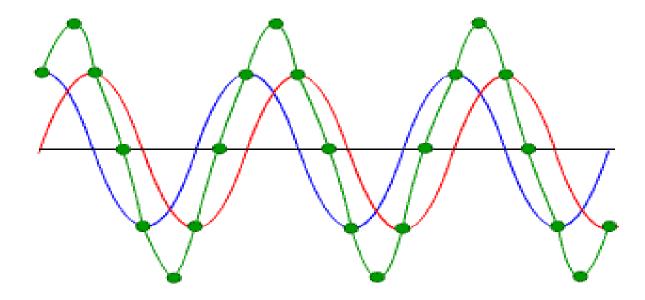
Linear Superpositioning

- Seismic Wave Interaction
 - Acts as sound waves in the ground
 - Compression waves
 - Lower frequency with distance
 - Waves can be influenced by other waves
 - To understand seismic wave interaction, we can look at simple sound wave interaction

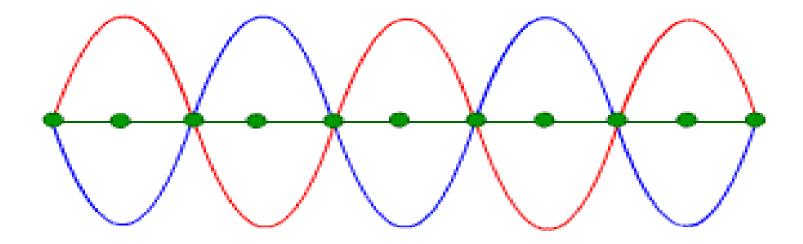


Sound can be represented by waves

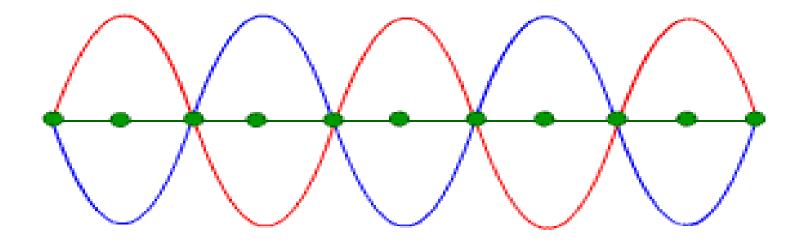
Simple sine wave for single sound frequency


When two similar sounds are combined that are only slightly out of phase...

One pure sound a fraction of a second after the next


We get a single sound almost twice as loud

Sum of two waves slightly out of phase


If the two sounds are perfectly out of phase....

Sum of waves equals zero sound

If the two sounds are perfectly out of phase....there would be no sound

Sum of waves equals zero sound

Critical Factors

- Determine phase delay to perfectly cancel waves
- The shape of the wave (wave period) determines delay that provides optimum cancellation

This concept has led to the development of active noise cancellation applications

- Headphones
- Automobiles
- Aircraft
- Heavy equipment

Toyota develops noise-cancelling system for cars

Toyota develops noise-cancelling system for cars

speakers and sensors located around the cabin.

Expanding on the same concept used in noisecancelling headphones, Toyota has developed a noise cancelling system for its Japanese-market Crown Hybrid that nearly eliminates <u>engine</u> sound within the passenger compartment. The system uses a complex system of microphones,

The same technology has been transferred to ground vibration control

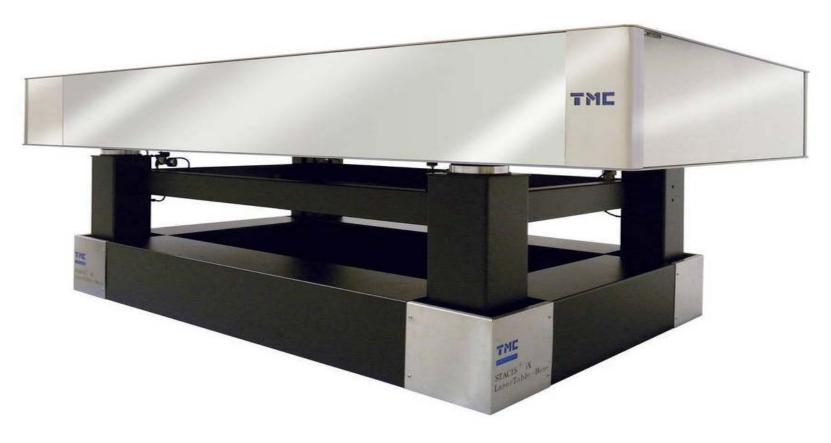
- Record "background" vibration
- Impact target with similar amplitude vibration out of phase
- Up to ten times more effective than traditional isolation systems

Semiconductor Manufacture

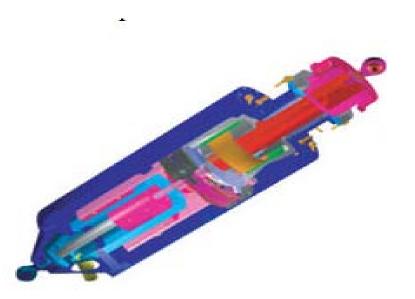
Electro-Damp[®] Active Vibration Isolation Systems

Electro-Damp® II Active Pneumatic Vibration Damping System

PEPS® II Digital Precision Electronic Positioning System


AccuDock[™] Precision Kinematic Docking System

Quiet Island[®] Sub-Floor Platforms and Supports



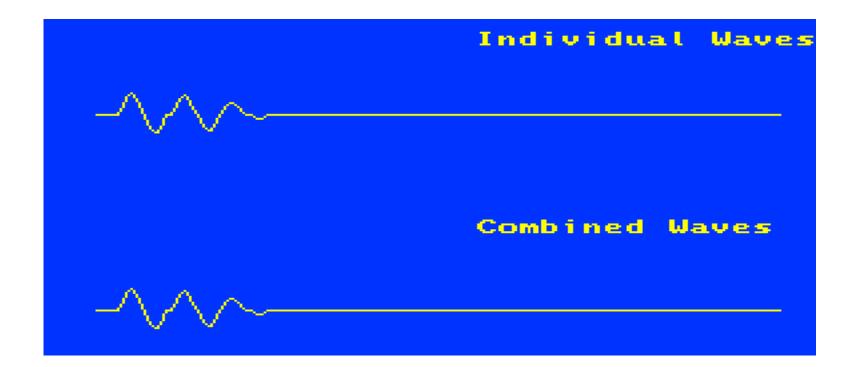
Tables for electron microscopes

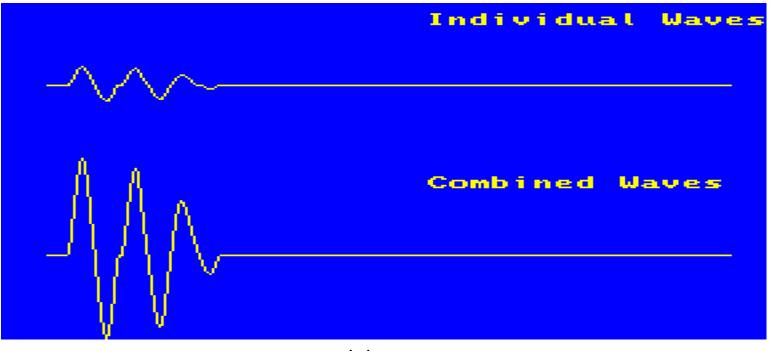
Active Vibration Cancellation

• In manufacturing, vibration is cancelled by using actuators to provide the outof-phase signal

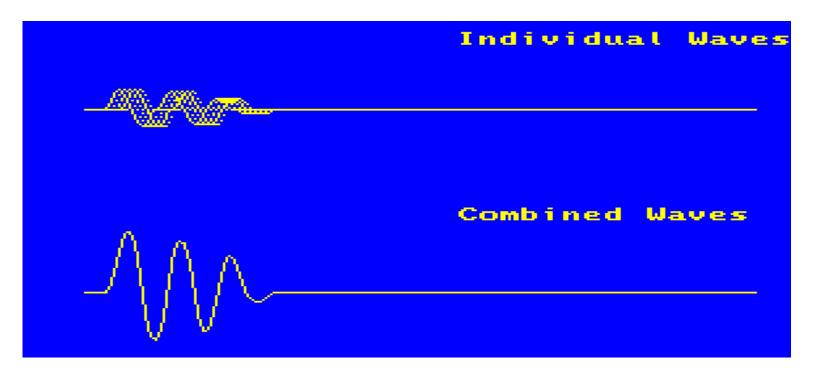
Active Vibration Cancellation

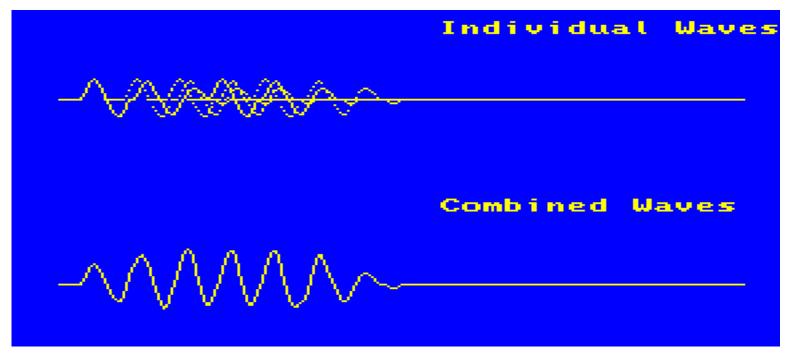
 In blasting we use explosive column detonations to cancel out vibrations from previous hole detonations



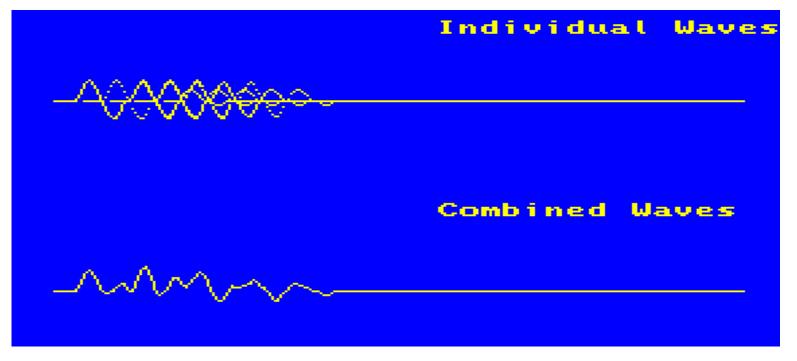

Signature Analysis Basics

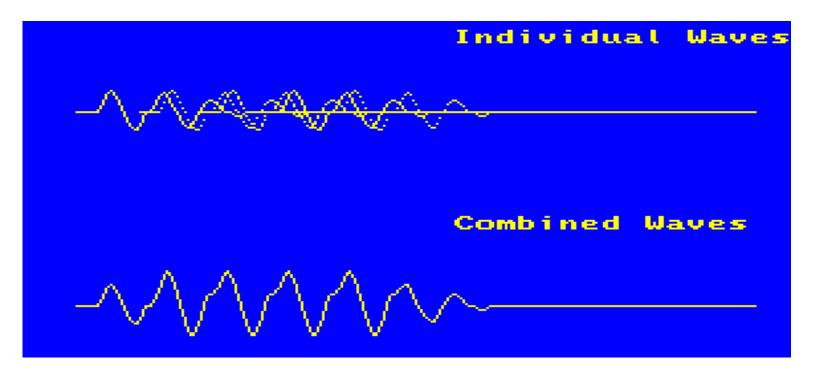
- Similarities
 - All require seismogram from a single hole
 - Waveform is digitized
 - Wave is used over and over to simulate multiple hole shots
 - Delays simulated by time lagging waves on x axis
 - Waves are summed to represent delayed multiple hole shots
- ALL require use of electronic detonators to be effective

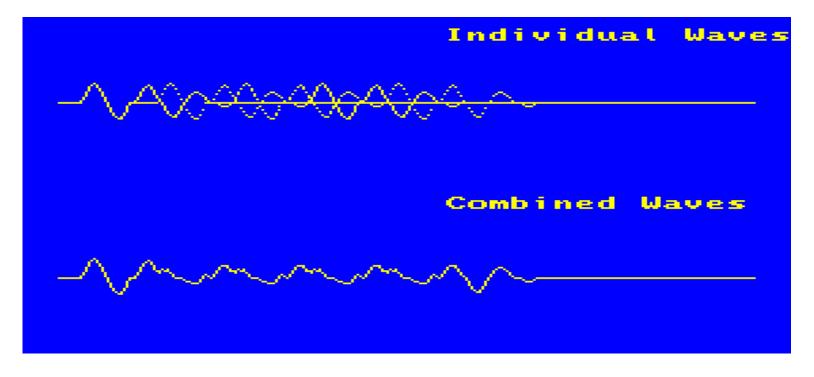


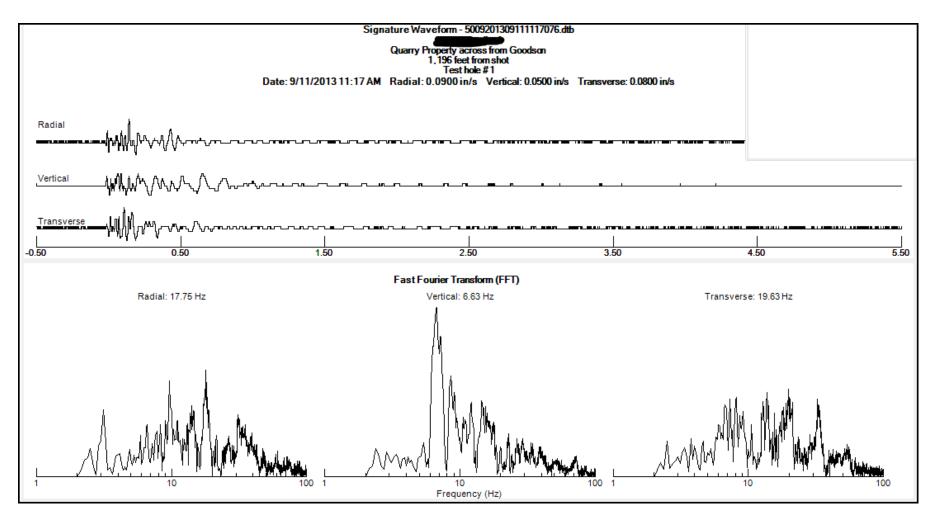


No delay









Differences Between Programs

- Number of seismograms used
- Generic signature wave from production blast
- Shot design metrics
 - Simple shots (holes and rows)
 - More complex designs rows, number of holes per row
 - Added complexity
 - Import precise hole locations (GPS)
 - Import seismograph locations (GPS)
 - Import hole loading metrics
 - Import rock properties
 - Import p-wave velocity
 - Utilize multiple signature holes
 - Utilize existing production shot data

Simple Linear Superpositioning

Simple Linear Superpositioning

Alpha-B	Blast - Eva	aluate De	lays					
				ĺ			Ca	ncel
	Row	Holes	Delay Between Holes		Delay Between Rows		Delay Between Decks	
	1	21					Number	0
	2	21	Starting Delay (ms)	10	Starting Delay (ms)	50	Starting Delay (ms)	0
	3	21	Ending Delay (ms)	25	Ending Delay (ms)	125	Ending Delay (ms)	0
▶*	4		Resolution (ms)	1	Resolution (ms)	10	Resolution (ms)	1
?							Accept	Close

Simple Linear Superpositioning

Hole	Row	Deck	Charges	Peak 🔺	Radial	Vertical	Transverse	Graphs	RHz	VHz	THz	FFT
11	50	0	3	0.239	0.225	0.181	0.239		3.00	2.25	2.38	
16	90	0	2	0.248	0.246	0.226	0.248		10.75	10.38	61.38	_Andhundalu _Andhundalu _Andhundalu
15	70	0	2	0.252	0.238	0.252	0.196		2.38	2.25	2.38	 1 10 100
15	80	0	2	0.254	0.254	0.227	0.222		2.38	2.25	2.38	_h.M.M. make h.M.M. make h.m.M. make 1 10 100
13	70	0	2	0.263	0.225	0.263	0.247		2.38	2.25	2.38	 1 10 100

Blast L	ocations						_ S	eismograph S	tations	-			
	Location 4	A					Г			UTM Nor	th	UTM West	Description
•	Bench 1						Þ	5009		39584	436.49	536863.77	near Goodson
	Bench 2							5010		39583	316.48	536898.92	near Hastings
	Bench 3							Campb	ell	3958	633.34	536852.33	Campbell
	Bench 4							Ferrell		3958	022.95	536312.75	Ferrel
	Bench 5							Good		39584	486.47	536946.35	Goodson
	Bench 6							Hastin	gs	39583	349.63	536934.62	Hastings
*								Lindsy		3958	885.46	536802.83	Lindsy
								Super		3958	587.87	536816.44	near Campbell
								Vitch		3957	882.64	536652.56	Ivy Vitch
								Wetmo	ore	3958	575.06	535947.27	Wetmore
							Ŀ	¥					
Upd Blast D	ata Blast		Holes	Total	Charge	Location		ls	UTM		UTM		
	No.			Weight	Weight			Signature	North		West	_	
•	36-12	11/14/2012 12:00 PM	33	15180		Bench 2	•			958236.6		572.51	
	37-12	11/28/2012 12:00 PM	85	8276		Bench 4	•			58468.43		309.42	
	1	1/9/2013 12:00 PM	35	19304		Bench 2	•			58303.33		617.43	
	2	1/21/2013 12:00 PM	73	12089		Bench 3	•			958446.4		345.66	
	6	2/15/2013 12:00 PM	21	11059		Bench 2	•			58292.28		626.51	
	8	2/19/2013 12:00 PM	1	412		Bench 2	•	v		58403.37		671.25	
	10	3/5/2013 12:00 PM	25	9964	398.6	Bench 3	•		39	58280.85	536	545.21	
	11	3/5/2013 12:00 PM	23	7192	312.7	Bench 1	-		39	58425.56	536	671.16	
	13	3/20/2013 12:00 PM	14	7250	517.9	Bench 2	•		39	58258.93	536	608.57	
	14	3/27/2013 12:00 PM	26	10060	386.9	Bench 3	-		39	58336.42	53	6572.1	

Blast No. DateTime 36-12 11/14/2012 12:00 PM 37-12 11/28/2012 12:00 PM 1 1/9/2013 12:00 PM
37-12 11/28/2012 12:00 PM
1 1/9/2013 12:00 PM
2 1/21/2013 12:00 PM
6 2/15/2013 12:00 PM
10 3/5/2013 12:00 PM
11 3/5/2013 12:00 PM
13 3/20/2013 12:00 PM
14 3/27/2013 12:00 PM
19 5/3/2013 12:00 PM
20 5/14/2013 12:00 PM
21 5/28/2013 12:00 PM
24 6/11/2013 12:00 PM
25 6/20/2013 12:00 PM
26 7/12/2013 12:00 PM
28 8/6/2013 12:00 PM
29 8/6/2013 1:00 PM
30 8/8/2013 12:00 PM
31 8/20/2013 12:00 PM
32 8/28/2013 12:00 PM
33 9/4/2013 12:00 PM
36 9/11/2013 12:59 PM
37 9/18/2013 12:00 PM
38 9/27/2013 12:00 PM

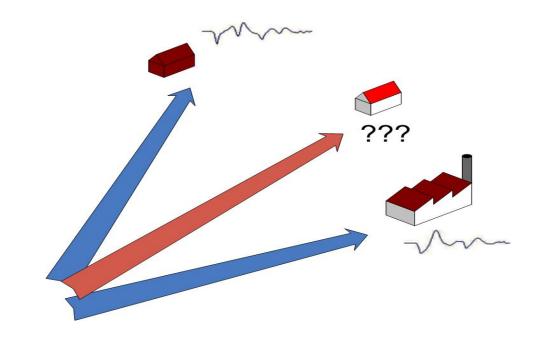
	Station		Distance Ds		Os Radial Vertical		Transverse Acoustic		Radial Hz	Vertical Hz	Transverse Hz	
Þ	Campbell	•	1158	64.9	0.195	0.17	0.21	116	39.0	34.0	39	
	Good	•	1089	61.1	0.101	0.134	0.125	114	27.0	34.0	27	
	Hastings	•	951	53.3	0.146	0.116	0.0857	118	37.0	30.0		
	Vitch	•	1525	85.5	0.046	0.028	0.044	121	27.0	49.0	24	
*		•										

AI	pha-Bla	st - Eva	aluate D	elays	;					X
									Car	ncel
		Row	Holes		Delay Between Holes		Delay Between Rows		Delay Between Decks	
		1	16						Number	0
		2	10	Ξ	Starting Delay (ms)	10	Starting Delay (ms)	50	Starting Delay (ms)	0
		3	10		Ending Delay (ms)	25	Ending Delay (ms)	125	Ending Delay (ms)	0
	۶.	4	12	Ŧ	Resolution (ms)	1	Resolution (ms)	10	Resolution (ms)	1
									Accept	Close

Hole	Row	Deck	Charges	Peak 🔺	Radial	Vertical	Transverse	RHz	VHz	THz
15	80	0	2	0.298	0.229	0.298	0.257	2.25	6.25	2.00
11	50	0	4	0.311	0.291	0.253	0.311	2.25	2.00	2.00
20	50	0	2	0.311	0.311	0.307	0.286	2.25	2.00	2.00
17	80	0	3	0.314	0.283	0.314	0.277	60.75	2.00	2.00
17	90	0	2	0.316	0.269	0.226	0.316	9.50	2.00	56.25
11	110	0	2	0.321	0.27	0.321	0.264	9.50	7.00	6.75
13	70	0	2	0.327	0.291	0.327	0.256	2.25	6.50	2.00
22	60	0	2	0.328	0.246	0.27	0.328	2.25	2.00	2.00
16	70	0	3	0.329	0.308	0.282	0.329	2.25	6.50	2.00
22	120	0	2	0.33	0.323	0.33	0.31	42.50	7.00	6.75
13	60	0	3	0.332	0.302	0.332	0.326	2.25	6.50	2.00
21	80	0	2	0.333	0.309	0.311	0.333	48.75	6.50	49.25
22	100	0	2	0.335	0.335	0.304	0.29	9.75	6.25	46.50
16	60	0	2	0.337	0.295	0.337	0.328	2.25	6.50	2.00
11	60	0	3	0.342	0.342	0.306	0.287	2.25	2.00	2.00
17	60	0	2	0.342	0.255	0.269	0.342	2.25	6.50	2.00
22	80	0	2	0.345	0.337	0.266	0.345	39.00	6.50	45.50
21	90	0	2	0.346	0.289	0.242	0.346	48.00	6.50	45.50
18	80	0	2	0.348	0.289	0.206	0.348	2.25	2.00	54.25
23	100	0	2	0.353	0.353	0.307	0.319	41.00	40.75	44.00
10	50	0	3	0.354	0.274	0.354	0.278	2.25	2.00	2.00
11	100	0	2	0.356	0.356	0.298	0.323	89.50	7.25	8.00
14	120	0	2	0.356	0.356	0.35	0.296	75.00	6.50	6.50
10	100	0	2	0.358	0.205	0.358	0.25	9.50	7.25	8.00

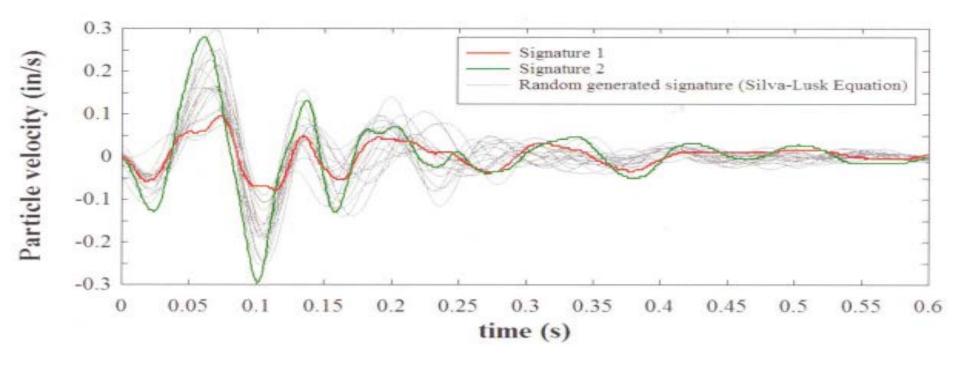
Advanced Techniques

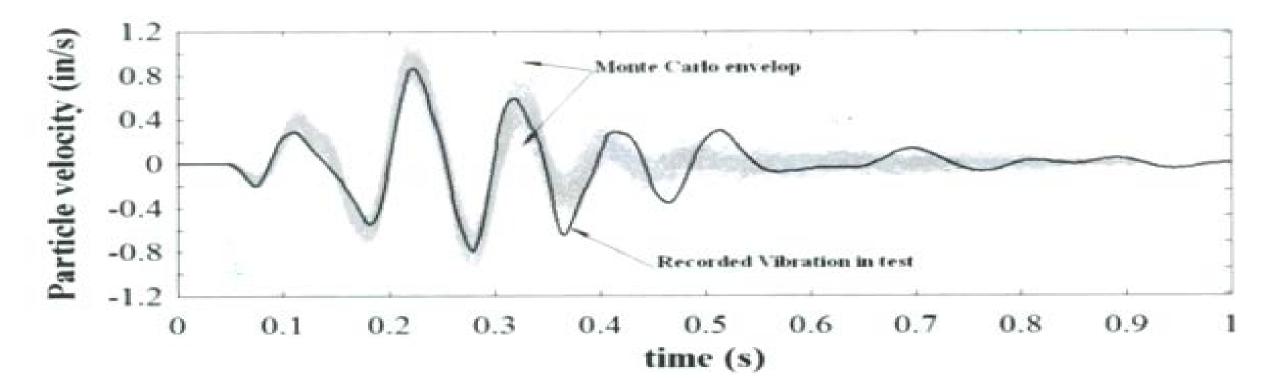
- Have not hit mainstream industry
- Testing new concepts
- ALL require use of electronic initiators


Multiple Seed Waveform

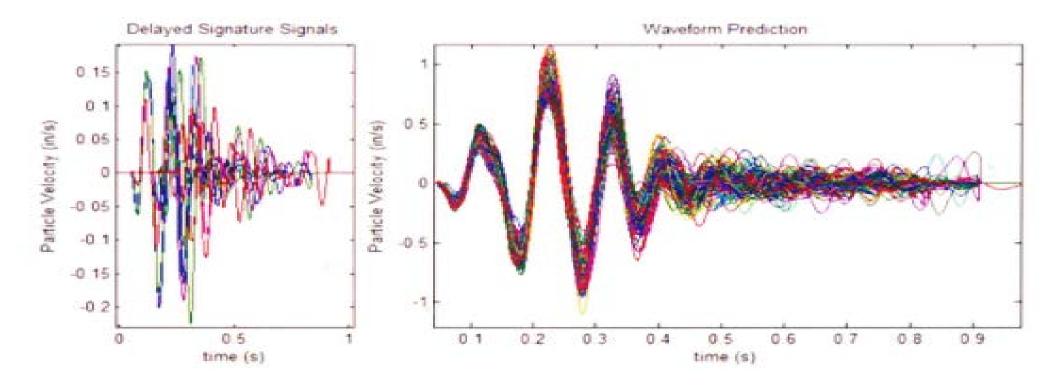
- Multiple Seed Wave (MSW)
 - Extension of Standard Method
- Can't Measure Everywhere
 - Establish Local Variability
 - Interpolate Between Measured Sites
- Some Locations Are Shielded
 - By Broken Rock
 - By Open Face
 - Develop Local Shielding Parameters

Multiple Seed Waveform

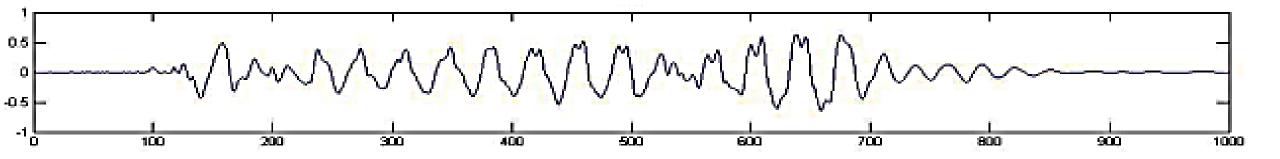

- Waveforms for Measured Sites
 - Existing Single-hole Data
- New Location Becomes Critical
 - Complaints
 - New Construction
- Technique Resolves Problem
 - Use Existing Data
 - "Average" the Waveforms
 - No Need for Additional Holes


Silva – Lusk Method

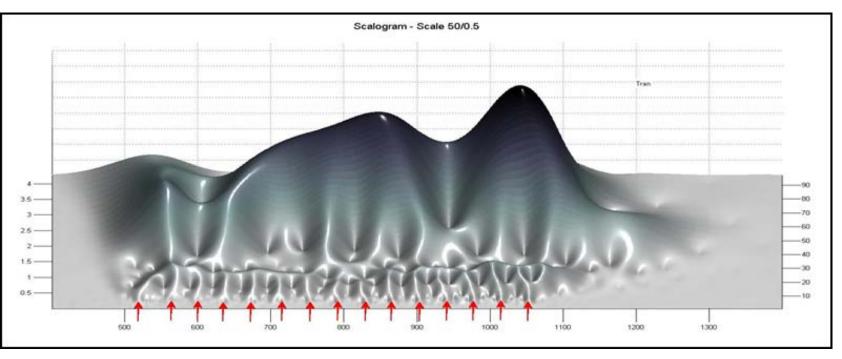
- Variation Between Signatures
- "Monte Carlo" Technique
 - Random Signatures
 - Fit to Existing Signatures


Silva – Lusk Method

Silva – Lusk Method


- Use an Array of Randomized Signatures
- Find out the Bounds of Vibration
 - What is the "Worst" you might get?

Wavelet Transform


- Analyzing Blast Performance from Seismograph Data
- Use Existing Compliance Records
- Perform "Wavelet Transform"
- Shows Details of Shot Performance
 - "Buried" in Complex Waveform

Wavelet Transform

- Wavelet Transform
- High Peaks in Background Due to Geology
- Low Peaks in Foreground Due to Detonations
 - Hole Firings Marked by Arrows!

www.quarryacademy.com

Improving Processes. Instilling Expertise.

