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ABSTRACT

The dynamics (movement) of the check valves in a reciprocating
power pump determine whether the pump will operate quietly and
smoothly, or noisily with pulsation and vibration. Although piping
pulsation and vibration are, to a degree, functions of the system
design, improper pump valve dynamics contribute a significant
portion of the pulsation problems in many installations.
Many reciprocating power pumps, operating in industrial

installations, have been found to be fitted with suction and
discharge valve springs that are too weak. The weak springs do not
close the valves soon enough, as the plunger reverses, causing the
valves to be slammed onto their seats, creating a noisy pump,
hydraulic shocks, and possible damage to the valves and/or
seats. The hydraulic shocks can also cause damage to other pump
components, the drive train, and to the system. Suction and
discharge pipes may vibrate, piping and instruments may be
damaged, and pump net positive suction head (NPSH) requirements
may be high. To reduce the pulsations and vibrations, owners
frequently resort to the installation of pulsation dampening
equipment in the piping, when stronger valve springs may have
been adequate to produce a quiet, smooth-running pump.
Starting with either the maximum valve lift, or the maximum

closing impact velocity, simple equations of motion can approximate
the displacement (lift), velocity, and acceleration of the valve, all
based on crankshaft rotative speed. The maximum lift can then be
used to calculate the NPSH required by the pump.

INTRODUCTION

Industrial power pumps are available in two basic configurations.
Figure 1 shows a horizontal pump, with the typical vertical (axes)
valves. Figure 2 shows a vertical pump, with the typical horizontal

(axes) valves. These valves are simply check valves (nonreturn
valves). Each valve is pushed open by the pumpage. It is pushed
closed by the valve weight (if the axis is vertical), by the spring,
and, if the spring is too weak, by the reverse flow of pumpage past
the valve, which is caused by the reverse stroke of the plunger.

Figure 1. A Horizontal Triplex Power Pump Showing Vertical
Wing-Guided Suction and Discharge Valves and Springs. (Courtesy
Henshaw, 1987)

Figure 2. A Vertical Power Pump Showing Horizontal Disc-Type
Suction and Discharge Valves and Springs. (Courtesy Henshaw, 1987)
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The Need

The best valve and spring analyses known to the author, to date,
are those developed by Worthington (1949 to 1953), although they
do not always provide satisfactory results. They are largely based
on approximations (Note: 1t is understandable that Worthington
would use approximation shortcuts, because their equations were
developed about 1950, a time when engineers used slide rules for
their calculations. Iterations would have been very time-consuming.
With the computer, one can quickly iterate for a more precise
solution). They ignore the pressure drop in the valve seat (due to
velocity), the pressure between the seating surfaces (“clinging”
effect), acceleration and, to a degree, velocity. Other technical
documents on pumps and compressors (Parry, 1989) (Singh and
Madavan, 1987) (White, 1972) (Matsumura and Sugiyama, 1990)
show that mathematical models can produce generally-acceptable
agreement with test measurements, but they provide insufficient
information to enable duplication of their work, and no equations
to help evaluate or design power pump valves or springs.
This author became aware of the problems caused by weak

valve springs as early as 1960, and in the intervening 40+ years,
has searched for a reliable guide for the design and application
of these springs. A weak spring allows the valve to close so late
that it creates a hydraulic shock in the pump and system (it
slams closed). It also results in the late opening of its mating
valve, causing the mate to be “jerked,” or shocked, open,
creating an additional hydraulic shock. These pounding valves,
and the resulting hydraulic shocks, cause excessive pump and
system noise and vibration, and shorten the lives of pump
and system components.
A late-closing discharge valve allows a momentary reverse flow

through the valve seat, then, as it slams closed, causes a
high-pressure shock on the discharge side of the pump, and a
low-pressure spike in the pumping chamber. The suction valve is
then “jerked” open, adding to the low-pressure pulse in the
chamber and transmitting that pulse into the inlet manifold and
pipe. A late-closing suction valve allows a momentary reverse
flow through its seat, the valve being driven closed by the liquid
pushed by the plunger, then the instantaneous stopping of the flow
as the valve hits the seat creates shocks in the pump inlet and
pumping chamber. The discharge valve is then driven from its seat,
creating a hydraulic shock in the pumping chamber and sending
that shock wave into the discharge system. Such valve action
results in a noisy, vibrating pump and shaking pipes. It has also
been found to break valves and valve seats, and can contribute to
shorter life of piping components and gauges, as well as other
pump components such as packing, gaskets, gears, crankshafts,
and fluid cylinders.
This paper provides equations (“models”) that allow the plotting

of valve displacement (lift), velocity, and acceleration as functions
of the crankshaft angle, provides equations that allow calculation
of valve assembly pressure drops (that can be converted to
NPSHR), and offers guidelines for the design, or selection, of
springs that produce smooth-running, quiet power pumps.

FIELD EXPERIENCE

On various occasions, with pumps of various manufacturers,
installation of “stronger” valve springs transformed a problematic
situation into a smooth-running, satisfactory installation. (“Stronger,”
means, primarily, increasing the “preload” of the spring on the
valve—not necessarily the stiffness of the spring.) Following are
some examples of installations that involved the author:

1. Oil company, Goliad, Louisiana—A user reported that, when he
increased the speed of his 4 inch (102 mm) stroke triplex, pumping
butane, from 200 rpm to 300 rpm, the discharge pipe started
shaking. He asked where he could buy a pulsation dampener. After
installing stronger valve springs, a dampener was no longer
required. Discharge pipe vibration was, again, low.

2. Oil company, California—A 5 inch (127 mm) stroke triplex was
breaking (wing-guided) valves. The operator wanted stronger
valves. Stronger springs stopped the breakage.

3. Wate-jetting company, Wixom, Michigan—A 3 inch (102 mm)
stroke triplex, pumping water at about 5000 psi (34 mPa), was very
noisy, did not achieve acceptable volumetric efficiency, and
required excessive NPSH. Stronger springs quieted the pump, vol-
umetirc efficiency increased to the expected value, and NPSHR
dropped 50 percent.

4. Curacao, Caribbean—A pair of 5 × 7  � (127×181) 500 hp (370
kW) quintuplex pumps, running 217 rpm, in a desalination plant,
were noisy, and the piping was vibrating excessively. The discharge
pressure had a variation of ± 40 percent. Valve closing lags were
measured at 21 degrees to 27 degrees of crank rotation. Much
stronger springs, along with system modifications, resulted in
satisfactory performance. Valve closing lag dropped to <5 degrees.
Discharge pressure variations dropped to ± 4 percent.

5. Oil company, offshore Louisiana—A 3¼ × 7 (83×178) 500
hp (370 kW) vertical triplex pump running 233 rpm, with
5000 psig (34 mPa) discharge, on salt water, was reported to
be noisy, had experienced numerous failures of the valves and
seats, and vibrated excessively. Tests showed indications of
cavitation, even though the inlet pressure was 200 psig (1400
kPa), and the pump had a large pulsation bottle at the inlet.
Stronger valve springs quieted the pump. It ran so smoothly
that a nickel was balanced, on edge, on the suction manifold.

6. Steel mill, Middletown, Ohio—Four 3�  × 5 (98×127) triplex
pumps, operating in parallel, in a hydraulic system, at 300 rpm,
were noisy, and pipes were shaking. Inline centrifugal boosters
were vibrating excessively. The 1000 psi (7000 kPa) discharge
pressure was pulsing ± 600 psi (4000 kPa). Spikes to 1000 psig
(7000 kPa) were measured in the suction manifold. Stronger valve
springs reduced discharge pressure variations to 100 psi (700 kPa).
Noise and vibration dropped to acceptable levels. (The booster
pumps were eliminated, and an individual suction line was run
from the tank to each pump.)

7. Water-jetting company/chemical company, Illinois—A 1¾ × 4¼
(44×108) quintuplex pump, in a 5000 psi (34 mPa) water-jetting
system, running 400 rpm, was breaking (disc) valves and seats.
Increasing spring preload from 3 pounds (13 Newtons) to 18
pounds (80 Newtons) stopped the breakage.

Some of these pumps were quieted some by just stretching the
valve springs, illustrating that the problem was as much preload as
spring stiffness.

DEVELOPING THE MODEL

To satisfy the need for tools to better analyze power pump valves
and springs, all forces acting axially on the valve (to push it open
and closed) were quantified. A series of equations was derived, and
a number of computer programs were written.
(These equations are for the more conventional outward-flow

valve. A valve that has some, or all, flow going radially inward across
inside-diameter sealing faces requires a different set of equations.)
Figure 3 is a cross-section of a flat-face, single-ported,

outward-flow disc type valve. As shown in Figure 4, when the
valve is pushed open by the pumpage, the pumpage impinges on
the underside of the valve, flows radially outward between the
valve and the seat, through the lift, or “escape,” area, then past the
outer diameter (OD) of the valve. Figure 5 illustrates the valve
assembly areas used to quantify the forces on the disc. Figure 6
shows the components of a wing-guided valve, with Figure 7
showing the key dimensions of that assembly.
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Figure 3. A Center-Guided Outward-Flow Flat-Face Disc-Type
Valve Assembly. (Courtesy Henshaw, 1987)

Figure 4. The Liquid Velocity Pattern and Pertinent Dimensions of
a Center-Guided Outward-Flow Flat-Face Disc-Type Valve Assembly.

Figure 5. The Pertinent Areas of an Outward-Flow Valve Assembly.

Figure 6. An Outward-Flow Bevel-Face Wing-Guided Valve
Assembly. (Courtesy Henshaw, 1987)

Figure 7. The Pertinent Dimensions of an Outward-Flow
Bevel-Face Wing-Guided Valve and Seat.

ALL FORCES

The forces acting on the valve (disc) are as follows (convention:
up is positive for forces, lift, velocity, and acceleration):

• FP = Sum of all forces resulting from static pressures.
• Fi = Force from inertia of pumpage impinging on bottom of disc.
(It is assumed that the pumpage on top of the disc moves in unison
with the disc.)

• FS = Force on disc from valve spring
• W2 = Weight of disc if valve axis is vertical. If axis is horizontal,
W2 = 0.

PRESSURE FORCES

The sum of all static-pressure forces is:

The friction loss through the valve seat is negligible, so P2 is
equal to P1 less the velocity head of the pumpage flowing upward
though the seat, as follows:
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The static pressure in the lift area, P3, is equal to P4 plus the loss
at the exit of the disc (taken as �Vex2/2), less the velocity head of
the pumpage in the lift flow area. The effective velocity head is
approximated using the velocity at the entrance to the lift area.

The static pressure force on the top of the disc is P4A4.

The total of all static pressure forces is therefore:

The third and seventh terms cancel each other. Collecting
remaining like terms and substituting A2 for the D3 and D1 terms
produces the following:

The first term is the differential static pressure acting on A2
pushing the valve open, and the second term is the differential
static pressure acting on A3 pushing the valve closed.

The Clinging Force

This second term is herein defined as the “clinging” force. It
pushes the valve toward the seat (down) when there is flow radially
outward between the valve and seat (through the lift area). (A wider
seating surface creates a larger clinging force, thereby requiring a
higher differential pressure to kick the valve fully open.) (This
clinging tendency can be demonstrated with a spool and piece of
paper. The paper will cling to the bottom of the spool when one
blows down into the spool.) The clinging force can be further
analyzed as follows:

(As D4 approaches D3 [as the seating surface width approaches
zero], FC approaches zero.)
To simplify calculations, the clinging coefficient is herein

defined as:

(KC is dimensionless and is established solely by the dimensions
of the valve assembly. � is the angle the seating surface makes with
the axis of the valve. With a flat-face valve, as in Figure 3, � = 90
degrees, and sin � = 1.) So that:

The equation for the total static-pressure forces can then be written as:

(P1 ! P4) is the total (stagnation) differential pressure across the
valve assembly. For a suction valve (with no significant restriction
upstream or downstream of the valve), P1 ! P4, at its peak value, is
the NPSH required by the pump.

It is necessary to convert Qe, the flow rate through the lift area,
to plunger volume displacement rate, Q2, and valve velocity, Vv.
The flow rate through the lift area is less than plunger volume
displacement rate by the volume displacement rate of the valve.

Then:

IMPULSE FORCE

The inertial, or impulse, force of the pumpage impinging on the
bottom of the valve (disc) can be calculated from the momentum
equation. Assuming the velocity change to be the difference
between the seat (fluid) velocity and valve (disc) velocity:

Wright (1958) provided equations that revealed the impulse
force for the wing-guided bevel-seat valve to be only 30 percent of
this calculated value, yet was 130 percent of this value for the
single-ported flat-face valve. Herein is introduced the impulse
coefficient, Ki, to correct the calculated force to the measured
force, to be used as follows:

TOTAL OF FORCES ON VALVE (DISC)

The total of all forces on the valve (disc) is:

From Newton’s Second Law one knows that the net (total) force
on the valve will produce an acceleration, such that:

The above equation can then be written:

We now have the acceleration, velocity, and displacement (lift) of
the valve (disc) all combined in one equation. It must be satisfied at
all times that the valve is open. The instantaneous displacement of
the plunger, Q2, is the driving “force.” It appears four places, all in
numerators. Valve linear displacement, x, appears twice, once in a
numerator and once in a denominator. Valve velocity, VV, appears
twice in numerators. These valve dynamics, driven by the plunger,
determine the pressure drop across the assembly, P1 ! P4.
To enable a solution to this equation, the pressure drop, P1 ! P4,

must be replaced with velocity and displacement terms common
with the other terms in the equation.

CONSIDERING THE VALVE
ASSEMBLY AS AN ORIFICE

The valve assembly can be considered an orifice. The pressure
drop across the assembly is almost all a friction loss across the
seating surfaces (through the lift area). This is the approach used
by Worthington (1949 to 1953) and Matsumura and Sugiyama
(1990) for the valve at its maximum lift (when stationary) and is
extended here to the complete lift cycle. Calculations indicate that
the inertia of the pumpage through the seat and lift area are
negligible, and friction loss of the pumpage through the seat is
negligible, so these effects are not accounted for in this evaluation.
The orifice equation is V = c(2gh)0.5 where c = orifice coefficient

and h = head (energy) drop across the orifice. The pressure drop
is therefore:
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For the conventional valve, with pumpage flow radially outward,
the effective velocity is taken as that at the entrance to the lift area
(where velocity is maximum). Therefore:

This can now be substituted into equation (20), for P1 ! P4:

In Equation (23) one sees that Q2 now appears five places, all in
numerators. Valve linear displacement, x, appears three times, once
in a numerator and twice in denominators. Valve velocity, VV,
appears three times, in numerators.

INCORPORATING THE
EQUATIONS OF MOTION

To calculate the velocity, VV, and displacement, x, at any time,
requires knowing the preceding values of acceleration, velocity, and
displacement. The solution has been to divide the approximately 180
degrees (of crank rotation) that the valve is open into small enough
increments that the acceleration can be considered as being constant
during that increment. The following equations of motion can
therefore be applied to assist in establishing values for a, V, and x:

The time increment, t, can be converted to crankshaft angle
as follows:

if � is in radians, or:

if � is in degrees.
These equations were incorporated into a number of programs that

produced plots of x, V, and a as functions of crankshaft rotative angle.

THE COMPUTER PROGRAMS

The programs calculate and plot displacement, velocity, and
acceleration of the valve from the time it opens until it closes. The
opening lag and the angle increment are some of the inputs into the
program. The program iterates at each increment, using the
previous displacement, velocity, and acceleration, and the current
plunger flow rate, to calculate the current values for, x, V, and a.

CALCULATING THE VALVE LIFT
AT 90 DEGREES CRANK ANGLE (L90)

To calculate the valve lift at 90 degrees crank angle, Equation
(23) can be simplified, since valve velocity, V = 0. The flow rate
through the valve becomes Q1, and x becomes L90. L90 can be
calculated as follows:

Where:

Since L90 appears on both sides of the equation, iteration is
required for a solution. (A trial value is plugged into the right side
of the equation for a first trial solution.)

USING A PURE SINE CURVE
FOR PLUNGER VELOCITY

Because the plunger (or piston) is driven by a crankshaft-connecting
rod-crosshead system (a slider-crank mechanism), the velocity
of the plunger is a slightly distorted sine wave. If the L/R ratio
(connecting rod length ÷ radius of crank throw) is 5 (typical for a
power pump), the velocity reaches a peak at 79 degrees on the
suction stroke (11 degrees before midstroke) (for a single-acting
plunger pump), and 101 degrees on the discharge stroke (11
degrees after midstroke). Since a pure sine curve is the average of
the suction and discharge stroke velocities, the programs, which
are based on pure sine curves, can be used for either a suction valve
or a discharge valve. The pure sine curve has a peak value that is
below the distorted sine wave curve less than 2 percent, so is felt to
be adequate. If desired, the equations can be revised to include the
more precise distorted sine wave plunger velocities.

TESTING THE MODEL

The program was tested against the tabulated test results from a
4 inch(102 mm) stroke horizontal pump at 150 rpm and 450 rpm
as reported by Parry (1989). The paper does not give all valve
dimensions, so some dimensions were approximated. Results from
the 2.75-inch (70 mm) diameter plunger were used.
Figure 8 shows the plot produced by the program at 150 rpm

with the “heavy” valve (springs). For c = 0.6 (from tests by the
author), the program calculated a maximum lift of 0.17 inch (4.3
mm) (compared to the 0.19 inch [4.8 mm] test result tabulated in
the paper), a 0.01-inch (0.3 mm) lift at 180 degrees, and a 5 degree
closing lag (compared to the tabulated 0 degrees, which is thought
to be impossible. The mating suction valve was tabulated as having
a closing lag of 5 degrees.). Changing c to 0.85, as used by
Worthington (1949 to 1953), reduces the calculated maximum lift
to 0.13 inches (3.3 mm), 0.06 inches (1.5 mm) less than the
reported 0.19 inches (4.8 mm). It therefore appears that a c of 0.6
is more appropriate for a disc valve.

Figure 8. A Calculated Plot of Valve Dynamics of a Disc Valve in
the 2.75×4 Power Pump.

For 450 rpm, the program showed that, had the lift not been
limited (to 0.25 inch [6.4 mm]), the valve would have lifted to 0.55
inch (14 mm) (about three times a reasonable value for that speed),
would have been 0.1 inch (2.5 mm) off the seat at the end of the
stroke, and would have hit the seat with a velocity of 2 ft/sec (0.8
m/s). The program calculated a closing lag of 13 degrees, although
the measured lag was reported as 28 degrees (which resulted in a
reported 4.7 percent backflow). The difference is possibly because
the program assumed that the spring was pushing on the valve from
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the fully lifted 0.55 inches (14 mm), whereas the valve tested,
being held against a stop at the 0.25 inch (6.4 mm) lift, was not
allowed to begin accelerating toward the seat until about 160
degrees of crank rotation. Displacement, velocity, and acceleration
were all off the graph for a portion of the stroke.
To see how a stronger spring would have improved performance,

the spring preload was arbitrarily increased by a factor of 10 (77.5
lbs (345 Newtons), instead of the reported 7.75 lbs (34.5 Newtons).
The program reported a more reasonable maximum lift of 0.19 inch
(4.8 mm), a 180 degrees lift of 0.013 inch (0.3 mm), and a closing
velocity of 0.71 ft/sec (0.22 m/s). Spring stiffness was then increased
by a factor of 10 (to 1940 [28,300] instead of 194 lb/ft [2830 N/m]),
leaving the preload at 77.5 lbs (345 Newtons). The maximum lift
dropped to 0.16 inch (4.1 mm), the 180 degree lift dropped to 0.012
inch (0.03 mm), and the closing velocity dropped to. 0.70 ft/sec
(0.21 m/s). Although the stiffer spring reduced the maximum lift
about 16 percent, the 180 degree lift dropped only about 8 percent,
and the closing velocity dropped only about 1 percent. In both cases
the valve closing lag was 5 degrees. The spring preload was then
changed back to the reported 7.75 pounds (34.5 Newtons), leaving
the stiffness at 1940 Ib/ft (28,300 N/m). The L90 lift increased to
0.25 inch (6.4 mm), the L180 lift increased to 0.047 inch (1.2 mm),
the closing velocity increased to 1.47 ft/sec (0.45 m/s), and the
closing lag increased to 9 degrees. This illustrates that spring
preload has a greater impact on valve dynamics than spring stiffness,
supporting the field experience reported earlier.
The tested “heavy” (spring) was suitable for 150 rpm, but

unsuitable for 450 rpm. For 450 rpm, it needed to be stronger by a
factor of at least 10.
The program was also used to analyze a wing-guided discharge

valve in a 0.66×4.25 (17×108) water-jetting pump running 510
rpm with a discharge pressure of 40,000 psig (275 mPa). Figure 9
shows the lift, velocity, and acceleration if the valve were to open
at 10 degrees of crank rotation. It shows “oscillations” in velocity
and acceleration at the beginning of the lift, although the lift settles
into a sine curve quickly.

Figure 9. A Calculated Plot of Valve Dynamics of a Wing-Guided
Discharge Valve in a 0.66×4.25 Power Pump with a Valve Opening
Lag of 10 Degrees.

But because cool water shrinks 10 percent when compressed
isentropically from atmospheric pressure to 40,000 psig (275 mPa),
the discharge valve is not kicked open until about 50 degrees of crank
rotation, as shown in Figure 10. The plot shows that the valve over-
shoots the sine curve, to a maximum lift of 0.036 inch (0.91 mm) at
55 degrees of crank rotation (only 0.004 inch [0.10 mm] more than
the measured wear marks on the assembly), then undershoots slightly
before settling to a sine curve. The velocity and acceleration take
longer to settle to their respective trigonometric curves.

Figure 10. A Calculated Plot of Valve Dynamics of a Wing-Guided
Discharge Valve in a 0.66×4.25 Power Pump with a Valve Opening
Lag of 50 Degrees.

(It may be noted that the spring on this valve is considerably stronger
than required by the proposed 72/N maximum lift of Equation [35].)

CURVE SHAPES

The shape of the displacement (lift) curve, for a properly-sprung
valve, is shown by the model to be very near a sine curve (which is
also shown by Wright [1955], Worthington [1949 to 1953], and
Matsumura and Sugiyama [1990]), displaced by the angle of the
closing lag. The velocity is therefore a cosine curve (confirmed by
the model), and the acceleration is a minus sine curve (also
confirmed by the model), except for momentary high values at the
beginning of the lift (which can be caused by late opening), and
possibly at closing. The greater the opening lag, the greater the
initial high values, and the longer the duration of the departure
from the sine and cosine curves. The greater the closing lag, also
the greater the departure from the pure trigonometric curves.
Close approximations of the equations of motion of a

properly-sprung power pump valve are therefore as follows:

Because valve velocity is a (slightly distorted) cosine curve, it has
maximum values at 0 degrees and 180 degrees. At near 90 degrees
(near midstroke) velocity is zero. Because acceleration is a (slightly
distorted, negative) sine curve, it is zero at 0 degrees and 180
degrees, and has its peak (negative) value near 90 degrees
(midstroke). So, while the plunger has its peak velocity near
midstroke, the valve has its peak displacement (lift) and acceleration
near midstroke, and the valve velocity is simultaneously zero. While
the plunger has its maximum acceleration at 0 degrees and 180
degrees, the valve has its maximum velocities at (near) those times.

MAXIMUM ACCEPTABLE
LIFT AT 180 DEGREES (L180)

To obtain smooth operation and acceptable volumetric efficiency,
Worthington (1949-1953) said that the lift of the valve, when the
plunger reaches the end of its stroke, should be limited to a value
of D4/200 (0.5 percent of the valve OD), which means that a larger
valve would be allowed to have a higher end-of-stroke lift (L180)
and higher impact velocity, when the valve closes against the seat.
It seems more reasonable that the allowable seating (impact)
velocity would be independent of valve size, and would require
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L180 to be an inverse function of pump rotative speed, which is
confirmed by Thornton (1976).

MAXIMUM ACCEPTABLE
VALVE CLOSING LAG (�L)

Instead of using end-of-stroke lift, L180, to determine if the
spring is strong enough, can one use the amount (degrees) of valve
closing lag �L?
If one assumes that the backflow through the valve, caused by

the reversal of the plunger prior to the valve closing, is equal to the
volume displacement of the plunger during that increment of shaft
rotation (a seemingly reasonable assumption—and confirmed by
Collier [1983a]), and if one knows the amount of valve lag, one can
calculate the fraction of the stroke lost to valve backflow (“slip”).
The fraction of the stroke lost to backflow = fL = LSL/LS = slip

per valve = 0.5 (1-cos �L) where �L = angle of valve closing lag.
For example, a 10 degree lag would produce a slip of 0.0076 or

0.76 percent. If both suction and discharge valves lagged 10 degrees,
the total slip would be about 1.5 percent, a low number. The 28
degrees lag reported by Parry (1989) for both valves, at 450 rpm,
would calculate a per-valve slip of 5.85 percent; for both valves, 11.7
percent, which is excessive. The paper reported a slip of 4.7 percent
for the discharge valve and 6.9 percent for the suction valve, a total
of 11.6 percent. Although the individual values are different, the total
is within 0.1 percentage point—less than a 1 percent difference.
(A 14 degree lag on both valves would produce a calculated total

slip of 3 percent, a value that seems to produce acceptable pump
performance, at least on lower-pressure units.)

VALVE LIFT AT � = 90
DEGREES (L90) VERSUS SPEED

Is there an optimum 90 degree valve lift that is a function of
speed? Although it seems that the end-of-stroke lift, L180, or the
angle of valve closing lag, �L, or the valve closing velocity, VC, is
more important than maximum lift, it would be helpful to be able
to establish an approximate maximum desirable lift, L90. That
number would provide the basis for simplified calculations of
velocity and acceleration, and would simplify spring design.
Wright (1955) said: “As a general rule one might say that

permissible lift of a valve is inversely proportional to the speed of
the pump,” but failed to pursue this concept to establish the logical
relationships that follow. This principle is illustrated in Figure 11.

Figure 11. Illustration of the Effect of Crankshaft Rotative Speed (RPM)
on Maximum Valve Lift to Obtain the Same Valve Impact Velocity.

Worster (1954), writing on reciprocating compressors, said that
while acceptable valve “durability” was obtained with a lift of
0.200 inch (5 mm) at 300 rpm, it was necessary to reduce the lift
to 0.040 inch (1 mm) for operation at 1800 rpm. If one uses this
last point for reference, and let the N exponent be one, the equation
for the approximate 90 degrees lift becomes 72/N inches (6/N ft)
(1800/N mm). For 300 rpm, L90 = 0.24 inch (6.1 mm), just 20
percent above his reported 0.200 inch (5 mm) satisfactory lift. For
500 rpm, this produces L90 = 0.14 inch (3.6 mm), very near this
author’s observed 0.15 inch (3.8 mm) for satisfactory pump
operation at 500 rpm.
It therefore appears that a smooth-running pump can result from

a maximum (L90) lift expressed by the following equation:

Collier (1983a, pages 183 and 184), describes a 5½ × 12
(140×305) triplex pump, running 120 rpm, with weak valve
springs that allowed the valves to lift 1.65 inch (42 mm) from
the seats, and allowed reverse flow through the seats before
closing. The reverse flow caused a reduction of capacity and
rough operation. “Adequate” springs reduced L180 to “a few
thousandths of an inch,” and resulted in an L90 of 0.64 inches (16
mm). With an N exponent of one, and for 120 rpm, this produces
the equation L90 = 77/N, the “77” being only 7 percent above the
“72” derived above.
Note that this 90 degree lift L90 must be established by

the spring, not by a positive stop. The valve must be allowed to
accelerate downward from the point of maximum lift. The
stiffness of the spring, R, should be kept as low as practical so
that the spring continues to push on the valve until it is closed.
The closed-valve spring force should be at least one-third of the
fully-open-valve spring force.
If the suction and discharge valves are functioning properly, and

the fluid friction losses upstream and downstream of the suction
valve are negligible (a typical design), the NPSHR is established by
the fluid velocity through the valve lift area at the 90 degree
crank-angle lift. If the flow is turbulent (the normal case), then the
NPSHR is proportional to the square of that velocity. When a pump
speed is changed, and valve springs are selected for the new speed,
the L90 lift is inversely proportional to the speed, so that the
velocity through the lift area (at the maximum speed for that
spring) is proportional to the square of the rotative speed.
Therefore, the maximum NPSHR for each spring (at the maximum
speed for that spring) increases to the fourth power of speed, as
stronger springs are installed for the higher speeds. (At twice the
speed, the L90 lift is one-half, the velocity through the valve lift is
four times and the NPSHR is 16 times, that at the lower speed.) In
equation form:

where:

K does not change as the speed and the springs are changed. K
includes the density of the pumpage, pump component dimensions,
and the orifice coefficient.
This equation has been verified by the group of NPSHR

curves from Figure 12. The NPSH requirements on those
curves, at the maximum speeds for the different springs,
do increase to the fourth power of crankshaft rotative speed,
N, rpm (when corrected for the limited valve lift at the
lower speeds).
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Figure 12. A Set of NPSH Curves for a 3 Inch-Stroke Horizontal
Power Pump Illustrating the Significant Increase in NPSHR as
Stronger Springs Are Provided for Higher Rotative Speeds.
(Courtesy Henshaw, 1987)

MAXIMUM ACCEPTABLE SEATING VELOCITY

If the valve impacts the seat with an excessive velocity, not only
will an excessive hydraulic shock be created, but the valve and/or
seat can be damaged. Such damage has been observed by the
author, and both Collier (1983b) and Worster (1954) report such
damage. What is a maximum acceptable impact velocity?
If the closing lag of the valve is not too large (less than about

14 degrees of crank rotation), the displacement curve can be
approximated with a sine curve, and the velocity curve would
approximate a cosine curve.
From Equation (33), the maximum valve closing velocity occurs

as the valve hits the seat, so:

Solving for L90:

If:

and:

Therefore, for smooth operation and optimum life of pump and
system components, the velocity at which the valve hits the seat
should not exceed about �  ft/s (0.19 m/s).
From the 5½ × 12 (140×305) triplex pump discussed above, with

an acceptable maximum lift of 0.64 inches (16 mm), the closing
velocity calculates to be 0.67 ft/s (17 m/s), only about 6 percent
above the 0.63 (0.19) from Equation (41).

CONCLUSIONS

• When the valve assembly contains springs of adequate force for
the pump speed and capacity, the last half of the valve displacement
(lift) curve, i.e., when closing, can be closely approximated as a sine
curve. The velocity can then be closely approximated as a cosine
curve, which allows the closing impact velocity to be closely
approximated at L90� (= L90�N/30).

• For smooth operation, the maximum valve impact velocity
(when the valve hits the seat) is about �  ft/s (0.19 m/s).

• To achieve the above impact velocity, the displacement (lift) of
the valve, when the plunger is at its maximum velocity (L90, about
midstroke), is 6/N ft (1800/N mm).

• When the speed of a power pump is increased, the valve spring
force required to achieve (limit) the above lift, and impact velocity,
can increase as much as the crankshaft rotative speed (rpm) to the
fourth power.

• When the speed of a power pump is increased, and the valve
spring force is increased to obtain the above desired midstroke
lift, the pump NPSH requirement increases as the fourth power of
crankshaft rotative speed (rpm) (absent significant losses upstream
or downstream of the suction valve) (NPSHR = KN4).

NOMENCLATURE

a = Acceleration of valve (disc), ft/sec2 (m/s2)
a90 = Acceleration of valve (disc) near midstroke of the plunger,

ft/sec2 (m/s2) = � L90�2
Aen = “Escape” area (lift flow area) at entrance to disc, ft2 (m2) =

(�)(D3)(x)(sin�)
Aex = “Escape” area (lift flow area) at exit of disc, ft2 (m2) =

(�)(D4)(x)(sin�)
Ap = Cross-sectional area of plunger or piston, ft2 (m2) = (�/4)(Dp)2
As = Flow area through valve seat (wings and webs are ignored),

ft2 (m2) = (�/4)(D32 � D22)
Av = Same as A4
A2 = Valve area acted upon by P2, ft2 (m2) = (�/4)(D32 � D12) =

A4 � A3
A3 = Seating surface area exposed to P3, ft2 (m2) = (�/4)(D42 �D32)
A4 = Area of top of valve (that exposed to P4), ft2 (m2) =

(�/4)(D42 � D12)
C = Clearance volume. The dead space in pumping chamber

w/plunger at end of discharge stroke, ft3 (m3)
c = Orifice coefficient of valve “escape” area
D = Plunger displacement. The volume swept by the plunger

during one suction stroke or one discharge stroke, ft3 (m3) =
(�/4)Dp2LS

Dp = Diameter of plunger or piston, ft (m)
D1 = Diameter of hole in center of valve disc, ft (m)
D2 = OD of inner seating surface, ft (m) (ID of port opening in seat)
D3 = ID of outer seating surface, ft (m) (OD of port opening in seat)
D4 = OD of valve outer seating surface, ft (m)
fL = Fraction of plunger stroke lost to backflow caused by valve

closing lag
fLD = Fraction of plunger suction stroke lost to backflow caused

by the discharge valve closing lag
fLS = Fraction of plunger discharge stroke lost to backflow caused

by the suction valve closing lag
fOD = Fraction of stroke plunger moves on discharge stroke before

discharge valve opens
fOS = Fraction of stroke plunger moves on suction stroke before

suction valve opens
Fc = “Clinging” force. The force that pushes the valve toward the

seat due to velocity between the seating surfaces, lb (N)
Fi = Force imparted to upstream side of valve due to the turning

of the pumpage (inertial force), lb (N)
Fo = Force from spring(s) when valve is closed, lb (N)
Fp = Force on valve due to static pressures, lb (N)
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FS = Total spring force on valve, lb (N) = FO + Rx
FS90 = Spring force on valve when crank angle, � = 90 degrees, lb (N)
Ft = Total of all forces on the valve, lb (N)
F90 = Total closing force on valve when crank angle, � = 90 degrees,

lb (N)
9 = Acceleration of gravity, 32.2 ft/sec2 (9.8 m/s2)
hf = Friction loss through valve assembly, ft (m)
Kc = Clinging coefficient: for an OD-flow valve = ((D4/D3)2+

(D3/D4)2-2)/8�(sin�)2; for an ID-flow valve = (2- (D2/D1)2-
(D1/D2)2)/8�(sin�)2

Ki = Coefficient of inertial impact of pumpage on upstream side
of valve

KL = The numerator in the fraction for L90 = KL/N, ft-rev/min
(m-s/min)

KN = The pump and pumpage constant in equation. FS90 + W2 =
KNN4; KN = (s/8�)(�2LSDp2/240cKL sin�)2

KO = Coefficient of cracking pressure. The ratio of cracking pressure
to pressure loss across valve assembly at peak flow rate

Lm = Maximum lift of valve, ft (m). (The maximum lift is normally
equal to the L90 lift, but can be higher for a late-opening valve
that “overshoots” when it is “jerked” open.)

LS = Stroke length of plunger, ft (m)
LSL = Distance plunger moves, after reversing, before valve closes,

ft (m)
LV = Close approximation of maximum valve lift, determined

without considering acceleration, ft (m)
L90 = The lift of the valve at about 90 degrees of crank rotation, ft (m)
L180 = The lift of the valve at 180 degrees of crank rotation (the

point at which the plunger reverses), ft (m)
m = Mass of the valve, slugs (kg) = (W1)/g
n = Number of plungers in the pump
N = Rotative speed of pump crankshaft, rev/min
Pf = Friction loss through valve assembly, lb/ft2 (Pa)
P1 = Stagnation pressure upstream of valve assembly, lb/ft2 (Pa)
P2 = Static pressure acting on upstream disc area A2, lb/ft2 (Pa);

= P1 � �(VS)2/2
P3 = Static pressure in lift flow area between valve and seat,

lb/ft2 (Pa)
P4 = Stagnation pressure downstream of valve assembly, lb/ft2 (Pa)
Q = Pump capacity. The flow rate in the pump inlet pipe, ft3/sec

(m3/s) = �VQD
QD = Total average pump displacement flow rate. The volume rate

swept by all the plungers, ft3/sec (m3/s) = �NnLsDp2/240
Qe = “Escape” flow rate. The flow rate between the seating surfaces

of the valve and the seat, ft3/sec (m3/s) = Q2 � QV
QV = Rate of volume displacement of valve, ft3/sec (m3/s) = (A4)(VV)
Q1 = Flow rate created by plunger at midstroke (the peak) = Q90,

assuming pure sinusoidal movement of plunger, ft3/sec (m3/s)
= �2NLsDP2/240

Q2 = Instantaneous flow rate created by the plunger (plunger
volume displacement), ft3/sec (m3/s) = (Q1)(sin �)

R = Spring rate, lb/ft (N/m)
S = Specific gravity of pumpage
t = Time increment, sec = 30�/�N (for � in radians); = �/6N

(for � in degrees)
tLC = Time lag closing (the time between � = 180 degrees and valve

hitting seat), sec
T = Thickness of valve disc, ft (m)
VC = The velocity at which the valve hits the seat when closing,

ft/sec (m/s)
Ven = Entrance “escape” velocity. The pumpage velocity between

the valve and seat at the point of maximum (instantaneous)
velocity, ft/sec (m/s) = Qe/�D3xsin�

Vex = Exit “escape” velocity. The pumpage velocity between the
valve and seat at the exit, ft/sec (m/s) = Qe/�D4xsin�

Vp = Velocity of plunger or piston, ft/sec (m/s)
VS = Velocity of pumpage moving through seat, ft/sec (m/s) =

(Q2)/(AS)

VV = Velocity of valve, ft/sec (m/s)
W1 = Weight of valve (in air), lb (N)
W2 = Weight of valve if axis is vertical, less the bouyant effect of

the pumpage, lb (N) = W1(1 �W3/W4) (if axis is horizontal,
W2 = 0)

W3 = Specific weight of pumpage, lb/ft3 (N/m3) = �g
W4 = Specific weight of valve, lb/ft3 (N/m3)
x = Distance valve has lifted from seat, ft (m) (linear displacement

of valve)
� = Angle between valve seating surface and valve axis, degrees
�v = Volumetric efficiency of pump, as a fraction = 1 � fOS � fOD
� = Angle of crank rotation from start of stroke of plunger, radians

= �t = �Nt/30
�LC = Valve closing lag. Angle of crank rotation from start of return

stroke of plunger before the valve closes, radians or degrees
�OD = Angle of crank when discharge valve opens, radians or degrees
�OS = Angle of crank when suction valve opens, radians or degrees
�� = Increment of crank rotation, radians = ���t = �N�t/30
l = Compressibility of pumpage = (W3 at discharge)/(W3 at

inlet) � 1
� = Density of pumpage, slugs/ft3 (lb-s2/ft4) (kg/m3) = W3/g
� = Angular velocity of pump crankshaft, radians/sec = �N/30
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