OPTIMISATION OF THE
PROMINENT HILL
FLOTATION CIRCUIT

22nd August 2013
Phil Woodward GAusIMM– Plant Metallurgist
WWW.OZMINERALS.COM
This presentation has been prepared by OZ Minerals Limited ("OZ Minerals") and consists of written materials/slides for a presentation concerning OZ Minerals. By reviewing/attending this presentation, you agree to be bound by the following conditions.

No representation or warranty, express or implied, is made as to the fairness, accuracy, or completeness of the information, contained in the presentation or of the views, opinions and conclusions contained in this material. To the maximum extent permitted by law, OZ Minerals and its related bodies corporate and affiliates, and its respective directors, officers, employees, agents and advisers disclaim any liability (including, without limitation any liability arising from fault or negligence) for any loss or damage arising from any use of this material or its contents, including any error or omission there from, or otherwise arising in connection with it.

Some statements in this presentation relate to the future and are forward looking statements. Such statements may include, but are not limited to, statements with regard to intention, capacity, future production and grades, projections for sales growth, estimated revenues and reserves, targets for cost savings, the construction cost of new projects, projected capital expenditures, the timing of new projects, future cash flow and debt levels, the outlook for minerals and metals prices, the outlook for economic recovery and trends in the trading environment and may be (but are not necessarily) identified by the use of phrases such as “will”, “expect”, “anticipate”, “believe” and “envisage”. By their nature, forward-looking statements involve risk and uncertainty because they relate to events and depend on circumstances that will occur in the future and may be outside OZ Mineral’s control. Actual results and developments may differ materially from those expressed or implied in such statements because of a number of factors, including levels of demand and market prices, the ability to produce and transport products profitably, the impact of foreign currency exchange rates on market prices and operating costs, operational problems, political uncertainty and economic conditions in relevant areas of the world, the actions of competitors, activities by governmental authorities such as changes in taxation or regulation.

Given these risks and uncertainties, undue reliance should not be placed on forward-looking statements and intentions which speak only as at the date of the presentation. Subject to any continuing obligations under applicable law or any relevant stock exchange listing rules, OZ Minerals does not undertake any obligation to publicly release any updates or revisions to any forward looking statements contained in this presentation, whether as a result of any change in OZ Minerals expectations in relation to them, or any change in events, conditions or circumstances on which any such statement is based.

Certain statistical and other information included in this presentation is sourced from publicly available third party sources and has not been independently verified.
CONTENTS

• Introduction
• Reagent Scheme Optimisation
• Cell Design Optimisation
• Process Control Optimisation
• Conclusion
Prominent Hill is located:

- 650 km north-northwest of Adelaide and 150 km northwest of Roxby Downs (Olympic Dam) in South Australia.
• Iron oxide hosted copper-gold (IOCG) deposit- chalcocite, bornite and chalcopyrite with additional “gold only” ores

• Mining started 2006, process plant commissioned early 2009

• Total reserves currently 69.8Mt with 1.1% Cu and 0.60g/t Au (as at June 2012)

• Extension study underway to increase mine life
INTRODUCTION

Process Flowsheet

CRUSHING AND STOCKPILE
- Gyratory Crusher
- Crushed Ore

From Mine

GRINDING
- SAG Mill
- Screen
- Primary Cyclones
- Ball Mill

FLOTATION
- Rougher Flotation
- Regrind Cyclones
- Regrind Mill
- Cleaner Flotation 1
- Cleaner Flotation 2
- Cleaner Flotation 3
- Jameson Cell

CONCENTRATE DEWATERING AND STORAGE
- Concentrate Thickener
- Pressure Filter
- Concentrate Loadout
- Concentrate Storage

TAILINGS
- Tailings Thickening
- Tailings Storage Facility
INTRODUCTION
Flotation Circuit
INTRODUCTION
Regrind Mill (IsaMill)
INTRODUCTION
Jameson Cell
PROCESS OPTIMISATION

Flotation Optimisation Objectives

- **Copper Sulphide Recovery**
 - Increased revenue

- **Gold Recovery**
 - Smelter credits

- **Throughput**
 - Through improved flotation of coarse materials

- **Consumables Costs**
 - Reagents

Ongoing diagnostic and mineralogy testwork to determine potential improvements
PROCESS OPTIMISATION

Design Predictions

- Throughput design is 8Mtpa
- Maximum predicted recovery for a single ore type is 88% for copper and 77% for gold
- Actual recovery would be expected to be lower with blending

<table>
<thead>
<tr>
<th>Ore Type</th>
<th>Predicted Concentrate Grade</th>
<th>Predicted Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cu %</td>
<td>Cu %</td>
</tr>
<tr>
<td>Chalcocite-Bornite</td>
<td>54</td>
<td>88</td>
</tr>
<tr>
<td>Chalcopyrite-Pyrite</td>
<td>25</td>
<td>83</td>
</tr>
<tr>
<td>Bornite-Chalcopyrite</td>
<td>34</td>
<td>80</td>
</tr>
</tbody>
</table>
REAGENT SCHEME OPTIMISATION
Implementation Process

- Laboratory flotation tests
- Plant trial
- Statistical analysis via paired t-tests
REAGENT SCHEME OPTIMISATION
Statistical Analysis

- Test pairs randomly generated to create an “on/off” trial

<table>
<thead>
<tr>
<th>Shift</th>
<th>Test Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/07/2011</td>
<td>Day</td>
</tr>
<tr>
<td></td>
<td>404 Off</td>
</tr>
<tr>
<td>8/07/2011</td>
<td>Night</td>
</tr>
<tr>
<td></td>
<td>404 Off</td>
</tr>
<tr>
<td>9/07/2011</td>
<td>Day</td>
</tr>
<tr>
<td></td>
<td>404 On</td>
</tr>
<tr>
<td>9/07/2011</td>
<td>Night</td>
</tr>
<tr>
<td></td>
<td>404 On</td>
</tr>
<tr>
<td>10/07/2011</td>
<td>Day</td>
</tr>
<tr>
<td></td>
<td>404 Off</td>
</tr>
<tr>
<td>10/07/2011</td>
<td>Night</td>
</tr>
<tr>
<td></td>
<td>404 Off</td>
</tr>
<tr>
<td>11/07/2011</td>
<td>Day</td>
</tr>
<tr>
<td></td>
<td>404 On</td>
</tr>
<tr>
<td>11/07/2011</td>
<td>Night</td>
</tr>
<tr>
<td></td>
<td>404 On</td>
</tr>
<tr>
<td>12/07/2011</td>
<td>Day</td>
</tr>
<tr>
<td></td>
<td>404 On</td>
</tr>
<tr>
<td>12/07/2011</td>
<td>Night</td>
</tr>
<tr>
<td></td>
<td>404 Off</td>
</tr>
<tr>
<td>13/07/2011</td>
<td>Day</td>
</tr>
<tr>
<td></td>
<td>404 Off</td>
</tr>
<tr>
<td>13/07/2011</td>
<td>Night</td>
</tr>
<tr>
<td></td>
<td>404 Off</td>
</tr>
</tbody>
</table>
REAGENT SCHEME OPTIMISATION

Statistical Analysis

- Test pairs randomly generated to create an “on/off” trial
- t-test to compare two means (1 sided)
- The P-value provides the level of confidence with which we can say there is an improvement
- The difference between the mean recoveries provides the best estimate of what that improvement is

<table>
<thead>
<tr>
<th>Shift</th>
<th>Test Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/07/2011</td>
<td>Night 404 Off</td>
</tr>
<tr>
<td>9/07/2011</td>
<td>Night 404 On</td>
</tr>
<tr>
<td>10/07/2011</td>
<td>Night 404 Off</td>
</tr>
<tr>
<td>11/07/2011</td>
<td>Night 404 On</td>
</tr>
<tr>
<td>12/07/2011</td>
<td>Day 404 On</td>
</tr>
<tr>
<td>13/07/2011</td>
<td>Day 404 Off</td>
</tr>
</tbody>
</table>
Thionocarbamate

CMS 2500® and SEX showed an average of 1.1% copper recovery improvement at 98.8% confidence compared to SEX alone

Permanently added to the ball mill feed
• CMS 2500® used in conjunction with SEX is able to improve flotation of copper sulphide minerals

• Xanthate will tend to form multi-layers around the mineral particles at the more active sites contributing to extreme hydrophobicity and froth instability

• The thionocarbamate reacts at the most active sites but forms mono-layers, leaving SEX to react at less active sites, providing a more uniform collector coverage and stable froth
• Permanently incorporated into the concentrator reagent scheme via the existing ‘Test Reagent’ ring main infrastructure

• Minor changes to the existing setup which was similar to the xanthate ring main

• Control of dosage from the DCS
Dithiophosphate

Aero 404® showed an average of 1.68% gold recovery improvement at 95.9% confidence compared to the existing scheme (SEX and CMS 2500®)

Permanently added to the rougher feed and Jameson Cell tailings
Dosed from a self bunded tank

Two small pumps send to the two dosing points

Power source for pumps set to trip with the SAG Mill
DSP 110® showed an average of 0.35% copper recovery improvement at 95.0% confidence compared to the existing scheme (SEX, CMS 2500® and Aero 404®).

- Permanently added to the rougher feed
- Thionocarbamate
<table>
<thead>
<tr>
<th>Collector</th>
<th>Type</th>
<th>Addition Points</th>
<th>Dosage (g/t)</th>
<th>Purpose</th>
<th>Recovery Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium Ethyl Xanthate (SEX)</td>
<td>Xanthate</td>
<td>Primary hydrocyclone feed hopper</td>
<td>10-30</td>
<td>Selective sulphide collector</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rougher circuit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jameson Cell</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>First cleaner circuit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interfroth CMS2500®</td>
<td>Thionocarbamate</td>
<td>Ball mill</td>
<td>1.5-3.5</td>
<td>Copper recovery</td>
<td>1.10% Cu</td>
</tr>
<tr>
<td>Cytec Aero 404®</td>
<td>Dithiophosphate</td>
<td>Rougher circuit head</td>
<td>3</td>
<td>Gold recovery</td>
<td>1.68% Au</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cleaner circuit head</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orica DSP110®</td>
<td>Thionocarbamate</td>
<td>Rougher circuit head</td>
<td>0.25</td>
<td>Copper recovery</td>
<td>0.35% Cu</td>
</tr>
</tbody>
</table>

- Sodium ethyl xanthate as the main collector
- Additional collectors proven to aid in recovery
- Currently no activators or depressants employed
Mineralogical test work showed that rougher losses occurred in coarse (>100µm) and fine (<C5) fractions.

These losses could be targeted by retrofitted designs intended to enhance mixing and suspension.

Installations were completed in stages during planned shut down periods.

Cell Design Optimisation
Rotor-Stator Design (Outotec FloatForce®)

- Replaced MultiMix® design with half length stators
- Allows increased slurry circulation
- Allows improved mixing efficiency at higher air rates
• Bi-directional pitch-blade turbine on shaft exerts downwards force
• Enhances mixing in large cells such as the 150m³ OK-150s
• Improves coarse particle mixing and recovery
• Installed in cells 1 to 3 in December 2010 and 4 to 6 in March 2012
CELL DESIGN OPTIMISATION
Improved Coarse Particle Suspension

- P_{80} measured before and after pitch blade installation
- Samples taken at four cell depths
- Demonstrates improved coarse particle suspension
Results Summary – 2010 and 2011

<table>
<thead>
<tr>
<th>Year</th>
<th>>106</th>
<th>106-C1</th>
<th>C1-C4</th>
<th>C4-C5</th>
<th><C5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>4.3</td>
<td>2.1</td>
<td>0.8</td>
<td>0.2</td>
<td>2.3</td>
</tr>
<tr>
<td>2011</td>
<td>3.3</td>
<td>1.4</td>
<td>0.8</td>
<td>0.2</td>
<td>1.6</td>
</tr>
<tr>
<td>Total reduction</td>
<td>1.0</td>
<td>0.7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.7</td>
</tr>
</tbody>
</table>

- Both fine and coarse fraction losses were reduced across this period.
- Increased coarse recovery allows greater feed P_{80} and therefore greater throughput (9.9Mtpa in 2011).
- From mineralogy reports, total copper and gold rougher losses reduced by 2.4% and 1.0% respectively.
PROCESS CONTROL OPTIMISATION

Mintek FloatStar® (Level Stabilisation)

- Multi-variable feed forward control system
- Applied to cell and intermediate hopper level controllers
- Limits propagation of disturbances downstream

• Metallurgist sets mass pull and operator controls air settings on cells
• Flow Optimiser controls relative mass pull of each cell using the level controls
• Consistent feed to concentrate pump ensuring stable flow downstream

CONCLUSIONS

• Increased throughput in 2011 of 9.9Mtpa (24% above design capacity of 8Mtpa)

• Improved copper recovery in 2011 of 90.5% (design maximum of 88%)

• Rigorous approach to reagent trials using statistical analysis

• Improved coarse particle recovery

• Improved circuit stability due to expert process control systems