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Abstract: Thermal desorption, by a rotary kiln of mercury contaminated soil and mine 

wastes, has been used in order to volatilize mercury from the contaminated medium. Solar 

thermal desorption is an innovative treatment that uses solar energy to increase the 

volatility of contaminants, which are removed from a solid matrix by a controlled air flow 

system. Samples of soils and mine wastes used in the experiments were collected in the 

abandoned Valle del Azogue mine (SE, Spain), where a complex ore, composed mainly of 

cinnabar, arsenic minerals (realgar and orpiment) and stibnite, was mined. The results 

showed that thermal treatment at temperatures >400 °C successfully lowered the Hg 

content (2070–116 ppm) to <15 mg kg−1. The lowest values of mercury in treated samples 

were obtained at a higher temperature and exposition time. The samples that showed a high 

removal efficiency (>99%) were associated with the presence of significant contents of 

cinnabar and an equivalent diameter above 0.8 mm. 
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1. Introduction 

Thermal treatment has been used to treat mercury-contaminated soil and waste by typical 

desorption units, which operate at temperatures ranging from 200 to 700 °C [1,2]. In these systems, 
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wastes are placed in the thermal desorber (direct-fired rotary kilns, indirectly heated screw, auger 

systems, etc.), after being heated, to volatilize the mercury. In these thermal devices, the off-gas 

generated is passed through a filtration system, where Hg0, finally, is collected [3,4]. Several mercury 

desorption experiments have demonstrated the feasibility of mercury removal at temperatures between 

127 and 600 °C [5–8]. Experimental remediation of mercury-polluted soils by low-temperature 

thermal desorption has also shown mercury removal of over 99% in sand [8] and the volatilization of 

at least 99% of mercuric sulfide from polluted soil [5]. 

Besides, thermal treatment of mercury contaminated sediments showed that the percentage of 

mercury removal raises with the temperature during the treatment of solid matrices [9,10]. 

Furthermore, the treatment of mercury wastes from the chloralkali industry showed that treatment for  

1 h at 800 °C allowed for a removal efficiency above 99.7% [11]. The results of the thermal desorption 

of mercury from different contaminated wastes showed that thermal decontamination at temperatures 

>400 °C successfully decreased the Hg content [12–14]. 

Previous experiments of solar thermal desorption using a fluidized bed kiln showed that when soils 

and mine wastes were heated to 400–500 °C, the mercury removal was significant [15]. The main 

objective of this research was to evaluate the potential of solar thermal desorption (STD) for the 

removal of mercury from mining contaminated soils and wastes. A rotary kiln system was designed 

and used to evaluate the effectiveness of STD and to verify its efficiency, comparing the results with 

previous experiments using other technologies. 

2. Materials and Methods 

2.1. Characterization of Soils and Mine Wastes 

Samples of soils and mine wastes were collected in the Valle del Azogue mine (SE, Spain). The 

Valle del Azogue mine is located in the Betic Ranges and was exploited from approximately 1873 to 

1890. The ore is composed of stibnite, cinnabar, arsenic minerals (realgar and orpiment), sphalerite, 

siderite, chalcopyrite, pyrite, quartz, calcite and barite [16]. The sampling area, comprising the North 

of Sierra Almagrera, is located 90 km NE of the city of Almería (SE, Spain) in a semi-arid and 

intensively cultivated region. This abandoned mining area together with the Iberian Pyrite Belt and the 

Cartagena mining district is the oldest metallurgical and mining area in the Iberian Peninsula [16]. 

Approximately 1.5-kg samples of mine wastes and soil (Figure 1) were manually extracted and 

crushed to 10 mesh in a jaw crusher, quartered and pulverized in an agate mortar, re-homogenized and 

repacked in plastic bags. Soil samples were taken from a depth of approximately 0–0.25 m and were 

sent to Actlabs (Ontario, Canada) with other mine samples. Au, Ag, As, Ba, Br, Ca, Ce, Co, Cr, Cs, 

Eu, Fe, Hf, Hg, Ir, La, Lu, Na, Ni, Nd, Rb, Sb, Sc, Se, Sm, Sn, Sr, Ta, Th, Tb, U, W, Y and Yb were 

quantitatively analyzed by instrumental neutron activation analysis (INAA), and Mo, Cu, Pb, Zn, Ag, 

Ni, Mn, Sr, Cd, Bi, V, Ca, P, Mg, Tl, Al, K, Y and Be were analyzed by inductively coupled plasma 

emission spectroscopy (ICP-OES). The thermally treated samples were analyzed in the same way. The 

accuracy of the analytical data may be evaluated around 10%, because of the heterogeneity of the  

solid samples. 
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Figure 1. (a) General view of Valle del Azogue area. (b) Detail of the calcines and old 

metallurgical plant (location of MA4 and MA5 samples). (c) Detail of weathered 

superficial mine wastes (location of MA1 and MA2 samples). 

 

Hg phases were determined by solid-phase Hg-thermodesorption (SPTD), based on the specific 

thermal desorption or decomposition of Hg compounds from solids at different temperatures [16,17]. 

Mercury thermo-desorption curves were determined by means of an in-house apparatus, consisting of 

an electronically controlled heating unit and an Hg detection unit. Measurements were carried out at a 

heating rate of 0.5 °C/s and a nitrogen-gas flow of 300 mL/min. The lowest level of detection under 

the given conditions is in the range of 40–50 ng if all Hg is released within a single peak [17]. The 

results are depicted as Hg-thermodesorption curves (Hg-TDC), which show the release of mercury  

versus temperature. 

Mine waste samples were studied using transmitted and reflected light microscopy, X-ray 

diffraction (XRD) and scanning electron microscopy (SEM) with an attached energy dispersive  

X-ray spectroscopy system (EDS) at the Electronic Microscopy Laboratory of the Barcelona 

Autonomous University. 

Furthermore, some physical characteristics of the soil were evaluated: pore size distribution, 

porosity, field capacity and bulk density (Table 1). Particle size distribution was determined by sieve 

analysis using aperture ranges between 4000 and <350 μm. 
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Table 1. Metal concentration in soils and mine wastes. Values in parts per million, except 

Fe (%), Na (%), S (%), Ca (%), K (%) and Mg (%). MW, mining wastes; CS, contaminated 

soil; CAL, calcine; IV, intervention values for soil remediation of the Dutch  

regulations [18]. 

Sample MA1 MA3 MA5 MA6 MA2 MA4 MA7 IV 

Type MW CS CAL MW MW CAL CAL --- 

As (ppm) 598 143 1320 462 550 1,550 477 55 

Ba (ppm) 59,800 7,350 20,400 15,800 78,900 93,000 42,800 625 

Co (ppm) 9 <1 25 8 <1 <4 <4 240 

Cr (ppm) <20 64 <60 44 83 <43 <9 380 

Fe (%) 3.19 3.44 2.72 2.49 2.27 3.06 2.34 --- 

Hg (ppm) 2,070 116 <25 935 865 130 1,240 10 

Na (%) 0.83 1.03 2.23 1.18 0.64 0.69 1.24 --- 

Sb (ppm) 2,880 357 >10,000 2,000 3,290 >10,000 2,850 15 

Se (ppm) <18 <6 <37 <9 <10 <31 <3 0.7 * 

Ta (ppm) <2.5 <0.5 <6.0 <2.5 <0.5 <3.3 <0.5 1 * 

Th (ppm) <2.0 11.6 <7.0 7.2 6.5 <3.8 4.8 --- 

U (ppm) <6.0 <0.9 <15.0 <3.0 <2.9 <8.9 <1.9 --- 

W (ppm) <5 <1 <13 <4 <1 <6 <1 --- 

Ag (ppm) 16.5 1.1 58.7 15.7 25.7 34.5 15.3 15 ** 

Cu (ppm) 36 27 32 38 31 42 28 190 

Cd (ppm) 3.8 1 5 1.4 10.6 6.6 0.8 12 

Mo (ppm) 4 <1 <1 1 2 <1 <1 200 

Pb (ppm) 213 134 1,820 512 1,210 1,190 536 530 

Ni (ppm) 25 55 20 34 20 23 18 210 

Zn (ppm) 1,200 424 503 1,330 3,190 2,230 854 720 

S (%) 2.62 0.47 2.81 1.49 2.05 2.02 0.28 --- 

Be (ppm) 2 3 1 3 2 2 2 1.1 * 

Ca (%) 1.7 2.49 7.33 2.28 0.27 3.09 0.12 --- 

K (%) 1.86 1.98 1.14 2.07 1.87 1.45 1.49 --- 

Mg (%) 0.46 1.28 0.94 0.69 0.23 1.16 0.54 --- 

Mn (ppm) 83 823 64 108 53 171 31 --- 

V (ppm) 51 91 25 63 57 30 53 42 * 

Notes: * target values for sediments; ** indicative values of serious contamination for sediments. 

2.2. Rotary Kiln 

In this study, an experimental rotary kiln was used in the solar devices of the Solar Platform of 

Almería (PSA-CIEMAT (Centro de Investigaciones Energéticas, Mediombientales y Tecnológicas)) in 

Spain. This solar system (Figures 2 and 3) essentially consists of a continuous solar-tracking flat 

heliostat, a parabolic concentrator mirror (collector), an attenuator (shutter) and an experimental kiln 

located in the concentrator focus center [19]. 

The heliostat reflects horizontal and parallel solar rays on the parabolic collector, which again 

reflects and concentrates them in its center, located at the rotary kiln-window (Figure 3). When the 
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shutter is 100% opened and with a direct solar irradiance of 100 W/m2, the focus is characterized by an 

irradiance peak of 3051 kW/m2, a total power of 70 kW and a focal diameter of 26 cm. 

The experimental rotary kiln consists of a rotating cylindrical device, where heat is transferred 

through a quartz window focused to a parabolic collector (Figure 3). The contaminants are volatilized 

and transported to the emission control system by a controlled air-flow system. The process gas is 

filtered through an activated carbon unit, where mercury and other contaminants are adsorbed. 

Figure 2. Experimental solar system comprising a continuous solar-tracking flat heliostat, 

a parabolic concentrator mirror (collector), an attenuator (shutter) and the experimental 

kiln located in the concentrator focus center. 

 

Figure 3. Detail of the rotary kiln and the quartz window. 
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3. Results and Discussion 

3.1. Geochemistry of Soils and Mine Wastes: Physical Characteristics 

The mean concentrations of mercury and other metals in the soil and mine waste samples are shown 

in Table 1. The total mercury concentration in soils and wastes from the Valle del Azogue area varies 

between <25 and 2070 mg/kg. In the waste samples, Pb contents vary between 134 and 1820 mg/kg. 

Furthermore, high concentrations of As, Ba, Sb and Zn were detected, above the intervention values 

for soil remediation of international regulations (Table 1). Due to the mining and metallurgical 

activities, plants have disappeared or have been severely affected by the very high mercury and metal 

content in most part of this area [20]. 

The main physical parameters of soils used in the experiments showed a mean bulk density of  

1450 kg/m3, a mean porosity of 0.40 and a mean field capacity of 0.08 (Table 2). The particle sizes 

showed that the abandoned mine wastes and contaminated soils are largely comprised of sandy material 

fraction (Figure 4). The coarser sample 1 is associated with mining wastes and, possibly, to overburdened 

ore deposit. Remaining samples have a particle size that may be suitable for thermal treatment. 

Table 2. The main physical characteristics of soils used in the column experiments. 

Sample de ε ρ FC (%)

MA1 3.4 --- 1330 8 
MA2 1.8 0.34 1430 8 
MA3 1.0 0.45 1310 10 
MA4 0.8 --- 1410 10 
MA5 0.5 --- 1470 7 
MA6 1.9 --- 1400 8 
MA7 1.3 0.41 1490 8 

Notes: de, equivalent diameter (mm) obtained by sieve analysis; ε, porosity obtained by water displacement in 

a test tube; ρ, bulk density (kg/m3); FC, field capacity. 

Figure 4. (a) Grain size distribution of samples MA1 to MA3. (b) Grain size distribution 

of samples MA4 to MA7. 
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Figure 4. Cont. 

 
(b) 

Hg-thermodesorption curves (Hg-TDC) belonging to mining wastes, soils and calcine samples 

showed the predominant release of Hg in two temperature ranges: 200–250 °C and 300–330 °C 

(Figure 5). The first temperature range was assigned to a release of Hg from the soil matrix 

components based on the Hg-TDCs of standard materials [17]. Thus, we assume that most of the Hg 

present in the calcine material is bound to mineral components mainly by iron oxides, which were 

formed when the cinnabar-bearing ore was being roasted. It has been suggested in earlier studies that 

Hg0 formed during thermal breakdown of cinnabar is re-condensed during the cooling of the material 

and adsorbed to iron oxide surfaces [21]. In addition to matrix-bound Hg, some calcine samples 

contain traces of cinnabar. This could be explained by an incomplete breakdown of cinnabar ore 

during the roasting process. 

Figure 5. Hg-thermodesorption curves (Hg-TDC) of samples: (a) MA1 (mining wastes); 

(b) MA2 (mining wastes); (c) MA3 (contaminated soil); (d) MA4 (calcine); (e) MA5 

(calcine); (f) MA6 (mining wastes); and (g) MA7 (calcine). 
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Figure 5. Cont. 
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Figure 5. Cont. 
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The second temperature range was assigned to Hg release from cinnabar, which was the 

predominant Hg mineral in contaminated soils and mining wastes (host rock and low-grade 

stockpiles). Cinnabar and a possible Hg sulfate were also detected in several samples [16]. No free 

metallic Hg, which is typically released at temperatures below 100 °C, was found in any of the 

samples studied. 

Mercury phase characterization by soil sample X-ray showed the presence of cinnabar (HgS), 

corderoite (Hg3S2Cl2), laffittite (AgHgAsS3), metacinnabar ((Hg)S), shakhovite (Hg4SbO5(OH)3), 

schuetteite (Hg3(SO4)O2) and tiemannite (HgSe) (Table 3). The proportionally Hg predominant phase 

is cinnabar, which is concordant with the SPTD analyses. 

The detailed SEM and EDS systems study of mine waste samples showed the presence of primary 

and secondary cinnabar associated with barite, pyrite and botryoidal pyrite. Furthermore, SEM 

observations showed several small particles containing both Hg and Cl and that may be associated 

with calomel (Hg2Cl2). Moreover, some particles containing both Hg and Br were observed and may 

be associated with kuzminite (Hg2(Br,Cl)2) [15,22]. Besides, in the gangue, main minerals are quartz, 

barite and silicates. 

Table 3. Identified minerals in the Valle del Azogue soil and mine wastes and dominant 

Hg minerals from Hg-thermodesorption curves. Modified from Navarro et al. [22]. 

Minerals Formula 

Primary minerals (soils and mine wastes)  
Quartz * SiO2 
Barite * Ba(SO4) 

Cinnabar * HgS 
Dolomite * CaMg(CO3)2 
Calcite * Ca(CO3) 
Huntite * Mg3Ca(CO3)4 
Stibnite * Sb2S3

Realgar * AsS 
Orpiment As2S3 

Chalcopyrite CuFeS2 

Arsenian pyrite * Fe(S1-xAsx)2 
Sphalerite ZnS 
Orthoclase K(Al,Fe)Si2O8 

Gold Au 
Illite * Al4(Si4O10)(OH)8 

Secondary minerals (soils and mine wastes)  
Hg0 Hg 

Metacinnabar HgS 
Goethite FeOOH 
Jarosite KFe3(SO4)2(OH)6 

Hematite Fe2O3

Inyoite CaB3O3(OH)5·4H2O 
Ferrihydrite Fe(OH)3 

Kaolinite KAl2Si3AlO10(OH)2·3H2O 
Gypsum Ca(SO4)·2H2O 
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Table 3. Cont. 

Minerals Formula 

Secondary minerals (soils and mine wastes)  
Schuetteite Hg3(SO4)O2 
Tiemannite HgSe 
Corderoite Hg3S2Cl2 

Shakhovite Hg4SbO5(OH)3 
Calomel Hg2Cl2

Kuzminite Hg2(Br,Cl)2 

Sample Dominant Hg-mineral phase 

MA1 (mining wastes) Hg matrix, cinnabar 
MA2 (mining wastes) Hg matrix 

MA3 (contaminated soil) Hg matrix, cinnabar 
MA4 (calcine) Hg matrix 
MA5 (calcine) Hg matrix 

MA6 (mining wastes) Hg matrix, cinnabar 
MA7 (calcine) Hg matrix 

Note: * high–medium abundant minerals. 

3.2. Thermal Desorption Experiments 

Rotary kiln experiments were conducted under global radiation of approximately 800 W/m2 with an 

exposure time of between 120 and 300 min. Table 4 shows the initial and final mercury concentration 

in the treated samples and the mercury removal efficiency of each experiment. Efficiency was 

calculated as the percentage of removed mercury with respect to the untreated sample. 

Table 4. Results of mercury removal by solar thermal desorption with the rotary kiln. US, 

untreated sample; TS, treated sample; RE, removal efficiency; T, mean temperature reached. 

Sample Hg (US) (ppm) Hg (TS) (ppm) RE (%) T (°C) 

MA1 2070 <10 99.5 550 
MA3 116 <1 99.1 750 
MA5 <25 <25 ---- 790 
MA6 935 <5 99.4 700 
MA2 865 <5 99.4 700–800 
MA4 130 <15 88.4 700–800 
MA7 1240 <5 99.6 700–800 

The results showed that the lowest values of mercury in treated samples were consistently obtained 

at higher exposition times and desorption temperatures of the main Hg minerals (Table 5). However, 

in sample MA1, a low temperature exposition allowed for a greater mercury removal (99.5%). 

Besides, the lead removal in the thermal experiments was also significant, since the removal 

efficiency reached values of 48.5%–89.0% in all samples, with the exception of the MA1 and MA2 

samples (Table 6). At lower temperatures, Pb was not removed, suggesting the presence of Pb as a 

trace metal in other minerals other than galena, such as barite and pyrite, as the volatilization 
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temperature of galena is really low (503 to 654 °C). High amounts of Pb in pyrite from the study 

area have been reported, reaching concentrations up to 0.29% in weight. 

Table 5. Desorption temperatures of different mercury minerals. 

Phase Desorption temperature (°C)

Hg0 <100 
Hg2 Cl2 170 
HgCl2 <250, 220 
HgO 420–550 

HgSO4 450–500 
HgS (cinnabar) 310–330 

Hg in pyrite >450 
Hg in Sphalerite 600 

Hg matrix 200–300 

Table 6. Results of lead removal by solar thermal desorption with the rotary kiln. US, 

untreated sample; TS, treated sample; RE, removal efficiency; T, mean temperature reached. 

Sample Pb (US) (ppm) Pb (TS) (ppm) RE (%) T (°C) 

MA1 213 245 --- 550 
MA3 134 69 48.5 750 
MA5 1820 795 56.3 790 
MA6 512 260 49.2 700 
MA2 1210 745 38.4 700–800 
MA4 1190 130 89.0 700–800 
MA7 536 68 87.3 700–800 

Figure 6 reveals the decrease of mercury with temperature in sample MA7, coinciding with a 

removal above 99% when the thermal treatment reached 400 °C, above the decomposition temperature 

of cinnabar (310–330 °C). Mercury removal became highly efficient (more than 90% removal) when 

the temperature was higher than 400 °C. Similar results were reported by other studies [6,11,15]. 

Figure 6. Evolution of mercury removal during the treatment of sample MA7. 
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This temperature may be the lowest limit treatment in order to remove mercury from solid wastes 

associated with cinnabar and matrix-bound Hg. However, if contaminated samples comprise mercury 

associated with pyrite, sphalerite and HgSO4, the treatment temperature should be over 600 °C, above 

the decomposition temperature of these mineral phases [15,23,24]. Moreover, the experimental results 

showed that the rotary kiln is more efficient than a fluidized-bed reactor in order to remove mercury 

from contaminated soils and wastes. The results reported by Navarro et al. [15] showed a lower 

removal efficiency (4.5%–76.0%), using similar samples and a solar fluidized reactor. 

Furthermore, experimental results showed that metalloids, like Sb, Se and As, remain in treated 

samples at elevated concentrations. Thus, thermal treatment has been shown to cause, possibly, a 

stronger binding between the metal/metalloid with the soil matrix, which may cause increasing 

difficulty in subsequent remediation. Therefore, solar thermal treatment is inefficient in the  

metalloid removal. 

4. Conclusions 

Soils and mine waste samples from the abandoned Hg mine of Valle del Azogue (Almería province, 

Spain) were thermally treated in a rotary solar kiln to test the efficiency of the method on the  

mercury removal. 

The SPTD determinations showed two different temperature ranges in which mercury was released 

from the samples: 200–250 °C and 300–330 °C. Previous interpretations showed that the first Hg 

release peak indicates the Hg release from the solid matrix, whereas the second peak at higher 

temperatures indicates the presence of cinnabar. The first release peak is typically associated with 

calcine samples, and the second peak release is dominant in mining wastes and soils. 

Experimental results showed a removal efficiency above 99% when the thermal treatment reaches 

400 °C, above the decomposition temperature of cinnabar (310–330 °C), and similar results were 

reported by other studies. Mercury removal was highly efficient (more than 90% removal) in samples 

that showed a significant content of cinnabar and an equivalent diameter above 0.8 mm. Moreover, the 

experimental results showed that the rotary kiln is more efficient than a fluidized-bed reactor, in order 

to remove mercury from contaminated soils and wastes. 
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