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ABSTRACT

There is a close link between the pressure pulsation in the pump
working cavity and its vibration and noise level. Due to a current
trend in increasing rotation speed and power, the problem of noise,
vibration, and pressure pulsation in centrifugal pumps becomes a
more urgent question. Usually the level of tone spectrum
components determines the pump vibration and noise characteris-
tics, and mainly these are blade-passing frequencies (BPF). They
result from nonstationary hydrodynamic interaction between the
impeller flow and pump casing. The method for computation of
BPF pressure pulsations in the working cavity of a centrifugal
pump is based on a representation of nonstationary motion of a
compressible medium as a combination of acoustical waves and
pseudosound perturbations.

INTRODUCTION—DESCRIPTION
OF THE PROBLEM OF HYDRAULIC
VIBRATION IN CENTRIFUGAL PUMPS

Main Noise and Vibration Sources in Centrifugal Pumps

It is well known that the principal noise and vibration sources in
a well-balanced centrifugal pump are of a hydrodynamic nature.
There is a close link between the pressure pulsation in the pump
working cavity and its noise and vibration level.

It is possible to subdivide the nonstationary hydrodynamic
phenomena in the working cavity of a pump in two groups outlined
below.

• Hydrodynamic interaction between the impeller flow and the
volute casing

• Vortex flow

They are accompanied by cavitation phenomena that can act as a
separate source of hydraulic noise and may provoke amplification
of unsteadiness of the two groups mentioned.

The first type of pressure pulsation that causes tone noise and
vibration is the subject of this lecture.

Relationship Between Pressure Pulsation,
Vibration, Deformation, and Noise

The conclusions drawn from the works mentioned above
indicate a close link between the pressure pulsations in the pump
working cavity and its vibration and noise.

The existence of intense pressure pulsations is characteristic of
all types of centrifugal pumps. Under certain conditions pressure
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pulsations in the working cavity, e.g., in the volute casing, can
achieve values dangerous to the pump integrity.

The study of pressure pulsations in the working cavity of
centrifugal pumps gives information on nonstationary loads acting
on the pump components—diffuser vanes, impeller blades, volute
casing, outlet pipe. When measuring the dynamic load on the
leading edges of diffuser vanes of a centrifugal pump by strain
gauges, it was found that in the range of delivery 0.6 to 1.0 from its
optimum value the dynamic load is directly proportional to the
amplitude of pressure pulsations.

Figure 1 shows the spectra of pressure pulsations in the volute
cavity, vibrations of the bladed diffuser casing, and the dynamic
strain in the welded connection of the volute with the diffuser
casing for a high-speed centrifugal pump. These data indicate the
direct link between the pressure pulsations in the working cavity
and the dynamic load acting on pump components.

It is useful to note that the level of discrete vibration spectrum
components at different points of the pump casing hardly depends
on its elastic-mass properties, in particular when the wavelengths
of elastic deformations are comparable to the pump dimensions.
Therefore, it is necessary alongside the measurement of vibration
to investigate pressure pulsations in different points of the pump
working cavity in order to make general and unequivocal
conclusions about the influence of various factors on the
hydrodynamic sources of vibration.

Figure 1. Frequency Spectra of a Centrifugal Pump.

Hydrodynamic Sources of Vibration and Noise

The vibration of hydrodynamic nature is related to features of
the fluid flow in the pump working cavity. The nonstationary
interaction of the pump casing with the flow leaving the impeller
gives rise to churning (vortex-type flow generation), consisting of
small-scale turbulence and large-scale rotational structures
(backward flows). In addition, cavitation can develop in the
working cavity of the pump.

These oscillations can be especially dangerous in the case of
coincidence with the resonance frequencies of structural

components. Describing a pump with bladed diffuser as a rigid
body, one can assume that vibration at blade-passing
frequencies (BPF) acts as a transfer of nonstationary loads to
the pump casing through the diffuser vanes. Based on the
hypothesis, recommendations were made for the choice of an
optimum ratio between the number of impeller and diffuser
blades.

Nonstationary Phenomena and Pressure Pulsations

Characteristics of Fluid Flow
and Generation of Pressure Pulsations

Pressure pulsations in the working cavity of centrifugal
machines arise owing to various nonstationary hydrodynamic
phenomena. The complexity of these phenomena calls for a
thorough experimental and theoretical investigation of
nonstationary hydrodynamics of the working cavity, taking into
account such effects as the interference of pressure waves,
resonance acoustic behavior of the working cavity, and others that
lead to amplification of pressure pulsations.

As already stated above, it is possible to subdivide the
nonstationary hydrodynamic phenomena in the working cavity of
a pump, depending of their origin, into three groups:

• Hydrodynamic interaction between the impeller flow and the
volute (bladed diffuser) casing

• Vortex flow

• Cavitation

The first type of nonstationary process is integrally inherent to
centrifugal pumps as well as all impeller machines. It is caused by
stepwise nonuniformity of flow parameters at the impeller exit.
Because of nonstationary hydrodynamic interaction of this
nonuniformity (rotating together with the impeller) with the
casing, pressure pulsations are generated at multiple frequencies of
the rotation speed.

The second type is unsteadiness caused by the vortex nature of
fluid flow. The pressure in a vortex is distributed in a nonuniform
fashion. Therefore, formation, separation, and displacement of
vortices in the working medium cause pressure pulsations. This
type of unsteadiness exists in two modes:

• Small-scale turbulence in the boundary layer and formation of
turbulent sheets emanating from the structural members of the
pump casing and diffuser

• Formation of large-scale vortex zones, sheet, and back flows
under operation that is away from the design operation conditions

The latter concern back flows at the inducer’s inlet, recirculation
flows at the impeller inlet and exit, “rotational break” at the
impeller inlet, secondary flows in the volute.

Cavitation appears in the nuclei of large curls and zones of
recirculation flows, which in turn strengthens pressure pulsation
due to the collapse of bubbles in high-pressure zones, causing
erosive destruction of working blades and other structural
elements.

The existence of cavitational bubbles in the zones of back flows
in the pump inlet creates favorable condition for the rise of low-
frequency oscillations on the order of 10 Hz, with large amplitudes
throughout the pump system.

The flow recirculation at the impeller exit strengthens the
pressure pulsations on the blade-passing frequency because of the
amplification of flow nonuniformity and cavitation on the leading
edges of diffuser vanes.

The cavitational phenomena concern the third type of
nonstationary process in the pump working cavity. The
cavitation arises due to insufficient head on the pump suction
side, and also, as already mentioned above, in the zones of sheet
flows, recirculation flows in underrated modes—at the impeller
inlet and exit, and in overrated modes—in the pump volute
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casing. Cavitation is an independent source of nonstationary
pressure pulsations and vibration. Besides, cavitation in the
impeller blade channels strengthens BPF oscillations owing to
an increase of the flow pitch nonuniformity. Such a conclusion
is confirmed by the outcome of visual studies of cavitating
pumps.

Noise, Vibration, and Pressure Pulsation Spectra

The noise, vibration, and pressure pulsation spectra of
centrifugal pumps are represented by a broadband noise to which
clearly discernible discrete components are superimposed
(generally, they are blade-passing frequencies). The level of these
tone components mainly determines the pump noise and vibration
characteristics, as the tonal noise is very uncomfortable to the
human ear. These oscillations may also be harmful in the case of
coincidence with the resonance frequencies of structural
components or acoustical resonance of the pump working cavity.
The last phenomenon is very possible for high-speed pumps of
large dimension.

The small-scale vortices generate turbulent noise, which gives a
broadband component of low intensity in the full frequency range
of the spectra of pressure pulsation, noise, and vibration.

Large-scale vortex structures create high-level weakly correlated
impulses of pressure. In the spectra of pressure pulsation, noise,
and vibration, this is presented as a sharp increase of the broadband
component in the zone of low and medium frequencies (called the
pedestal).

Pressure Pulsations at Multiple Rotation Frequencies

Examples of typical spectra of pressure pulsations and vibration
of a centrifugal pump are shown in Figures 2 and 3. They are
characterized by a broadband noise component to which discrete
components are superimposed. The frequencies of discrete
components are multiples of the rotation frequency.

Figure 2. Spectra of Pressure Pulsations in the Volute (Above) and
in the Diffuser Vane Channel (Below) of a Centrifugal Pump.

Figure 3. Typical Vibration Spectrum of a Centrifugal Pump.

• Pressure pulsations at BPF

Studies of centrifugal pumps show that, as a rule, the discrete
BPF component and its harmonics dominate in spectra of pressure
pulsations and vibrations in the design operation mode. BPF is
defined by the formula:

(1)

where:
fr = Frequency of rotation, Hz
z = Number of impeller or inducer blades
k = Harmonic order

An investigation into the mechanisms of generation of pressure
pulsations and its numerical modeling requires studies of the nature
of the flow in the impeller exit zone. Increased attention in Russia
and abroad has been paid during the last 40 years to experimental and
computational studies of the flow in centrifugal machines. In-depth
studies of the flow parameters at the impeller outlet of centrifugal
pumps, compressors, and ventilators confirm that the flow in blade
channels near the impeller exit can be subdivided in two areas—a
high-energy jet component and a low-energy zone of vortex sheets.
Such flow characteristics induce an essential pitch nonuniformity of
relative and absolute velocities and flow angles, as the low-energy
zone adheres to the suction side of the blade. On the impeller exit, the
pitch distribution of the static pressure is close to uniform; therefore,
the difference in total fluid energy between the two mainly originates
from the dynamic part of the fluid energy. Due to the heterogeneity
of flow in the presence of the passing impeller blades, a pressure
variation in each channel of the diffuser or in the volute takes place.

Especially sharp flow variation occurs near the leading edges of
diffuser vanes and volute tongue. Consequently, great attention
must be given to the choice of an optimum radial gap between the
impeller and diffuser vanes or volute tongue.

As specified previously, the separation of nonstationary pump
processes is conditional on three types. Therefore, the formation of
curls and cavitation in blade channels of the impeller strengthens
the pitch nonuniformity of flow and promotes amplification of BPF
pulsation. The recirculation of flow on the impeller outlet also
strengthens the unsteadiness of the first type; because it is known
that the same design measures reduce BPF pressure pulsation and
recirculation of flow at the impeller outlet. Flow separations and
cavitation in pump casing can be in turn periodically initiated by
the passage of impeller blades.

Thus, the unsteadiness of the first type (hydrodynamic
interaction between the impeller flow and the casing) takes a
special place in the vibration character of a centrifugal pump.
Determination of its vibration and noise in the optimum operation
mode is the most important object of study for reduction of BPF
pressure pulsations and vibration and increase of lifetime with
preservation of high power characteristics.

• Pressure pulsations at the rotation frequency

Manufacturing deviations of impeller geometry with respect to
the angular symmetry and the asymmetrical disposition of the
impeller and inducer blades give rise to pressure pulsations at the
rotation frequency and its higher harmonics. This is explained by
tangential nonuniformity in the distribution of flow parameters at
the impeller exit circle. Rotating together with the impeller, this
nonuniformity excites oscillations with the rotation frequency in
the pump volute or diffuser vane channels.

• Combined components in the pressure pulsation spectra of a
centrifugal pump with inducer

An essential role in the formation of the flow pitch nonuniformity
at the impeller outlet belongs to Coriolis and centrifugal forces. It
results in a nonlinear character of interaction of the initial
nonuniformity of the flow, caused by the inducer, with an irregular
flow in the impeller. In other words, pitch nonuniformity of the flow

f k z fr=



in the impeller channels is modulated by the “inducer” pitch
nonuniformity. The frequencies of this modulation are:

(2)

where za is the number of inducer blades.
For example, in a centrifugal pump with a double-bladed

centrifugal impeller having seven main and seven additional short
blades and three-blade inducer in the spectra of pressure pulsations
(refer to Figure 2), the combined frequencies account for 4, 10, 11,
17, 18, and 24 multiples of the rotation speed.

Considering this, it is possible to shape the spectra of pressure
pulsations and vibration of the centrifugal pump by design. The
application of a centrifugal impeller with six main blades instead of
seven in the same pump eliminates such discrete components as 4 fr.

• Possibilities of diagnosing pump operability by measuring
pressure pulsations

The pressure pulsations in the pump working cavity can be a
useful indication for the diagnosis of the availability of the unit as
well as of dangerous operational modes—cavitation in particular.
While the signal coming from the vibration transducer is
influenced by mechanical properties of the installation setup, the
pressure pulsation sensor immediately reflects any change of
physical parameters of the working medium.

Experimental and computational studies have shown the
possibilities of diagnosing centrifugal pump impeller breakage and
approaching critical cavitational operation mode of axial pumps.

Dependence of Pressure Pulsations, Vibration,
and Noise on Operational Mode and Design Features

Influence of Flow Rate

As a rule, the peak-to-peak level of the total signal of pressure
pulsations is at minimum near the optimum delivery and that it
considerably increased at flow rates that deviate from this
optimum. The minimum of pressure pulsations does not
necessarily precisely coincide with the optimum point of the power
performance of the pump. In the range of flow rates of about 0.8 to
1.1 of the BEP value, the level of pulsations is low. By decreasing
the flow rate, the pressure pulsation level rises due to the
amplification of pitch nonuniformity of the outlet impeller flow
due to the contraction of the zone of active flow and the
amplification of vorticity. A number of works have shown that, at
lower flow rates, the low-frequency component of pulsation
spectrum increases.

In conditions of insufficient suction head at low flow rates, the
probability of initiation of low-frequency auto-oscillations of the
hydraulic circuit is increased.

At higher flow rates, the pressure pulsations increase due to
separation of flow and development of cavitation on diffuser vanes
near the volute throat. With the flow rate increasing, the total level
of pressure pulsation can also rise at the expense of BPF
pulsations.

Pressure Pulsations in Various
Elements of the Hydraulic Circuit

The indicated features of the change of pressure pulsation due to
the flow rate variation are characteristic of different points of the
hydraulic circuit of centrifugal pumps. The pressure pulsations
were investigated at the input of a pump, in the channels of a
centrifugal impeller, at the impeller outlet, in the vaneless
diffusers, in the bladed diffuser channels, in the volute and conic
diffuser, in seals and bearings, and in the outlet pipe.

These studies show that at operation mode close to optimum,
BPF discrete components dominate the pressure pulsation spectra.
The maximum amplitude of pressure pulsations was observed
immediately at the impeller exit. For a rough estimation one can

assume that around the best efficiency point the amplitude of
pressure pulsation in the outlet pipe makes less than 5 percent of
the pump head, and in a working cavity of the pump the amplitude
can reach more than 10 percent of the pump head.

Influence of Rotation Speed

Experience shows that in the absence of cavitation and
resonance the amplitude of pressure pulsations, vibration, and
noise of a centrifugal pump rises proportionally to the two to three
power of the rotation speed.

It is known that the nonstationary flow generates acoustic waves.
The periodic changes of flow parameters in the pump casing not
only causes nonstationary loads on structural elements of the
circuit, but will also generate acoustic oscillations, which
propagate in the working medium with the speed of sound. In
modern high-speed pumps, the length of acoustic waves can be
comparable to the size of the circuit elements. Therefore, the
variation of rotation speed can substantially modify the amplitudes
of pressure pulsations in dependence of matching between
characteristic driving frequencies (multiples of the rotation
frequency) and the resonance frequencies of the circuit.

The amplification of pressure pulsations can happen due to
matching of frequencies of oscillations with acoustic resonance
frequencies of both the pipeline and the volute, i.e., the working
cavity.

The behavior of BPF amplitude in the outlet pipe considerably
depends on the exit impedance boundary condition. On the other
side, experiment shows that pressure pulsation in the pump cavity
is not affected much by the impedance of the outlet pipe.

Influence of Positive Suction Head (at the Pump Inlet)

By decreasing the positive suction head down to first critical
mode, pressure pulsations at the inlet and the outlet of the pump do
not change much. Study of pressure pulsations in various points of
a centrifugal pump operating in cavitational mode, and comparison
with published data of cavitational tests of pumps including visual
research, shows that with inlet pressure decrease and formation of
cavitation zones on the edges of working blades, the flow pitch
nonuniformity at the impeller exit amplifies. It results in a
magnification of BPF amplitude of pressure pulsations in the pump
volute casing and outlet pipe. For a two-row impeller this applies
to the main long blades, while the parameters of the flow in the
short blade channels vary insignificantly, and the BPF amplitude of
pressure pulsations relative to the total number of blades does not
vary down to second critical mode.

Figure 4 and Figure 5 show the amplitudes of pressure
pulsations against the pump inlet pressure at the optimum
operational mode. The cavitational performance of the pump is
shown in Figure 4. From these data, it is visible that in cavitation
conditions the pressure oscillation level increases in the pressure
tract of the pump. On the contrary, at the pump inlet the pressure
pulsations drop as an effect of a weak acoustic conductivity of the
vapor-gas bubbles. Figure 5 shows BPF amplitude at different rates
ranging from 0.65 up to 1.15 of the optimum value. In the zone of
the second critical mode, the levels of total signal and BPF
pressure pulsations sharply increase and drop only for a deep
collapse of the pump.

Influence of Design Features of a Centrifugal Pump

The most effective way of lowering hydrodynamic vibrations of
a pump is to apply a number of measures directed to reduction of
pressure pulsations at the source of oscillations, which is directly
in the working cavity of the pump.

Experience shows that the amplitudes of BPF pressure
pulsations depend on several design factors—form, number and
disposition of blades of the impeller and the diffuser, configuration
of the volute, and radial gap between the impeller and the bladed
diffuser or the volute tongue (cutwater).
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Figure 4. Pressure Pulsations in a High-Speed Centrifugal Pump
with Inducer: Dependence of the Total Signal Amplitude on the
Pump Inlet Pressure.

Figure 5. Pressure Pulsations in a High-Speed Centrifugal Pump
with Inducer: Dependence of the Base BPF Component Amplitude
at the Impeller Exit on the Pump Inlet Pressure.

• Influence of radial gap

Radial gap between impeller and volute tongue or bladed
diffuser inlet is an important parameter influencing pressure
pulsation in a centrifugal hydraulic machine. It is defined as:

(3)

Usually it is expressed in percentage of impeller tip diameter D2
or radius R2. Consequently, D3 or R3 relates to the lower edge of
the tongue or inlet of the vaned diffuser. The radial gap is one of
the parameters influencing the intensity of hydrodynamic
interaction between the impeller and the pump casing. Therefore,
the magnification of the radial gap ensures, as a rule, reduction of
all BPF discrete components in the spectra of pressure pulsations
and vibration. The practically total absence of discrete
components in the pressure pulsation spectrum of a centrifugal
pump with vaneless diffuser was observed under D4/D2 = 1.4,
where D4 was the outside diffuser diameter. This corresponds to a
gap between the impeller and tongue equal to 0.45 of the blade
pitch on the impeller external diameter. Just such a distance is
required for the disintegration of a large-scale vortex, which flows
out from the working cascade. It is no wonder, therefore, that

research indicates an exponential growth of pressure pulsations
with radial approach to the tip impeller radius. In practice, the
necessary gap is ensured with cutting of the impeller and (or)
diffuser vanes/volute tongue, which is most effective for small
initial gaps (1.0 to 1.5 percent). An increase of the radial gap more
than 5 percent is not so effective and can also make the pump head
performance worse. The pressure pulsations can even increase in
case of aggravation of the flow conditions in the diffuser vane
cascade. Therefore, it is preferable to select an optimum radial gap
at the design stage.

• Influence of geometry of the impeller

Experimental studies show the tendency of reduction of pressure
pulsations with a reasonable increase in number of blades of the
impeller. However, it is necessary to avoid resonance of pressure
pulsations due to matching of BPF with resonance frequencies of
pipelines or pump working cavity. To reduce overload in the
impeller inlet region, two and three row centrifugal impellers are
made with additional short blades. Significant reduction of pitch
nonuniformity of flow can be achieved by the separation of the
centrifugal impeller by partitions in the meridional plane and
angular shift of blade channels.

It is well known that increase of the exit blade angle of a
centrifugal impeller leads to magnification of pressure pulsations.
The greatest pressure pulsations are created by centrifugal
impellers with forward bent radial blades. In the range of small
angles (10 to 30 degrees), pressure pulsations practically do not
depend on the blade exit angle. The only way to improve prediction
capabilities is the inclusion of impeller flow computation into the
procedure of numerical modeling of pressure pulsations.

• Influence of pump casing design

From experimental data it is known that the lowest level of
vibration occurs in pumps with a vaneless diffuser having D4/D2 =
1.35 to 1.45, where the radial size of the pump is increased at the
expense of reduced efficiency. Application of a so-called “sided
volute” is therefore recommended, accompanied by an efficiency
decrease of 1 to 1.5 percent. A bevel of volute tongue with an angle
of 30 to 45 degrees is widely practiced, as it allows smoothing out
of the blade-passing impulse. These measures, as well as influence
of the geometry of the bladed diffuser and use of damping devices
in the volute, require an appropriate computational prediction.

Review of publications indicates that experimental studies have
accumulated considerable material on the problem of pump
vibration and noise. However, it is not possible to make strict rec-
ommendations for designers and manufacturers by generalizing
these data in a straightforward manner because of their
incompleteness or peculiarity. At the same time, this problem is of
a complex character. It requires numerical computation based on a
theoretical model of pressure pulsation generation by a direct
solution of the main equations of motion of the working medium
in a given pump configuration.

Review of State-of-the-Art of Pressure Pulsation Computation

Nowadays the need has increased to have the ability to
determine by computation the level of pressure pulsations in a
hydraulic circuit during the design stage and to outline design
alternatives. However, until recently, reliable methods were not
developed despite significant progress in the methods of
computational hydrodynamics. This is related to difficulties in the
construction of an adequate mathematical model of the
phenomenon that could allow the creation of an effective computer
code.

The computational determination of pressure pulsations allows
selecting the design variant at the design stage that ensures the
lowest vibration while still maintaining the specific power
parameters, and also evaluates nonstationary loads acting on the
structural elements of the circuit.

( )δ = −D D D3 2 2/



Computational Model of Joffe-Panchenko

This model is the first attempt to treat the problem of hydraulic
vibration in centrifugal pumps with a vaned diffuser. One
important problem of pump design is the choice of the optimum
number of impeller blades z1 and of a vaned diffuser z2. For a
certain unfavorable ratio z1/z2, the amplification of BPF oscil-
lations or its harmonics can occur. In the Joffe-Panchenko (1972)
model, dynamic forces acting on diffuser vanes cause BPF
vibration. Such forces can be represented as a Fourier series.

Factors of such a series depend on the assumed function of force
variation with time (density of the working fluid, profile of flow
velocities, geometric parameters of the blade cascade, gap between
the impeller and diffuser, etc.).

The optimum ratio of numbers of blades is selected so that the
dynamic force and moment obtained by summation over all
diffuser vanes are at a minimum. The fulfillment of the two
inequalities for the first three to four harmonics requires that:

(4)

where:
k = Harmonic order
J = Positive integer

This model is correct when a pump case vibrates as a rigid body.
Besides, an important factor like pressure pulsations in the pump
working cavity is not taken into account here.

The main conclusion derived from this theory is that the source
of pulsations in a centrifugal pump has a determined spatial
structure.

Computational Model of Chen

For the first time a computational model for the determination of
BPF pressure pulsations in the volute casing of a centrifugal pump
with a vane diffuser was created by Chen (1961). The
computational model of Chen imitates the volute casing with a
vaned diffuser: vaned channels of the diffuser and of the volute are
substituted by tubes of constant cross section. The boundary
conditions at the vane channel inlet of the diffuser are given as
acoustic perturbations of pressure and velocity.

At the diffuser channel exit the condition of flow continuity is
imposed. At the beginning of volute and in the throttle, cut T and
O in Figure 6, the boundary conditions are determined by the
appropriate reflection coefficients.

Figure 6. Computational Model of Chen.

In this work, the linearized one-dimensional wave equation of
oscillations in the volute is presented. The solution is noted in
terms of direct and reflected waves propagating toward the throttle
section and in the opposite direction, respectively. The formulae
for the determination of amplitudes of pressure pulsations have
been obtained. However, for the realization of calculations using
these formulae, it is necessary to know the magnitude of velocity
oscillations at the exit of the vane channel of the diffuser.
Determination of velocity pulsations is a complicated hydro-
dynamic problem, which in the quoted work has not been solved.
Consequently, no quantitative result was obtained.

On a qualitative level such an approach allows identification of
an approximate criterion of resonance of pressure pulsations in the
volute as the interference of acoustic waves originating in different
channels of a diffuser is implied in the model. However, a similar
result can be obtained in a simpler way only from the analysis of
phase relations for pressure impulses.

So-called “backward wave resonance” in the initial cross section
of the volute occurs when:

(5)

“Direct wave resonance” will take place according to Chen (1961)
when:

(6)

where:
fr = Frequency of rotation, Hz
Dm = Average diameter of the volute
Um = Average flow velocity of the fluid within the volute
a = Average speed of sound
k = Harmonic number
J = ...�3, �2, �1, 0, +1, +2, +3

Any further development of this method would not provide the
possibility of accounting for influence of pump geometry on
absolute values of pressure pulsations. This theory gives an
example of pure acoustical method of solution of the problem of
determination of pressure pulsation.

Computational Model of Sukup and Other Semiempirical Models

As already mentioned above, for the determination of
amplitudes of pressure BPF oscillations in a pump casing, it is
necessary to know the distribution of flow parameters in the
relative motion on the pitch of the impeller exit radius.

With the approximation of potential two-dimensional flow of an
ideal fluid, such a problem was addressed by Sukup (1974, 1975).
It was proposed that at the exit of each impeller channel, the flow
consisted of an active zone and a zone of return flow. Thus due to
passing of working blades relative to diffuser channels, at the inlet
of the latter there are pulsations of delivery, which can result in
velocity and pressure fluctuations.

This method has two serious defects. First, the application of the
potential flow theory gives in essence an incorrect picture of
relative velocity distribution across the pitch of the working
cascade. Second, a rough simplification of the mathematical model
of generation of pressure pulsations is made: the amplitude of
pressure pulsation is directly proportional to the amplitude of
velocity pulsations in the absolute motion at the diffuser input.
Nevertheless, this theory brings the idea of unsteady boundary
condition as a rotating velocity profile at the impeller exit.

Various semiempirical laws can certainly render a great favor in
an engineer’s work. Such laws may link relative amplitude of
pressure pulsations at the output (exit) of the centrifugal pump to
the operation mode and design factors. However, they can have
only limited application for similar pumps. Besides, they do not
give any information about the level of pressure pulsations
immediately in the pump working cavity and do not take into
account the possibility of emergence of acoustic resonance in the
hydraulic circuit.

“Direct Solution” Method

Some works were published in which the methods of prediction
of pressure pulsations were developed by a direct computation of
nonstationary two-dimensional flow in a centrifugal impeller and
volute with solution of averaged Navier-Stokes equations and k-ε
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models of turbulence. Other approaches used solutions of
hydrodynamic equations accompanied by laser anemometric
measurements.

Computation of pressure pulsation by resolving the equations of
hydrodynamics as developed by Croba and Kueny (1992) and
Croba, et al. (1993), offer a method of computation of
nonstationary two-dimensional flow in a centrifugal impeller and
volute with solution of average Navier-Stokes equations and k-ε
models of turbulence. The computation is carried out by a direct
method on two different grids—for the impeller and the volute.
The transfer of parameters from one area into the other is carried
out with the help of a bilinear interpolation in the zone of
overlapping of finite difference grids (so-called “sliding grids”). In
this method, the essential difficulty in defining the pressure-
boundary-condition at the volute (pump) outlet is not overcome.
Namely, this is assumed to be constant, though it is obvious that the
downstream pressure oscillates at the blade-passing frequency.
There is no possibility of computing correct amplitude of pressure
pulsations in the outlet part of the volute and in the conical diffuser
of the centrifugal pump. Simply it is the result of application of the
model of incompressible liquid.

Another approach using the Reynolds equations is offered in the
work by Chu, et al. (1993). The nonstationary pressure in a volute
is determined by integrating Equation (7).

(7)

Here all the members in the right part are determined
experimentally by a laser anemometric method.

A similar approach has been developed in a work of Thompson,
et al. (1992), where the laser anemometric method was also used,
but the pressure pulsations are calculated by the resolution of
Equation (8):

(8)

where:

i* = ∫ � v2 = Full enthalpy of the fluid

v = Fluid velocity

Certainly unsteady phenomena in centrifugal pumps can be
treated by modern computational fluid dynamics (CFD) by using
some direct unsteady computational procedure. But it will not be
the easiest approach. In the flow part of the pump casing, there are
two modes even two zones of perturbations, which differ in the
physical nature of oscillations and equations describing their
behavior. The first mode is pseudosound oscillation caused by the
unsteady vortex motion of liquid as an incompressible fluid. These
oscillations occur only near the impeller. The velocity of
propagation of the disturbances is equal to the main flow velocity;
they are described by the nonlinear equations of parabolic-
elliptical type. The second mode is the acoustic oscillation, which
extends throughout the entire zone of flow with the speed of sound;
they are governed by a linear hyperbolic equation.

Taking into account the latter fact, CFD simulation of
oscillations in the centrifugal pump (even in any pump) must be
based on an explicit numerical algorithm. The need for stability of
such an algorithm requires a severe limitation to the time step of
computation. In this case, the time step of computation is
proportional to the square of step of space grid and to the square of
Helmholtz number. It gives at least three orders less value of time
step than Courant’s condition requires. On the other side, the finite-
difference grid in the zone of pseudosound oscillation must be
sufficiently fine in order to ensure the correct phase resolution of
unsteady flow in the presence of high gradients of outlet velocity
at the exit of blade cascade of the impeller.

This entire set of conditions leads to the fact that modern three-
dimensional (3D) network simulator (NS) CFD codes for
compressible fluid prove to be ineffective for solving the problem
of optimizing the design regarding pressure pulsation and noise.

Regarding existing 3D NS codes, there will be the following
main difficulties:

• Acoustic fluctuations of pressure are significantly less than
pressure differentials in the environment due to the mean flow;
therefore, the acoustic part of the pressure will have large errors
because of the roundoff errors of a computer.

• Direct approach will require the solution of the equations of
transfer for the wave, and the numerical schemes of second and
third order have large scheme diffusion and dispersion, which will
cause the strong nonphysical damping of the solution and the
appearance of new parasitic acoustic harmonics. After 50 to 100
iterations the wave package, which initially has the form of step on
10 mesh cells, spreads to 20 cells and has a form of hump
(semisinus), which indicates a complete filtration of high-
frequency harmonics.

• During the direct solution it is necessary to solve four
equations—three for velocity and one for pressure—with the use
of a comprehensive grid (minimum of six cells for the length of
shortest disturbance), which will lead to high expenditures of
processing time.

For the solution of this problem a method is proposed that is
based on splitting the equations of compressible fluid dynamics
into two modes—vortex and acoustic. In this case nonlinear
equations for unsteady vortex motion of an incompressible liquid
are solved with a bigger time step. Wave equation relative to the
pressure pulsation that takes into account acoustic impedance on
the boundaries of computational domain is solved by a highly
effective explicit method. As a result, the whole processor time for
both modes of oscillations is reduced.

Developed in six years by the authors’ companies, a specialized
software package became a useful tool for designers and
researchers in the field of vibration and noise problems in
centrifugal pumps and ventilators.

THEORETICAL BACKGROUND OF
THE ACOUSTIC-VORTEX METHOD

Physical Nature of Generation of BPF Oscillations

BPF pressure pulsation and tone noise and vibration are
generated by a stepwise nonuniformity of flow parameters at the
centrifugal impeller exit that causes vortex perturbations. These
perturbations result from the motion of periodically
inhomogeneous flow with a peripheral velocity U2 of the impeller
relatively to the pump casing. Convective transposition of vortex
perturbations is considered as the main physical reason of
nonstationary generation process of BPF pressure pulsations in
the pump. It is well known that the pressure pulsation field in the
working cavity of a centrifugal pump or ventilator may be
represented as a combination of pseudosound oscillations
(“vortex mode”) and acoustic waves (“acoustic mode”). The
vortex perturbations exponentially damp in the limits of the zone,
whose dimension in order of magnitude is equal to the
characteristic vortex size. They generate acoustic oscillations
propagating in the pump working cavity and the outlet pipe with
the speed of sound.

For better understanding of pulsation generation, let us consider
a simplified model—a half-infinite pipe. At the pipe inlet there is a
velocity profile C that moves with the speed U relatively to the
pipe. Consider three main cases:

1. U << C—In this case, there are quasi-steady conditions. The
velocity profile spreads along the pipe at a large distance (an
infinite distance for the ideal liquid).

( )∂
∂

ρ ∂
∂

∂
∂

∂
∂

p

x

u

t
u

u

x x
u u

i

i
j

i

j j

i j= − + + ′ ′












( )∂
∂

ν
2

2 2

2

c t
i div v− ∇







 = ∇ × ×*

1
2

dp
ρ



2. l >> L—Here there is a flow rate pulsation in the pipe (Figure
7). It is an unsteady potential flow.

3. C ~ U and L/l are equal to an integer value and the flow rate
through the pipe is a constant. This case is more relevant for the
pump operation, exhibiting vortex disturbances caused by the
nonuniform flow. This is large-scale turbulence. The characteristic
vortex dimension is l. According to the postulate about cascade
transfer of energy from the large vortex structures to the small ones
(refer to Figure 9 below), the initial vortex perturbations damp
rapidly due to a turbulent energy exchange accompanied by
generation of acoustic perturbations distributed further with
velocity of sound. It is known that the attenuation ε of turbulence
energy E does not depend on viscosity for a large-scale turbulence.

(9)

Thus, for the time period T = l/U ~ l/C:

(10)

In other words, the large-scale vortices completely attenuate within
the length l.

Figure 7. Simplified Model.

Near to the stator inlet the limited zone of vortex perturbations
takes place. Further, in the volute and outlet pipe only acoustic
waves propagate in the working fluid (Figure 8).

Figure 8. Zones of Pseudosound and Acoustic Wave.

The flow domain splits in two zones—zone of pseudosound
with large-scale turbulence and zone of acoustic waves where large
BPF vortices do not exist. Following the model (Figure 7) the
acoustic wavelength:

(11)

is resulting in the nondimensional criterion:

(12)

Where a represents the sound speed.

Assumptions and Mathematical Model

Dissipation of vortices due to diffusion, damping of acoustic
perturbations stipulated by viscosity, and the thermal phenomena
have minor significance here.

There is a strict conclusion from experimental data available that
to develop a mathematical model of pulsating flow in a pump:

• The nonlinear character of the generation process of oscillations
and

• The acoustic nature of their distribution within the flow part of
the machine needs to be taken into account.

Let us make the following assumptions:

• Subsonic flow

• Isentropic flow

• Viscous diffusion neglected

• Acoustic oscillations (velocity of acoustic motion owing to the
compressibility of medium) are small in comparison with vortex
oscillations (velocities of rotational and transitional motion of the
fluid as an absolutely incompressible medium)

Besides, assume that the impeller flow is steady, i.e., the
parameters of flow at the exit section do not depend on an angular
position of the impeller. The last assumption is not a basic
restriction for the applicability of the given method. Recently
computational results were obtained by taking into account the
influence of pump casing on impeller flow parameters.

The velocity in some points of the fluid can be determined as the
sum of a velocity U transitional and rotary motion of a medium as
absolutely incompressible and velocity of a pure strain Va
(Cauchy-Helmholtz theorem).

Velocity Va represents the acoustic perturbations enabled by the
compressibility of medium. Let us enter scalar function-acoustic
potential ϕ. Then the acoustic velocity:

(13)

Thus for the fluid velocity the following expression is obtained:

(14)

The velocity of incompressible flow determines the vorticity.
Let us substitute now the relation (Equation 14) in the main Euler
equations of a compressible fluid. For the space scale and the
characteristic velocity, take the impeller radius R2 and impeller tip
velocity u2. Then the dimensionless quantities of radius (r),
velocity (U), time (t), and enthalpy (i) will be as follows:

(15)

Here z1 is the number of main impeller blades. An equation of
pressure oscillations (due to acoustical and vortex motion) is
obtained:
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(16)

Parameter Λ is the dimensionless similarity criterion of the given
problem. A detailed derivation of Equation (16) is outlined in
APPENDIX A.

It is simple to show that the parameter Λ is the product of the
Mach number and the Strouhal number and represents the ratio of
the impeller tip radius R2 to the main BPF wavelength λ. It
corresponds to the Ho (Helmholtz) number in classical acoustics.

(17)

where:
fb1 = Main blade-passing frequency
a = Speed of sound

The amplitude of pressure pulsation in a hydraulic machine is by
an order of magnitude lower than the mean undisturbed pressure.
Thus for enthalpy oscillations (as a sum of vortex and acoustic
perturbations) it is possible to write approximately:

(18)

where:
P = Pressure of compressible fluid
P0 and ρ0 = Mean pressure and density

Similarly for oscillations of the function g, pressure pulsation
(Pv � P0) is obtained in “vortex-mode motion”:

(19)

Solution of Equation 16 is divided into two parts—computation
of the incompressible flow for the determination of the disturbing
function, and solution of the inhomogeneous wave equation for the
determination of h.

The problem of pressure oscillation field determination splits
into three main steps. The first one is the incompressible liquid
flow analysis in the impeller to obtain unsteady boundary
condition of the vortex mode flow. This boundary condition can be
represented in the form of rotating velocity distribution “attached”
to the impeller exit diameter. The second step is the unsteady
vortex mode flow computation in the working cavity of pump or
ventilator with consequential determination of the disturbance
(right-part) function, and the third one is solution of the wave
equation relative to pressure oscillations. The computational
procedure is built on two-dimensional (2D) numerical methods. In
that case, a uniform radial velocity distribution along the impeller
or (equivalent) volute width is applied.

By introducing the polar coordinate system Θ - R at the pump
axis and using the vorticity and streamline functions by means of
the relations:

(20)

and

(21)

The following equations are obtained:

(22)

Boundary Conditions

Impeller Flow Analysis

Impeller flow is treated by the discrete vortex method (DVM).
The DVM is used for impeller flow computation. Following recent
achievements in the theory of vortex turbulent flow, DVM gives a
simple and clear way of modeling large-scale or coherent
structures. The important fact established is that the behavior of the
large-scale turbulence does not depend on the viscosity of liquid.
Large-scale characteristics of the flow can be described by Euler
equations. The DVM thus becomes a very effective method for
analyzing the zone of large-scale turbulence that is the cause of
BPF pulsation (Figure 9).

Figure 9. Cascade Pass of Turbulent Energy.

The DVM is a genuine unsteady method and it has a potential
for the full simulation of turbulence, including stochastic
phenomena and viscous diffusion in 3D space. The DVM gives a
complete mathematical description of turbulence without
additional assumptions such as k-ε model, etc., in 3D NS codes.

The software package has modular structure so that it is possible
to use a third-party code for impeller flow computation. DVM is
described in APPENDIX A.

Having the pump geometry defined, the first step in the impeller
flow analysis gives an unsteady boundary condition for the
solution of vortex mode equations in the form of (Ψ, ζ) equations.

Vortex Mode Flow

At the second step, the unsteady direct procedure provides a
converging oscillatory solution for the incompressible liquid flow
(so called “pseudosound” oscillations). In this step the following
boundary conditions apply:

• On the pump volute wall:

(23)
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• At the volute inlet boundary:

(24)

• At the pump casing exit:

(25)

Impedance Condition for the Wave Equation

By using a local specific acoustic impedance Z (complex value),
the boundary condition at the impeller outlet and pump casing exit
section can be put in the form:

(26)

where:
k = Number of BPF harmonic
n = Normal direction to the boundary

Volute casing walls are assumed rigid. Nevertheless, there is a
possibility of defining a local specific impedance of the pump
housing wall that will be interesting to study the effect of damping
coating.

Solution Method

The problem of pressure oscillation field determination splits
into three main tasks. The first one is the incompressible liquid
flow analysis in the impeller to obtain unsteady boundary
condition of the vortex mode flow. The second one is the unsteady
vortex mode flow computation into the working cavity of the pump
with consequential determination of the disturbance function, and
the third is the solution of wave equation relative to pressure
oscillations, satisfying the complex specific impedance for
acoustic mode and unsteady boundary condition for the
pseudosound oscillations.

Application Domain

The code is applicable to centrifugal pumps or ventilators with
specific speed ns < 150 (ns = 193.3 ω QH�3/4, SI units are applied,
ns < 2120 using rpm, US gpm, ft) under the normal operation
mode. Normal operation mode guarantees the accuracy of
computation within 1 to 3 dB, based on the following conditions:

• Subsonic flow

• Homogeneous fluid

• No cavitation, operation is before the first critical mode

• Delivery range is 0.8 to 1.3 of the BEP value

Geometry may include arbitrary impeller blade profiles and
arbitrary volute-diffuser geometry with one outlet pipe.

A built-in interface for the determination of impedance
boundary conditions gives a possibility of taking into account the
connected circuit.

Software Package and Computation Process

Numerical algorithms are realized in three main modules written
in C and C��. Interface code permits an easy input of data such
as impeller and casing geometry, operation mode, parameters of
working fluid, acoustic impedance, and parameters controlling the
computation process. It provides an environment to work with
3 � 3 different cases simultaneously. Once the computation
procedure, which goes consequently through three main steps,
finishes, it becomes possible to obtain the fluctuating pressure map
in the casing at a selected time point as well as the pressure time
history at any point within the working cavity with the
corresponding root-mean-square (RMS) value and spectrum data.

EXAMPLES OF COMPUTATION
AND EXPERIMENTAL VALIDATION

Experience shows that amplitudes of BPF pressure pulsation
depend on several design factors—shape, number, and disposition
of blades of the impeller and diffuser vanes, configuration of the
volute, radial gap between the impeller, and volute tongue or
bladed diffuser.

Due to the presence of two modes of pressure oscillation, the
pump geometrical parameters can affect pressure pulsation in the
pseudosound zone and in the zone of acoustic oscillations. For
example, a change of radial gap influences vortex (pseudosound)
fluctuations and acoustic pulsations as the radial gap is located in
the zone of pseudosound, i.e., in the source of acoustic waves.

Amplification of pressure pulsation can happen due to matching
of frequencies of oscillations with acoustic resonance frequencies
of both the outlet duct and the pump casing flow cavity. The
specific resonance phenomena often take place due to interaction
between acoustic waves emitted from different vane channels with
different phases defined by relation of impeller blades and diffuser
vanes. Therefore, the variation of rotational speed, number of
impeller blades, and diffuser vanes can substantially modify the
amplitudes of pressure pulsation due to the resonance in the pump
cavity. All these topics can be the subject of a computational study
with the numerical method developed. Possible tasks that can be
solved with the method are outlined below.

• Pressure pulsations in various points of a pump volute casing
and diffuser

• Influence of flow rate

• Influence of rotation speed

• Influence of radial gap

• Influence of geometry of the impeller (number and shape of
blades, intermediary short blades, arbitrary number of blade rows)

• Influence of a pump casing geometry

• Effect of damping coating

• Effect of the outlet duct impedance

• Influence of geometry of the bladed diffuser

• Determination of unsteady loads acting on impeller and diffuser
blades

• Determination of diagnostics’ signs such as breakage of impeller
blade

In Table 1, one can see a few computational estimations of the
influence of various factors on pressure pulsation amplitude.

Table 1. Various Factors Influencing Pressure Pulsation.

Validation Using Experimental Centrifugal Pump

A centrifugal experimental air pump (Tourret, et al., 1991) was
used for validation of the numerical method. The experimental pump
was tested with rotation speed of 1400 rpm and flow rate 0.0139 m3/s
(0.0456 ft3/s). There are more than 300 measurement points of
pressure pulsation located in the volute and at the pump exit.

In the computational procedure, the unsteady boundary
condition was obtained as a stationary velocity profile at the
impeller exit that rotates with the impeller. This case corresponds
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Factor Rough estimation of influence 
(dB) 

Position in the pump working cavity 15 

Radial gap change from 4% to 7% (no resonance case) 6 
Increasing rotation speed by 20% (no resonance case) 3 
Specific impeller geometry change (no resonance case) 9 
Relation of numbers of impeller and diffuser blades 
(resonance) 

20 

Damping coating in the conical diffuser 8 
Outlet pipe acoustic impedance (resonance) 15 
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to symmetrical impeller flow when the impeller is considered
without volute and discharging into an infinite medium.
Distribution of relative velocity (reduced by impeller tip velocity)
in impeller channels (Figure 10) shows low-velocity zones near the
suction side of each blade.

Figure 10. Relative Velocity in Impeller Channels.

This leads to the nonuniform distribution of flow parameters at
the impeller exit that are presented in Figure 11 and Figure 12. In
these figures, the pressure side of the blade channel is on the left,
while the impeller rotation goes to the right. Thus, the maximum
of radial velocity and minimum of absolute tangential velocity are
located near the pressure side of the blade.

Figure 11. Absolute Radial Velocity along the Impeller Channel
Span at the Impeller Exit.

With more than 10,000 overall mesh nodes (number of mesh
nodes in impeller channel span is 12), total computation time on a
Pentium® II processor is six hours. Seven BPF harmonics are
included for the computation of pressure pulsation. The pump has
no exit pipe, thus a computation open-end-condition is taken for
the acoustic mode.

The characteristic feature of unsteady pressure in the pump
volute is the presence of lower pressure zones linked with blade
exit edges and rotating with the impeller. Computation also shows
such zones (Figure 13). For comparison, Figure 14 presents the
experimental oscillatory part of the static pressure field.

Figure 12. Absolute Tangential Velocity along the Impeller
Channel Span at the Impeller Exit.

Figure 13. Unsteady Pressure Map in the Volute (Computation for
Seven Harmonics of BPF); Grayscale Palette from �14Pa to
�14Pa.

Figure 14. Unsteady Pressure Map (Experiment, Lower Flow Rate).



In the spectrum, there are three main harmonics of blade-passing
frequency. In Figure 15 and Figure 16 there are a comparison of
amplitude maps (computed and measured) for the first harmonic of
blade-passing frequency. Furthermore, the pressure amplitudes
stand in good agreement with the experimental data. The mismatch
is mostly below 3 dB.

Figure 15. Map of the First Harmonic Amplitude (Computation).

Figure 16. Map of the First Harmonic Amplitude (Experiment).

Such agreement in amplitude map gives a possibility of
obtaining both the right amplitude and also the shape of the
pressure signal. In Figure 17 and Figure 18, the computed and
measured signals of pressure pulsation at a point in the volute are
shown. The open-end-condition at the diffuser exit enforces
pressure pulsation amplification on the third harmonic of blade-
passing frequency.

Exit Impedance Effect—Computational Prediction

The study case corresponds to the actual geometry of the
experimental pump discussed above. The same pump was
computed for open-end and infinite-pipe exit condition to
determine the exit impedance effect on pressure pulsation within
the pump working cavity. It was found that in the major part of the
volute the exit impedance practically does not affect pulsation
amplitude. Near the throat of the volute, pulsation has almost the
same amplitude but a different shape, as can be seen in Figure 19.

Figure 17. Pressure Pulsations in the Volute Throat [Pa]
(Computation).

Figure 18. Pressure Pulsations in the Volute Throat [Pa]
(Experiment).

Figure 19. Computed Pressure Pulsation in the Volute Throat
Section of Pump.

The biggest difference between these cases was found certainly
at the pump exit (Figure 20) and outlet pipe where there is a
considerable difference both in amplitude and in the shape of
signal.

Incorporation of the Influence of the
Volute on Impeller Flow Computation

The distribution of impeller flow velocity along the impeller exit
is represented in absolute reference frame. Absolute velocity
distribution is obtained in 72 equidistant angular (every five
degrees) points on the radius 1.018 R2. Volute tongue edge angular
position is referenced as zero degrees.

The point at zero degrees is named “1” on velocity distribution
plots. Point numbers increase in counterclockwise direction. Point
72 is just slightly (five degrees) before the tongue.

After each turn of the impeller, Fourier harmonic analysis was
performed to define mean value and amplitudes of radial and
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Figure 20. Computed Pressure Pulsation at the Pump Exit.

tangential components of absolute velocity. Blade passage period
was taken as the main period of Fourier analysis.

The numerical procedure described in the previous section uses
symmetrical impeller flow analysis and does not take into account
the influence of the stator on impeller flow parameters. It is not a
strict limitation. A new method has been developed to study this
phenomenon. In this section computational results are presented
for the same experimental pump described in the previous section.
The code gives an unsteady behavior of the impeller flow. On the
initial stage of impeller rotation, it is possible to see formation of
starting vortices in each channel (Figure 21).

Figure 21. Starting Vortices in Impeller Channels.

A bit later there is a gradual damping of starting vortices,
however the flow in the impeller continues to be asymmetrical. It
was found that a spatial perturbation of velocity distribution was
caused by the initial flow condition, and convergence improved
after six to eight impeller turns. The main goal is to study the
unsteady velocity and pressure in impeller channels caused by the
influence of volute casing or bladed diffuser on impeller flow
parameters. It gives a more accurate prediction of pseudosound
oscillation near the volute tongue (or diffuser blade) and unsteady
load acting on impeller blades and the rotor. Computational data
include 10 impeller turns after starting its rotation.

Mean Velocities

General features of mean velocity distributions follow. Near the
volute tongue edge radial velocity has the absolute minimum. Just
after the tongue, in the beginning of the volute, there is an absolute
maximum of radial velocity within angle range from zero degrees
to 25 degrees.

Contrarily, tangential velocity has an absolute maximum near
the tongue edge and goes to minimal value after 30 degrees. These
features of velocity distribution are established straight away, after
the first impeller turn.

At the same time, there is a big spatial perturbation of velocity
distribution. After the first impeller turn peaks of radial and
tangential velocity appear at 140 degrees to 60 degrees angular
position. Then this perturbation slowly shifts to lower angular
positions with attenuation of (spatial) amplitude. It can be seen in
Figure 22 and Figure 23 that after six turns of the impeller there is a
close convergence of the mean velocity distribution, although there is
a tendency of subsequent attenuation of initial spatial perturbation.

Figure 22. Mean Value of Radial Velocity; Impeller with Volute.

Figure 23. Mean Value of Tangential Velocity; Impeller with Volute.

Velocity Oscillation

Velocity oscillation data were obtained as nine harmonics of
blade-passing frequency. Amplitudes of the first BPF harmonic of
radial and tangential velocity are presented in Figure 24 and Figure
25. It could be proved from these data that after six impeller turns
there is definitive convergence in spatial distribution of amplitude
values. They have local maximum near the tongue edge, absolute
minimum at 20 degrees and local maximum at 60 degrees.

The mean value of tangential velocity under volute presence is
less than for axisymmetrical computation. The same must be
indicated about the amplitude of tangential velocity fluctuation.

BPF Pressure Pulsation

BPF pressure pulsation was computed on the same polar grid as
in the previous computational test but using the new boundary



Figure 24. Amplitude of the First Harmonic of Radial Velocity.

Figure 25. Amplitude of the First Harmonic of Tangential Velocity.

condition procedure. Unsteady boundary condition for the vortex
mode flow is defined from Fourier coefficients of impeller flow
parameters. Computed signals of pressure pulsation were
compared with experimental data. Location of pressure sensors in
an experimental air pump is shown in Figure 26.

Figure 26. Installation of Pressure Sensors in Experimental Pump.

Pressure signals for different points indicated in Figure 26 are
compared for the version MK1 (symmetrical impeller flow in
infinite medium) and MK3 (impeller with volute).

Total amplitude of computed signal (MK3 versus MK1) was
compared with experimental data as it is shown in Figure 27.
Experimental amplitudes are represented by minimal (MIN) and
maximal (MAX) values. The difference between min and max
values shows some instability in the amplitude of experimental
signals. Version MK3 improves prediction of pressure pulsation
amplitude near impeller exit (sensors 6 and 10) by approximately
6 dB. This is important for improving the prediction accuracy of
the unsteady loads acting on the tongue, diffuser vanes, and
impeller blades. At the same time, one can see that prediction of
version MK1 is valuable for the rest of the pump flow part.

Figure 27. Comparison of Computational Data with Experiment.

Computational Prediction of 
Diagnostic Sign of Impeller Breakage

In all steps of version MK3 computation, direct numerical
procedures will be used. So, the pressure pulsation field can be
obtained at each time point. It is possible to simulate the really
unsteady behavior of flow due to a change in pump geometry
and/or operation mode. One will be able to predict, for example,
important signs of pump breakage by computational experiments
and gain indicators for a diagnostic maintenance system. Another
possibility is to find steady oscillatory conditions corresponding to
different stages of the impeller deterioration. In the study presented
below three cases are computed for a pump with an impeller
having six blades.

One of the blades gets some deterioration of the inlet edge.
Computation is completed for six harmonics of the rotor frequency.
It can be seen in Figure 28 that initial deterioration brings an
increase of the amplitude of the second harmonic of rotor
frequency in pressure pulsation signal at the pump exit. With
extending of a deterioration the first harmonic of rotor-frequency
becomes dominant.

Figure 28. Pulsation of Pressure at the Pump Exit.
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Radial Gap Effect—Comparison with Experimental Data

Radial gap is expressed by Equation (3). Computational study of
radial gap effect was performed for an industrial-type centrifugal
pump tested with measurements of pressure pulsation. The pump
has an impeller outlet radius of 173 mm (6.8 in) with five blades.
The BEP operation mode case of 1200 rpm, Q = 0.066 m3/s
(0.2165 ft3/s) was computed; exit impedance condition was
“infinite-pipe.”

The study covered four volutes with radial gaps of 2, 7 (actual
pump geometry), 11, and 18 percent. The radial gap change was
made without impairing the rest of the pump geometry. All
geometry parameters of the conical diffuser and tongue were kept
unchanged (Figure 29). Therefore, the result presents a “pure”
effect of the radial gap on pressure pulsation.

Figure 29. Pump Geometry for Different Radial Gaps.

The numerical dimensionless amplitude of the total signal (four
BPF harmonics included) defined with the formula:

(27)

was derived for two points—pump exit and lower edge of tongue,
and then compared (Figure 30) with experimental data published
by Zogg and Bolleter (1993).

Figure 30. Influence of a Radial Gap on Total Amplitude of
Pressure Pulsation.

The experimental data suggest the possibility of predicting an
absolute effect of the radial gap change. These data show that there
is a considerable difference in pressure pulsation amplitudes in a
pump cavity—the upper level computed relates to the volute
tongue point.

Computational Data on Influence of Radial Gap Change

A computational study was performed for the same industrial
water pump described in the previous section, which included
three volutes (Figure 31): case 1 with a radial gap of 7 percent
(actual pump geometry) and cases 2 and 3 with a radial gap of 11

percent. In case 2, the radial gap change was made without
affecting the rest of the pump geometry; all geometry parameters
of the conical diffuser and the tongue were kept unchanged. In
case 3 the same increase of the radial gap was reached by cutting
the tongue.

Figure 31. Increasing of Radial Gap (1 - 7 Percent, 2 - 11 Percent,
3 - Cut to 11 Percent).

In Figure 32 computed dimensionless amplitudes of total signal
(four BPF harmonics included) are presented. It can be seen that
the tongue cut is a more effective method for amplitude reduction,
but in case (3), the shape of the signal essentially changes with
increase of the second BPF harmonic.

Figure 32. Reduced Pressure Pulsation “h” on the Volute Tongue
(1 - 7 Percent, 2 - 11 Percent, 3 - Cut to 11 Percent).

Unsteady Loads Acting on Impeller Blades

Using the MK3 method, one is able to compute unsteady loads
acting on impeller blades in the industrial water pump described in
previous sections. They are obtained by a direct unsteady
computation of static pressure field. The data outlined concern
tenth impeller turn. In Figure 33 the instantaneous distribution of
blade load is presented at the instant when one impeller blade is
passing the volute tongue. The load is maximal for that blade.

( )A A U= ⋅/ 1
2 2

2ρ



Figure 33. Unsteady Loads Acting on Impeller Blades.

In Figure 33 the load acting on the volute casing is shown as
well, but these data have only qualitative significance as the current
version of the DVM method has no possibility of accurately
calculating loads acting on the casing of pump.

Time curves of radial and tangential forces acting on different
blades are presented in Figure 34 and Figure 35. A minus sign
shows that these forces act against a positive direction of velocities.
It can be stated that the radial and tangential force has a maximum
when a blade is passing the volute tongue.

Figure 34. Radial Load Acting on Different Impeller Blades.

The next blade has a minimal load at that moment. Behavior of
the radial and tangential force is similar but amplitudes differ.
Radial force changes from 300 N to 1300 N and tangential force
changes from 120 N to 600 N. With such data, it is possible to
estimate the pump power and vibration of the rotor due to
hydraulic forces.

Figure 35. Tangential Load Acting on Different Impeller Blades.

Effect of Impeller Geometry Change—Computational Prediction

Influence of intermediary short blades was computationally
studied on the base of a new pump under development. Six types
of impeller geometry include five long blades (impeller 3), five
long and five short blades positioned axisymmetrically at the
impeller exit (impeller 4), the same number of long and short
blades but positioned nonaxisymmetrically at the impeller exit
(impeller 5), and other types with the same number of blades
(impeller 6, 7, and 8). All computations were completed for the
same pump casing of 30 percent radial gap and the same operation
parameters. “Infinite-pipe” condition was defined at the pump exit.

Impeller Geometry Change

The effect of Coriolis forces and secondary flows on parameters
of flow in a blade channel of a centrifugal impeller is distributed
nonuniformly. Along the angle coordinate the relative velocity and
flow angle are higher near the pressure side of the blade channel.
Near the suction side of the blade the low energy zone is formed.
The task was to act on the low energy zone of flow with
intermediary shortened blades.

For better understanding of the impeller geometry change,
Figure 36 shows consecutive changes in geometry by adding
different intermediary profiles to the long profile 3. The inlet edge
of the short blade penetrates into the low energy zone. The exit
blade angle is altered as well to obtain a more optimal result.
Profile 7 gave the best result in reduction of BPF pressure
pulsation. Profile 3 of the long blade was unchanged for all cases
computed.

Figure 36. Change of Impeller Geometry by Adding Splitters.

Distribution of Flow Parameters
along the Blade Channel Span

Distributions of radial and tangential velocity components along
the blade span between two long blades shows a considerable
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change of nonuniformity of flow. Additional blades give an
additional peak in the velocity distribution. For profile 7 two peaks
are approximately equal, which gives more balanced flow delivery
at the impeller exit. Besides, this gives a rise of impeller head of 20
percent.

It is found that nonuniformity of the distribution of tangential
velocity component was reduced due to influence of intermediary
blades.

The initial negative peak in vorticity distribution was split into
two approximately equal parts. For profile 7 these parts are more
balanced in value and space—one peak being situated in the
middle of the main channel.

Pressure Pulsation

Analysis of the amplitude distribution of the first BPF harmonic
shows that all impellers with intermediary blades give reduction of
amplitude. For impeller geometry 7 it looks like a complete
elimination of the first harmonic. This result shows the importance
of providing specific impeller geometry to achieve a desired
pressure pulsation spectrum.

It can be seen that the level of amplitude of the second harmonic
for all geometry types undergoing study is comparable due to the
presence of two peaks of vorticity in impellers with intermediary
blades. This brings some amplitude rise at the pump exit. However,
the level of amplitude is smaller then for the first harmonic.
Therefore, total amplitude of BPF pressure pulsation is reduced.
Dimensionless pressure pulsation signal at the pump exit (Figure
37) shows a considerable change in amplitude as well as in shape
of signal. Intermediary blades give a relative rise of the second
BPF harmonic but the total amplitude is lower.

Figure 37. Reduced Pressure Pulsation “h” at the Pump Exit.

Regarding the reduction of pressure pulsation, profile 7 must be
indicated as a very good perspective to reduce pressure pulsation at
the main BPF frequency and total amplitude of pressure pulsation
into the pump cavity and in the outlet pipe. It reduces total
amplitude by a factor of three.

This study demonstrates the main advantage of the software
package to rapidly provide computational experiments in the early
stage of design in order to select the right direction of the whole
development project without experimental costs.

Computational Data on the Effect of Helmholtz Number

The Helmholtz number is represented in acoustic-vortex
equation by parameter Λ. Figure 38, Figure 39, and Figure 40 show
the distribution of amplitude of the first harmonic of BPF in the air
experimental pump and two types of ventilators. All machines have
a simple volute design, but parameter Λ differs considerably.
Besides, in the ventilators the relative size of vortex perturbations
is much less because of the many blades of the centrifugal impeller.
In the last case (Figure 40) the transverse dimension of the volute
is comparable with the impeller diameter. The light zone in the

grayscale pictures divides domains with low (“L”) and high (“H”)
amplitudes. At small Λ (air pump), pressure oscillations in a
considerable part of the volute are formed by pseudosound
oscillations having high amplitude. Low-amplitude zone at the
pump exit (Figure 38) is obtained due to the effect of “open-end-
condition.”

Figure 38. Distribution of the First BPF Amplitude; Simple Volute;
Λ = 0.04.

Figure 39. Distribution of the First BPF Amplitude; Simple Volute;
Λ = 0.37.

In the ventilators, the zone of high amplitudes is fixed only in
immediate proximity to the impeller exit, and the remaining part of
the volute is occupied by acoustic waves. “Infinite-pipe-condition”
is applied at the exit cross-section for both ventilators.

In the last case (Figure 40), one can see two low-amplitude
(“node”) zones in the volute. It shows that transverse mode of
acoustical pressure pulsation occurs in this volute.



Figure 40. Distribution of the First BPF Amplitude; Simple Volute;
Λ = 0.48.

Computation of air pump model with bladed diffuser has been
undertaken by using curvilinear 2D coordinate system. “Infinite-
pipe-condition” was applied at the pump exit. The results are
shown in Figure 41. Although Λ = 0.14 in this case, the pressure
pulsation field is produced by interaction of acoustic waves
outgoing from different channels of the bladed diffuser. Due to
amplification effect, maximal amplitude is found within the volute
and outlet part of the bladed diffuser.

Figure 41. Distribution of the First BPF Amplitude; Bladed
Diffuser; Λ = 0.14.

CONCLUSIONS

• Distribution of BPF pressure pulsation amplitude within the
volute casing of a centrifugal pump (ventilator) depends on
criterion Λ (relation of impeller tip radius to the main BPF wave

length) and volute transverse dimension. In a pump with bladed
diffuser, maximal amplitudes of BPF pressure pulsation can occur
in the volute due to acoustical resonance.

• With the same radial gap the amplitude and shape of pressure
pulsation signal depend on the thickness of volute tongue.

• Numerical method taking into account the influence of the pump
casing on impeller flow improves the prediction accuracy of
pressure pulsation near the impeller exit. It is possible to compute
unsteady blade loads, unsteady momentum (power), and hydraulic
vibration of the rotor. Prediction of pressure pulsation based on the
axisymmetrical impeller flow data is valuable for the rest of the
pump flow passage.

• Impeller with additional shortened blades gives reduction of
BPF pressure pulsation and increase of pump head by 20 percent
against the same impeller without shortened blades.

• Computational study shows that the initial deterioration of the
inlet edge of one impeller blade causes an increase of the second
harmonic of rotor frequency in pressure pulsation signal.

APPENDIX A

Main Equations

Omitting appropriate terms due to above-mentioned
assumptions, main equations of motion of a compressible medium
are as follows:

(A-1)

(A-2)

(A-3)

The mathematical model is based on a representation of fluctuating
flow velocity V as a combination of vortex and acoustic modes,

(A-4)

where:
U = Velocity of transitional and rotational motion of  incompressible

liquid (vortex mode)
Va = Velocity of pure deformation (acoustic mode)
ϕ = Acoustic potential

Thus the velocity of incompressible flow determines the vorticity.
Let us substitute now Equation (A-4) in the main equations. After
a few transformations the equation results in:

(A-5)

The disturbing function in the right term of Equation (A-5) can be
expressed through a velocity field of flow of incompressible fluid
(vortex mode):

(A-6)

Upon transferring the convective term in the time derivative to the
right side of Equation (A-5) we get:

(A-7)

where S designates the disturbing function, defined from the field
of velocities of vortex mode flow:

(A-8)
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and K the convective term:

(A-9)

Let us proceed now to dimensionless variables. For the space
scale and the characteristic velocity we shall take the pitch of
working cascade l2 and the peripheral velocity u2 at the exit diameter
of the impeller. Then the dimensionless quantities are as follows:

(A-10)

Substituting Equation (A-10) into the Equation (A-7), we get:

(A-11)

Parameter Λ =    is the dimensionless similarity criterion of the
given problem.

As a rule, in pumps Λ < 0.3. Therefore in Equation (A-11) the
term Λ2K is at least by an order of magnitude smaller than S.

Thus, for low harmonics of BPF pressure pulsations it is
possible to drop the convective members in the wave equation:

(A-12)

For an undisturbed flow ϕ = 0 and:

(A-13)

The functions i and j can be expressed through mean and pulsatory
component:

(A-14)

The amplitude of pressure pulsation in the pump is by an order
of magnitude lower than the mean undisturbed pressure. Thus for
enthalpy oscillations it is possible to write approximately:

(A-15)

Similarly for oscillations of the function g we obtain:

(A-16)

The last expression shows oscillations produced by
nonstationary vortex motion of the medium (in the incompressible
motion)—so-called “pseudosound.” Considering the formulae
given by Equation (A-13), Equation (A-14), and Equation (A-15),
we obtain from Equation (A-12) an equation of pressure
oscillations (due to acoustical and vortex motion):

(A-17)

where S
~′ = � ∆g is the nonstationary part of the function S.

Solution of Equation (A-17) is divided into two parts—
computation of the incompressible flow for the determination of
the disturbing function and solution of an inhomogeneous wave
equation for the determination of h.

Discrete Vortex Method

The DVM concept is based on three main postulates:

• Turbulence is a vortices’ motion (kinematics and transformation).

• In relation to our problem vortices mainly appear because of
flow breaks from sharp edges and due to the wall layer separation
(flow break).

• The transition from a deterministic flow to the turbulent one
results in loss of stability of vortex structures (important for future
simulations of turbulence pressure pulsation).

Physical Meaning of DVM

The fundamental formulation of DVM consists in the
transformation of a continuous vortex sheet (tangential break) to
distribution of discrete vortices.

The surface of tangential flow break (Figure A-1) is the limiting
case for a vortex layer (sheet) with a vortex density γ = VS2 � VS1.
As P1 = P2 and Vn2 = Vn1, centers of “elementary” vortices that
form the vortex sheet, move at the velocity of flow, the circulation
along a segment of sheet is constant. It is thus possible to replace
the sheet with the set of discrete vortices of constant intensity:

(A-18)

Figure A-1. Tangential Flow Break.

These are so-called free discrete vortices. They move with the flow.
The physical meaning of the vortex is very straightforward:

following Stokes we can obtain:

(A-19)

The velocity at a point α can be found from relations:

(A-20)

Intensity of the wall vortices is derived from the condition of
impenetrability and condition of constant circulation (Thompson
theorem). When finding Γj and  Γk on S and σ it is possible to find
the potential of flow and velocity field.

Criteria of Flow Separation

In the separated flow, it is necessary to define criteria of flow
separation that follows the vortex generation (Figure A-2).

Under flow separation, we mean the process when the liquid
detaches from the wall with a nonzero velocity. Therefore, the S
and σ are tangent at the flow break point. At this point between σ
and S, the velocity of liquid is equal to the velocity of motion of the
break point.

The velocity of a free discrete vortex roll off is γ*/2 where γ* is
the vorticity on σ at the break point.
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Figure A-2. Flow Separation with Creation of a Free Vortex Sheet σ.

Vorticity at the break point is defined by the formula:

(A-21)

where:
r* = Curvature radius of σ
V*S1 and V*n1 = Tangential and normal velocities of σ in the flow

break point

Definition of the Problem

The statement of problem can be formulated as follows: in an
unbounded incompressible unviscous liquid there is a finite
number of velocity tangential breaks, which behave as blade
surfaces Σ (x, y, t) or as free sheets σ (x, y, t) caused by the flow
separation from blade surfaces. At the origin of the coordinates,
there is the specific point—vortex-source Q0 � iΓ0. Except of the
mentioned features, the flow has a potential, satisfying the Laplace
equation:

(A-22)

Boundary conditions on the blade surfaces Σ are conditions of
impenetrability. Boundary conditions on the free sheets σ are
conditions of continuity of pressure and normal velocity (impene-
trability condition) under transition from one hand of sheet to
another one:

(A-23)

At infinity the liquid is at rest:

(A-24)

It is possible to define Σ and σ as a finite number of discrete
vortices Γj and Γk to determine Φ at an arbitrary point. The
following formulas serve the determination of velocity field:

(A-25)

(A-26)

where:
x, y, Θ, R = Coordinates of point, where velocity is defined
rk,,j, θk,,j = Polar coordinates of discrete vortex Γk,,j.

Finite Difference Methods

For the numerical solution of the acoustic-vortex equations,
nonstationary finite-difference methods are used. Mathematical
domain representing the pump region is covered by a uniform
rectangular grid (i, j) with steps ∆η, ∆ξ. Time points (k, l) with a
step ∆τv for vortex mode equations and with a step ∆τa for wave
equation are used. Introduction of different time resolution in two
equations provides substantial economy in machine time and
computer memory, from the stability conditions ∆τa < ∆τv
approximately by two orders. The ζ-equation is solved with a
modified “second upwind scheme,” and for Ψ-equation an elastic-
viscous-plastic method (“EVP method”) or a fast semi-implicit
algorithm is applied. Pressure fluctuation is computed by means of
a direct method. Finite-difference analogue of differential
equations in the inner grid nodes is expressed by the formulae:

(A-27)

(A-28)

(A-29)

(A-30)

Stability Conditions

The following inequalities define the limits of the time step for
vortex mode equation (∆τv) and for wave equation (∆τa):

(A-31)

Convergence Criteria

Convergence of the iteration process for the vortex mode is
controlled with two criteria:

(A-32)

where:
k = Current time point
k�N = Time point shifted back by one oscillation period
N = Number of time points in the oscillation period

The convergence condition under the first criterion X1
k ≤ ε1 is

checked after each impeller turn. If the condition is reached, then
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X2
k is calculated for the second check—X2

k ≤ ε2 (ε1, ε2 are
constants). The convergence condition for the wave solution is
X3

k ≤ ε3 (ε3 is a constant) where:

(A-33)

where:
l = Current time point
l�M = Time point shifted back by one oscillation period
M = Number of time points in the oscillation period
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