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ABSTRACT

Noranda Mining and Exploration Inc., is applying expert-driven, fuzzy logic data integration techniques to identify new
exploration targets in mature mining camps. The procedure to implement a data integration study has evolved into a well-
defined process that coordinates human resources, technical databases and computer modelling software. The process
begins with an expert panel defining and capturing the relationships between an exploration target and exploration mea-
surements in an inference network. The inference network employs Boolean operators, fuzzy logic and Bayesian methods
to model the judgement, reasoning and decision making process behind target compilation. Input maps are then created
using the spatial analysis functions of a Geographic Information System (GIS). Modelling is performed outside the GIS and
is based on a raster overlay procedure. It is driven by the same set of rules developed by the expert panel and captured in
the inference network. Results are followed up with GIS generated target reports and detailed compilation that are then
used as a basis to stake ground and to fund future exploration programs.

An expert system study of the Bathurst Mining Camp was completed in early 1996 to help evaluate open (unstaked) ground
in anticipation of the release of a government sponsored airborne survey (magnetic, electromagnetic and radiometric
survey). This study resulted in the development of an inference net model based on the Halfmile Lake VMS deposit. The
results highlighted 10 priority targets on unstaked ground. Two areas were staked immediately and three additional targets
were staked at the time of the airborne release owing to new information. The procedure for the development and imple-
mentation of the model is presented in this paper along with some of the results.

INTRODUCTION

Noranda Mining and Exploration Inc. is applying expert-driven, fuzzy
logic data integration techniques to identify new exploration targets in
mature mining camps. In these camps the majority of near surface
deposits have been discovered and current exploration activities are ori-
ented towards locating hidden, sub-cropping or deeply buried deposits.
To assist in this search, explorationists have at their disposal a wide array
of survey techniques which measure geological conditions that can be
indicative of a mineralizing event. Each survey measures a different
physical, chemical, or geological property of the earth’s surface or near
surface.

In mature mining camps, many exploration surveys have been con-
ducted and the obvious targets have been evaluated. Along with the
obvious targets, each survey generates many subtle anomalies that have
remained untested because they are often attributed to non-mineraliz-
ing geological phenomena. Nevertheless, some of these weaker anoma-
lies do represent mineralization and data integration techniques have

been used to develop targets from them by looking for the coincidence
or near coincidence of weak anomalies from multiple data sets.

Until recently the ability to integrate different survey information
has been limited to direct overlays using either hard-copy (light table) or
digital techniques (imaging systems, CAD systems, etc.). Overlay tech-
niques are useful in exploration but do not easily provide for the
weighted comparison of related but different surveys, nor do they
account for the uncertainty associated with geological interpretations
drawn from survey results. Recently, with the introduction of Geo-
graphic Expert System (GES) concepts (Campbell et al., 1982; Katz,
1991), the weighting and uncertainty characteristics inherent in the data
compilation process have been successfully modelled by computer sys-
tems. Data integration studies are not new in mineral exploration but
traditionally have involved time-consuming manual compilation work.
Expert system modelling automates the compilation process by provid-
ing a first pass assessment of an area’s mineral potential. The net effect is
that scarce human resources are focused towards areas that offer a
higher chance of success in the early stages of exploration.
In “Proceedings of Exploration 97: Fourth Decennial International Conference on Mineral Exploration” edited by A.G. Gubins, 1997, p. 105–114



106 Integrated Exploration Information Management
Noranda Mining and Exploration Inc. has conducted twelve GES
studies since 1993. It was recognized early that this technology repre-
sented an opportunity to consolidate available human and technical
resources into a process that would provide a competitive advantage in
the field. Over time a pattern has developed regarding the role that each
company resource plays in the targeting modelling process. This paper
reviews the process as it has come to be known and uses a recent study
of the Bathurst mining camp to demonstrate various aspects of it.

The Bathurst mining camp is situated in northern New Brunswick,
Canada and is underlain by bimodal volcanic and metasedimentary
rocks of the Middle Ordovician Tetagouche Group (Langton, 1992) (see
Figure 1). It represents an area of approximately 2000 km2 and is host to
more than 30 significant massive sulphide deposits including two cur-
rent and four historic producers. The largest deposit is Brunswick #12,
owned and operated by Noranda Mining and Exploration Inc., with past
production and current reserves estimated to be 161 million tonnes of
lead-zinc ore grading 3.55% Pb, 8.90% Zn, 0.32% Cu, 99.0 g/t Ag (Luff,
1995). In recent years, the Bathurst Camp has been the focus of an explo-
ration technology initiative (EXTECH-II) which has generated several
new data sets and geological concepts. This initiative was expanded to

include a federal and provincial government sponsored, high resolution,
multiparameter (magnetics, radiometrics and electromagnetics) air-
borne (AEM) survey flown in 1995 and released on July 31, 1996.

In anticipation of the AEM survey results and as part of ongoing GIS
and data management initiatives, an expert system model for the
Bathurst mining camp was undertaken in the fall of 1995. This model
focused on the Halfmile Lake VMS deposit type, the characteristics of
which are well summarised by Adair (1992). The main objective of this
study was to identify and prioritize open (unstaked) and under-
explored ground with high potential to host a significant base metal
deposit. Information compiled and managed in a GIS since 1994 pro-
vided the data source for this study.

INFERENCE NETWORK DEVELOPMENT

The modelling process began with an expert panel defining the relation-
ships between an exploration target and various survey responses. To
document the exploration model, company experts were brought
together for a two-day modelling session. The panel consisted of eight

Figure 1: Location and regional geology of the Bathurst mining camp including major mineral occurrences and deposits.
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professionals (geologists, geophysicists, and managers) with broad
experience and an in-depth knowledge of the Bathurst mining camp.
These professionals were lead through the model building process by a
knowledge engineer (Reboh, 1981). The knowledge engineer guided the
panel discussions through various aspects of a deposit model and care-
fully translated expert opinion into modelling objects. He then
prompted experts to semi-quantify each of these objects, and translated
the answers into modelling parameters. At the end of the model building
process a diagram was produced that documented the panel’s opinion of
how different exploration surveys relate to each other and combine to
suggest the presence of mineralization. The diagram used to document
these relationships is referred to as an inference network (Figure 2).

An inference network is a logic tree that documents the decision
making process of experts faced with different compilation scenarios.
These were first applied to geological problems by the U.S. Geological
Survey’s Prospector expert system (Duda et al., 1977). Inference net-
works are made up of many linked boxes. Boxes are termed spaces and
in a GES context represent map layers. Lines that connect spaces are
termed rules and document the logical relationship between hypothesis
and evidence spaces. The space that is the hypothesis for one rule may
be the evidence for another rule. On an inference network both spaces
and rules are labelled with modelling parameters. Spaces are labelled
with the name of a logical condition and with the random (prior) prob-
ability P(E) of it occurring. Rules are labelled with weighting factors

(LN, LS) indicating how evidence is associated with the hypothesis. A
hypothesis space can have many relationships with underlying evidence
spaces. This collectively documents how different pieces of evidence
relate to one hypothesis. Each set of evidence-hypothesis spaces repre-
sents one reasoning step in the inference network and translates into one
modelling step in the data integration calculation. Values that migrate
up the inference network are expressed in probability terms. During
modelling, each space will have a calculated (posterior) probability
value assigned that can be higher or lower than its random (prior) prob-
ability, depending whether the cumulative evidence supports or contra-
dicts the hypothesis. The final hypothesis is a synthesis of many logical
steps and represents the probability that mineralization will be found in
an area. This final probability value is often referred to as a mineral
potential or favourability measurement. 

Inference networks use fuzzy logic and conditional probability oper-
ators to model relationships between evidence and hypothesis spaces.
Fuzzy logic operators include AND, OR, and NOT operators and are
similar to Boolean operators except that they accommodate uncertainty
(Katz, 1991). Given two or more related evidence spaces, fuzzy OR logic
will migrate the highest calculated (posterior) probability of the evi-
dence to the hypothesis space (Figure 3). Fuzzy AND logic will migrate
the lowest calculated (posterior) probability to the hypothesis space.
And Fuzzy NOT logic will migrate the highest converse probability (one
minus probability) to the hypothesis space. In fuzzy logic when the

Figure 2: Inference network of the Halfmile Lake volcanogenic massive sulphide deposit model used in the Bathurst geographic expert system (GES) study.
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condition of an evidence space is unknown, the prior probability of the
evidence is used in the logical comparison. All Noranda fuzzy logic
operations also support a weighting factor called the fuzzy multiplier.
The fuzzy multiplier is a factor applied to the evidence before any fuzzy
logic comparison is made. The fuzzy multiplier is useful for fine-tuning
models without having to make adjustments to input maps. In an infer-
ence network, each fuzzy operation is a logical comparison that can be
thought of as emulating an expert’s decision-making process.

Another way to model an expert’s reasoning process is to use a
BAYES logic operator. The BAYES logic operator uses Bayesian methods
to migrate probability values from evidence to hypothesis spaces
(Bonham-Carter, 1994). Bayesian methods are based on conditional
relationships that refer to the ability of one event to forecast or influence
the probability of another event. For example, seismic events can fore-
cast eruptions of volcanoes and therefore the probability of volcanic
eruptions will increase if seismic events have been detected. Conditional
relationships can also be thought of in terms of evidence, where evi-
dence can range from circumstantial to smoking guns. In the case where
there is no smoking gun a case can be built by compiling circumstantial
evidence. The basic equation of conditional relationships is referred to
as Bayes Rule (Equation 1) (Davis, 1986) and states that the probability
(P) of the hypothesis (H) event occurring given some evidence
(E)(P(H|E)) is equal to the probability of the evidence with coincident
hypothesis events (P(E|H)), multiplied by the ratio of the random prob-

ability of the hypothesis (P(H)) to the random probability evidence
(P(E)). From Equation 1 it can be seen that the strength of the evidence
(W) is measured in terms of how many historical hypothesis events also
had an evidence event occur (P(E|H)) and by the overall rarity of the
evidence (P(E)) (Equation 2). Substituting for W, we get the general
equation for a BAYES logic operation (Equation 3). When experts are
asked how evidence relates to a hypothesis event, they are making an
estimate of W. For further information on Bayesian methods and con-
ditional probabilities the reader is referred to the works of Bonham-
Carter (1994) and of Davis (1986).

P(H|E) = P(E|H) ∗ P(H) / P(E) [1]

W = P(E|H) / P(E) [2]

P(H|E) = W ∗ P(H) [3]

When using the Bayes operator the expert panel must answer two
questions. First, if the evidence occurs, how strongly does it suggest that
the hypothesis is true? Second, if the evidence does not occur, how nec-
essary are the data for the hypothesis to be true? The answer to the first
question is used to define a positive weighting factor called the
Likelihood of Suggestivity (LS). The answer to the second question is
used to define a negative weighting factor called the Likelihood of
Necessity (LN) (Katz, 1991). To simplify the process of weighting evi-
dence, experts are asked to rate the association of evidence on a scale
between 0–5 where each number has a corresponding weighting value
(Reddy et al., 1992). The scaled likelihood coefficients (LS and LN) used
in this study are listed in Table 1 and were verified by comparing mod-
elling results with areas of known mineral potential. The objective of
each Bayesian logic operation is to emulate an expert’s reasoning process
in the face of uncertain interpretations and the LN and LS values used
reflect this concept.

To assist in the modelling process Noranda has developed its own
inference network editing software called EDIT-NET. This software
allows the expert panel to quickly diagram, parameterize and create
hard-copy inference networks during their development. Another fea-
ture of this software is that it will automatically generate the step-by-step
processing instructions used by the inference engine to execute the
model. Having this software has helped to simplify and speed up the
inference network development process.

TARGET MODEL

The inference network developed by experts takes a genetic approach to
target modelling which assumes ore deposits are caused by a coinci-
dence of different geological processes (Figure 2). The target model
reflects this thinking by breaking targets into their contributing geolog-
ical processes. Each geological process is then defined in terms of inter-
preted survey information. Interpretations are based on the
characteristics (amplitude, shape, etc.) of survey measurements and
have different association strengths related to the geological process
being qualified in the model. For example, the amplitude and shape
characteristics of electromagnetic (EM) survey results were interpreted
by a geophysicist to be indicative of sediment horizons that represent
quiescent periods between volcanic events favourable for the accumula-
tion of sulphide bodies (weak to strong, long formational conductors).

Figure 3: Example of a fuzzy logic OR operator used to migrate calcu-
lated probabilities from evidence to hypothesis spaces.

Table 1: Scaled likelihood coefficients used in Bathurst study.

Input Meaning LS Value LN Value

0 Indifferent 1.000 1.000

1 Weakly 2.512 0.398

2 Mildly 6.310 0.155

3 Moderately 15.849 0.063

4 Very 39.866 0.025

5 Extremely 100.000 0.010
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The EM data were also used as a basis to infer mineralization (moderate
to strong, isolated conductors). Each one of these interpretations was
used as a separate input to the model and each had a different weight
related to how well the interpretation was thought to correctly infer the
related hypothesis. EM interpretations can effectively predict the pres-
ence of mineralization near surface but not in the vicinity of large
regional conductors like graphitic horizons. In the model, EM indicated
mineralization (EMMin) is very strongly suggestive of inferred miner-
alization if present but considered only mildly necessary if not present
(Figure 2). As an indicator of a hiatus in volcanic activity EM inferred
sediments (ResSeds) are considered only half as favourable (0.5) as
mapped sediments because EM is also indicative of faults, swamps or
other near surface features. In all, 33 geological interpretations served as
the basis to infer four different geological processes: emplacement of
favourable host rocks; a hiatus in volcanic activity; hydrothermal sys-
tems; and, the precipitation of base metals.

A repeated theme in the exploration logic is the relationship between
observed and inferred evidence. Exploration logic will accept the con-
crete evidence of an observed geological condition over evidence that
was inferred by geochemical or geophysical measurements. For exam-
ple, an outcrop with observed Cu, Pb, and Zn sulphides is considered to
be a better indicator of nearby mineralization than geochemical anom-
alies because observed minerals are closely associated with this process,
whereas geochemical anomalies may be many steps removed from their
source. Nevertheless, in the situation where there are no observed
minerals, (i.e., lack of bedrock exposure) geochemical anomalies are
good indicators of buried mineralization.

GIS SPATIAL ANALYSIS

In preparation for modelling, GIS spatial query and analysis functions
are used to create model input maps. The role of GIS in the preparation
of model input maps is principally two-fold. First, it is used to perform
spatial analysis that enhances the interpretation of survey results. As an
example, spatial selects were used to determine anomalous geochemical
threshold values for different underlying bedrock units (Table 2). Legit-
imate anomalies in low background units can be lost if threshold values
are estimated from all samples. This type of spatial analysis is concerned
with data processing procedures that improve the signal to noise ratio of
existing data sets and will hopefully result in the identification of new,
subtle anomalies.

Table 2: Summary statistics for lead concentrations in 
stream sediment samples over different rock units in the 
Bathurst mining camp (measured in parts per million).

Rock Unit NUM MIN MAX MEAN S.D.

Ofv1 (felsic volcanics) 860 6 3515 73 175

Ofv2 (felsic volcanics) 229 9 787 56 76

Omv2 (mafic volcanics) 600 5 2580 56 155

Om1 (mafic intrusives) 32 16 146 38 23

Os3 (sediments) 412 4 688 45 65

Figure 4: Result of adjacency, buffering, and clipping functions that map out the area of influence around the conformable contact between Flat Landing
Brook Fm. felsic volcanics and Boucher Brook Fm. sediments.
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Second, spatial analysis is used to assign areas of influence around
interpreted map features. For example, buffering, clipping and adja-
cency functions were used to determine the upper 400 m of the Flat
Landing Brook Formation that has a conformable contact with the
stratigraphically younger Boucher Brook Formation. The result of this
spatial analysis is presented in Figure 4 and was the basis for the
LOWOBSED model input map. Assigning geologically realistic areas of
influence around features is an important aspects of modelling because
the procedure is ultimately searching for the coincidence of different
patterns to enrich the favourability of an area.

INPUT MAPS

GIS technology was indispensable in the creation of input maps and also
served as an overall data management platform. All of the interpreted
maps were created in the GIS and many of them were created by having
experts digitize polygons onto an interpreted drawing layer that over-
layed the actual or processed survey results. Other interpretations were
created with the assistance of the spatial analysis functions described
above. Each interpreted polygon map had a modelling attribute defined
and was assigned a probability relative to whether: the polygon indicated
the interpreted feature (probability = 1), did not indicate the feature
(probability = 0), or the area was not covered by this survey (no survey
= –1). Polygon modelling values between 0 and 1 were also specified
indicating a degree of uncertainty about the interpreted polygon’s

boundary or interpretation. These were assigned to distance decay buff-
ers around approximated boundaries or to subtle anomalies.

Once defined, all interpreted maps were clipped to a common study
area and exported out of the GIS environment as co-registered raster
maps. Co-registered raster maps consist of pixel or cell-based images
with the same number of rows and columns. Pixels from the different
maps correspond to the same geographic location and each pixel is
assigned the probability value of interpreted polygons. With geological
interpretations expressed in probability terms and exported as co-regis-
tered rasters, all information was in place for modelling. 

EXPERT SYSTEM MODELLING

Modelling is performed outside the GIS by custom software referred to
as an inference engine. The inference engine used in this study was writ-
ten in-house and was based on publicly available code fragments from
Katz (1991). The inference engine takes as its arguments the structure of
the target model expressed as an inference network and the size of the
study area expressed in pixel rows and columns. From these arguments
the inference engine generates a series of modelling commands starting
from the deepest levels of the inference network and working its way up
the logic tree. In turn, each of the modelling commands are executed and
produce one new hypothesis raster map from one or more evidence ras-
ter maps. The logic or reasoning defined in each modelling step is per-
formed on a pixel-by-pixel basis until the entire study area has been
modelled and a new hypothesis map generated (Figure 5).

Figure 5: Modelling steps are executed against co-registered raster maps on a pixel-by-pixel basis.
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The dynamic range of the modelling engine is between the probabil-
ity range of 0 and 1 but is expressed as 1 byte integers using real number
increments of 0.004 (1/254). The integer value 255 is reserved as a NOT
SURVEYED flag, and when encountered the prior probability of the evi-
dence is substituted for the pixel value. Using a 1 byte modelling engine
imposes limits on resolution. Only significant differences in probability
are distinguished during modelling. However, it can be argued that it is
these significant differences that are of most interest to explorationists.

TARGET POTENTIAL MAP

The modelling results presented in Figure 6 represent the relative mineral
potential of the Bathurst camp. Probabilities are displayed using a colour
look-up table that relates each possible probability value with the appro-
priate display colour. The colour palette ranges from white through
greys, blues, greens, yellows, reds, and purples with increasing probabil-
ities. White (transparent) is used for the lowest four probability values to
support follow-up by enhancing the effects of overlying model results

with inputs maps. Modelling results outline areas that are considered to
offer higher chances of hosting mineralization and are an effective way to
screen and compare targets over a large area.

Modelling results effectively outline many of the known productive
areas including the Halfmile Lake, Stratamat, Heath Steele, Wedge, Mur-
ray Brook, Brunswick No.12, and Brunswick No. 6 deposits. Also of note
are the stratigraphically influenced favourable horizons extending south
for the Brunswick No.12 deposit. These trends are consistent with the
geological models of the area.

One factor taken into account when interpreting results is the influ-
ence of missing data sets. Missing data sets decrease the confidence of
modelling results because there is no evidence to either support or pre-
clude the presence of some geological condition. Some areas outside
existing airborne and bedrock mapping surveys show up as anomalous
potential areas due only to favourable geochemical responses. These
anomalies are an artifact of missing data sets rather than a reflection of
camp-scale mineral potential. The model results were designed to be
pessimistic in the assessment of mineral potential so that there would be
more errors of omission than errors of commission.

Figure 6: Target potential map of the Bathurst mining camp indicating the relative probability of an area to host mineralization.
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GIS MAPPING AND QUERYING

Target models were initially followed up by importing modelling results
back into the GIS environment where model input maps and the origi-
nal exploration data were overlayed with positive model responses.
Additional masks were overlaid to direct follow-up to areas that were
unstaked. From the GIS, additional information was queried to provide
further details about anomalous survey measurements. The ability of
GIS to integrate and manage graphical and tabular information allowed
for the quick assessment of modelling results.

TARGET REPORT

With the assistance of GIS mapping and querying tools, target reports
were generated that summarized original exploration survey results in
high potential areas. Target reports included a map of the area and a
short summary correlating the underlying survey information with the
modelling results (Figure 7). The target report served two important
functions. First, it was used by geologists to verify that results reflect an
expert conclusion. Should discrepancies arise between expert opinion

and modelling results, the inference network is checked for a logic error
and if necessary altered and the model rerun. The Bathurst expert sys-
tem model was rerun three times before it achieved satisfactory results.
The second function of the target report was to put modelling results
back into a context more easily communicated to other explorationists.

Consistent with the modelling objectives, only the areas of high min-
eral potential which were unstaked were selected for follow-up. From the
model, 10 target reports were generated and forwarded for detailed
compilation. In one of the high potential areas, TGS1 (Figure 7), mod-
elling highlighted an area on a productive horizon with favourable mag-
netic, and electromagnetic properties that are proximal to anomalous
soil survey results. This area represents a classic data integration target
with the coincidence of many favourable and complementary survey
results. Notwithstanding the long exploration history of the camp, the
target was not tested and was on open ground. Another type of favour-
able target developed through modelling had moderate to low mineral
potential but was proximal to additional supporting evidence. This type
of adjacency association is not detected by the model unless interpreted
input features are assigned a distance-related decay buffer with decreas-
ing probability values. Each target report takes about two hours to com-
plete and when finished is forwarded to a project geologist for more
detailed and time consuming follow-up compilation and assessment.

Figure 7: Example of a target report based on modelling results and translated back into a geological context for easier understanding by explorationists. 
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PROJECT PROPOSAL

In spite of the growing number of digital data sets available for model-
ling, much of the information collected over the 45-year history of the
Bathurst mining camp is not digital. The second phase of the follow-up
process involves a detailed search of all historical work in targeted areas
and was performed by an experienced project geologist. Part of the
detailed work was to search through public and private sources for addi-
tional information that would either support or preclude developing a
target into an exploration project. Detailed compilations typically took
a day or two to complete and the recommendations were then used as a
basis to stake ground and fund future exploration programs.

Of the ten targets that underwent detailed compilation two were rec-
ommended for immediate staking and resulted in the acquisition of 158
claims. After the release of the 1995 government AEM survey, three of
the other target areas were staked as the new information added to their
favourability. This evaluation of new data was done within hours of the
AEM release.

THE TARGET MODELLING PROCESS

The process of implementing an expert system study can be subdivided
into a number of procedural steps where each impacts the quality of
modelling results. The first step is to capture an expert’s data compila-
tion process and define an accurate inference network. This includes
reasonable estimates of prior probabilities and the association between
evidence and hypothesis events. Before model inputs are created a data-
base must be compiled that contains technical information stored in a
spatially and logically queriable format. Model input maps defined by
the inference network must be judiciously produced and incorporate
both the interpretation of geological features as well as spatial decay
buffers needed to accommodate adjacency associations. Creating and
preparing model inputs is a task well suited to a GIS with a well-
developed set of spatial query and analysis functions. To implement the
model, an inference engine must be developed and programmed to
accept both the inference network model and interpreted maps as
inputs. Modelling results must be scrutinized to verify that they accu-
rately reflect expert deductions. Adjustments in the inference network
may be needed before satisfactory results are achieved. Target reports
are made for selected areas of anomalous mineral potential and are
based on information used in the model. They aid in detailed compila-
tions that are performed by experienced geologists and include a search
of non-digital historical work. Recommendations from detailed compi-
lations are used to develop a target into an exploration project. As a
whole, the target modelling process has been useful for focusing on
areas that offer a higher chance of success early in the exploration pro-
cess. It also helps to allocate the appropriate level of technical and pro-
fessional resources for solving an exploration problem.

CONCLUSIONS

Expert-driven, fuzzy logic data integration techniques were used suc-
cessfully in the Bathurst mining camp to prioritize ground and identify
new exploration targets. The advantages of this style of knowledge-

based compilation and mineral potential mapping are numerous. The
resulting mineral potential or favourability maps help establish explora-
tion priorities and focus efforts by windowing out large areas of
unfavourable ground. The inference networks themselves provide a
vehicle to communicate the geological model and the relative impor-
tance of each geological data set to all participants in an exploration pro-
gram. The system can also be used to evaluate the significance of new
data and new ideas in the context of the exploration model.

Over the last three years Noranda Mining and Exploration has con-
ducted twelve GES studies. The experience gained from these studies
has led to the development of a successful modelling process. Past stud-
ies cover a variety of exploration targets ranging from regional style,
grassroots plays to mature mining camps and cover several different
deposit models. The 1995 Bathurst mining camp GES study benefited
from the previous studies, and added new understanding to the model-
ling process. The modelling resulted in the staking of five new claim
groups and set the stage for the rapid assessment of the AEM results after
they were released. All targets are based on the coincidence or near coin-
cidence of subtle anomalies that were not obvious in the original data
sets but were verified by experienced explorationists.

Mineral potential mapping is becoming more popular in the explo-
ration industry as a result of an increase in available digital data sets and
advances in GIS software. The evolution of data integration techniques
will be a dynamic process, drawing on past experiences to help refine
and develop better inference engines, modelling parameters and mod-
elling procedures. Noranda Mining and Exploration Inc. continues to
use and develop expert-driven fuzzy logic data integration techniques as
an exploration tool to aid in the screening of large and diverse data sets
with the primary focus on target generation.

ACKNOWLEDGEMENTS

We would like to acknowledge some of the people who contributed
towards the preparation of this paper. Namely, Lyndon Bradish for invit-
ing us to publish this material and for his role in directing GIS/ES initia-
tives. David Gower for allowing and supporting GIS/ES development
from the Bathurst exploration office. Members of Noranda’s GIS com-
mittee who have worked through the design of numerous technical data-
bases and data standards. Expert panel members for their cumulative
knowledge which serves as the base for the whole process. Doug Coombs
for capturing and managing data sets. And Daniel Pitre who added an
artistic element to every map and figure produced for this paper.

REFERENCES

Adair, R., 1992, Stratigraphy, structure and geochemistry of the Halfmile Lake
massive-sulfide deposit, New Brunswick. Explor. Mining Geol., 1, 151-166.

Bonham-Carter, G.F., 1994, Geographic information systems for geoscientists:
modelling with GIS: Pergamon.

Campbell, A.N., Hollister, V.F., Duda, R.O., and Hart, P.E., 1982, Recognition of
a hidden mineral deposit by an artificial intelligence program: Science, 217,
927-929.

Davis, J.C., 1986, Statistics and data analysis in geology. (2nd. ed.): John Wiley
and Sons.



114 Integrated Exploration Information Management
Duda, R.O., Hart, P.E., Nilsson, N.J., Reboh, R., Slocum, J., and Sutherland, G.L.,
1977, Development of a computer-based consultant for mineral exploration:
SRI International, Artificial Intelligence Center, Annual Report for SRI
Projects 5821 and 6415, Menlo Park, California, 202 p.

Katz, S.S., 1991, Emulating the Prospector expert system with a raster GIS. Com-
puters & Geosciences, 17, 1033-1050.

Langton, J.P. (compiler), 1992: Massive Sulphide Deposits and Geology in North-
ern New Brunswick; Geological Association of Canada, Mineralogical Asso-
ciation of Canada, Joint Annual Meeting, Wolfville ’92; Field Trip C-6,
Guidebook, 53.

Luff, W., 1995, Brunswick Mining and Smelting Corporation Limited—A history
of mining in the Bathurst area, northern New Brunswick, Canada: CIM Bul-
letin, 88, 63-68.

Reboh, R., 1981, Knowledge engineering techniques and tools in the Prospector
environment: SRI International, Artificial Intelligence Center, Tech. Note
243, 149.

Reddy, R.K., Bonham-Carter, G.F. and Galley, A.G., 1992, Developing a geo-
graphic expert system for regional mapping of volcanogenic massive sul-
phide (VMS) deposit potential: Nonrenewable Resources, 1, 112-124.


	Introduction
	Inference network development
	Target model
	GIS spatial analysis
	Input maps
	Expert system modelling
	Target potential map
	GIS mapping and querying
	Target report
	Project proposal
	The target modelling process
	Conclusions
	Acknowledgements
	References

