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ABSTRACT 
 

Significant progress has been made over the past few years on characterizing and understanding the 
hydrodynamic properties of frothers and collectors and their effect on flotation performance.  This new understanding of 
the relationship between chemistry and hydrodynamics has dramatic implications for how flotation circuits should be 
controlled and optimized. Previous work has shown that choosing a frother of the right ‘strength’ is critical to the 
optimization process, and the work and discussion presented here serve to strengthen the argument.  In addition, we know 
that collector chemistry will also influence hydrodynamic properties and needs to be taken into consideration.  To achieve 
the desired outcome, the overall system of reagents and operating parameters must be considered. This paper describes 
and discusses some of the findings from recent research on frother and collector chemistry effects (on hydrodynamics), 
and how this knowledge can be used to improve flotation performance. Examples from plant experience are discussed. 



 
INTRODUCTION 

 
Frothers perform various functions in flotation but the primary ones are control of bubble size in the pulp zone 

and stabilization of the froth zone. Laskowski (1) was among the first to try to capture both roles in characterizing frothers 
in order to provide a basis for frother selection for a given duty, as well as to explore the link between function and frother 
chemistry (structure). The method he used requires bubble size data and a frothing index; the procedure has been 
simplified by Cappuccitti and Finch (2) using gas hold-up to substitute for bubble size, and froth height (without 
overflow) as the froth stability metric. The gas hold-up/froth height relationship will be referred to as ‘hydrodynamic 
characterization’.  Essentially, the gas hold-up parameter reflects the sum of the hydrodynamic conditions in the pulp 
phase (water in this case), i.e. the effect of bubble size plus the apparent impact of the water surrounding the bubble due to 
the frother (3). Similarly, the stable froth height parameter reflects the sum of hydrodynamic conditions in the froth, i.e. 
the effect of bubble size undergoing coalescence plus the influence of the water in the lamellae and Plateau borders 
between bubbles. It could be argued that the gas hold-up/froth height relationship is a superior one to simple bubble 
size/froth index for discerning differences in frother behaviour since it accounts for more complete hydrodynamic 
behaviour in both the pulp and froth. 
 
Background 
 

The test rig (Figure 1) is a laboratory column (height 425 cm, dia. 8 cm) instrumented to measure gas hold-up (εg, 
%) (using differential pressure) and control air rate (Jg, cm/s), with froth height recorded manually at steady state. Air is 
dispersed through a porous sparger. The system is run on air-water without solids. By testing a wide range of frother types 
it has been shown that each frother type exhibits a unique froth height vs. gas hold-up relationship (2). The relationship is 
established by fixing air velocity into the column (Jg = 1.6 cm/s at sparger, 1.92 cm/s at gas hold-up measurement) and 
running through a spectrum of frother concentration thus providing a range of froth height versus gas hold-up data. 
Typically, this means starting with concentrations well below the CCC (critical coalescence concentration) (1) increasing 
to well above the CCC. Each frother type will exhibit a unique CCC in its effect on reducing bubble size to a limiting 
value (1,4). 
 

Figure 2 shows froth height versus gas hold-up for a selection of frother types, including the classics MIBC and 
Dowfroth 250, plus some Flottec products, indicating a wide range of responses from simple alcohol (MIBC) to 
polypropylene glycol (F-150). The trends are common: initially froth height increases slowly with gas hold-up then more 
rapidly, the change roughly corresponding to when the CCC for a particular frother is exceeded. The alcohols (such as 
MIBC) give relatively large change in gas hold-up with increasing frother concentration but little change in stable froth 
height in comparison to polyglycols (like F-150) that produce large change in froth stability for smaller change in gas 
hold-up. The relationships reflect the different water transport behavior of the frother types, with alcohols giving drier, 
less voluminous froths than the polyglycols (5,6,7). One outcome is that the performance of frothers is not solely 
dependent on concentration; i.e., it is not correct to assume that changes in concentration will make one frother perform 
like another. Bubble size in water (pulp) can be matched by changing concentration between 2 frother types (4) so that 
their relative concentrations to the CCC are the same, but gas hold-up and froth stability will be different. 
 

It is also well established that some collectors possess frothing characteristics, such as fatty acids. What is not 
well understood is how collectors change bubble size or gas hold-up.  Therefore, more research is required to understand 
the hydrodynamic characterization of collectors within the full reagent system. 
 
 
 
 
 
 
 
 
 
 
 
 
 



pump

h ∆P

Air

solution

make-up

tank

gas hold-up 
measurement

froth height 
measurement

frother

water

pump

h ∆P

Air

solution

make-up

tank

gas hold-up 
measurement

froth height 
measurement

frother

water

 
 

 
Figure 1 - The test rig used to generate froth height versus gas hold-up data 
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Figure 2 - Examples of froth height versus gas hold-up for a variety of frothers showing the wide range in response. 

MIBC methyl isobutyl carbinol, FX130-05 ethoxylated butanol, F-150 polypropylene glycol (PPG), DF250 PPG methyl 
ether, 160-05 PPG alkyl ether, 160 PPG butyl ether (gas rate, Jg = 1.6 cm/s at sparger) 

 



 
 
FROTHER CHARACTERISTICS AND IMPLICATIONS ON FLOTATION PERFORMANCE 
 

Now that there is better understanding of how frothers affect both pulp and froth properties, what is the 
implication on flotation optimization? Using Figure 2 as a basis, Figure 3 displays schematically what appears to happen 
in flotation when gas hold-up is changed by altering frother concentration (for fixed Jg). Two frothers that have widely 
different response are illustrated, MIBC and F-150. Gas hold-up increases as frother concentration is increased in 
response to decreasing bubble size; which in turn increases the bubble surface area flux, Sb, which directly increases 
flotation kinetics (higher mass flux). The opposite happens with decreasing frother concentration and gas hold-up. 
Therefore, as frother concentration-changes occur below the CCC, there is a significant change in flotation kinetics. The 
x-axis (gas hold-up) can be thought of as the ‘gas pedal’ in flotation and will reflect the combined influences of both 
frother and air rate. 
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Figure 3 - Representation of link between hydrodynamic measurements and implication to flotation (gas hold-up to 
kinetics, and froth height to froth particle-holding capability) 

 
The y-axis shows the froth stability (height or volume) as frother concentration is varied. As froth stability is 

altered, so its’ ability to support solid particles also changes. The more stable the froth, the more it can be loaded with 
particles before collapsing under its own weight. This is due to the amount of water in the froth that stabilizes the bubbles 
(i.e. prevents coalescence) thus increasing the height or volume that can be supported. If the stability is insufficient, the 
froth cannot support the total mass of particles that are floated. This can occur with ‘weak’ frothers such as MIBC if 
kinetics and mass flux are high. Alternatively, if the froth is too stable (i.e. frother too ‘strong’ for what is required), this 
will lead to sub-optimal metallurgy (high entrainment) or downstream operational problems of froth persistence. In this 
sense, the water that accompanies the bubbles entering the froth can be thought of as temporary storage volume for the 
mass floated: If it is too small it becomes unstable, if it is too large it can cause performance problems of grade and 
persistence. 
 

In hydrodynamic terms, a good frother must be a reagent that will give both the target bubble size reduction and 
adequate froth stability over a range of operating conditions.  Frothers are often described as either ‘strong’ or ‘weak’. In 
the past, this has been a qualitative description. Referring to Figure 3, we can now describe a ‘strong’ frother as one that 
produces large changes in stable froth height relative to gas hold-up, and a ‘weak’ frother as one that does the opposite. 
This definition remains somewhat arbitrary in that it does not link to frother concentration (ppm) directly, but the notion 



that a significant slope change occurs at the CCC means that classification curves for frothers can be readily produced by 
conducting tests above and below the region of the frothers CCC. Operationally, frothers that are stronger will bring more 
water into the froth and hence be less selective due to increased entrainment.  
 

FLOTATION CIRCUIT CONTROL 
 

In most flotation circuits, keeping other variables (such as air rate and collector dosage) fixed, frother dosage 
(concentration) can be used to control the kinetics (mass removal rate). The fact that each frother type has a distinct 
relationship between froth stability (particle loading capability) and kinetics, means each frother will perform differently 
in a circuit. This implies that there is a specific frother (having a specific hydrodynamic characteristic) that will best 
balance mass pull (kinetics) and froth stability (loading). The following scenarios illustrate this.  
 
Frother Too Weak for the Circuit 
 

The condition is a collapsing froth due to too heavy a mineral load, frother concentration is below the CCC. The 
operator increases the frother addition rate. This in turn increases kinetics and more mass is pulled into the froth. The froth 
stability is not increased significantly and the collapsing of the froth is exacerbated.  Therefore, if the frother is too weak, 
adding more in this situation simply makes the problem worse. 
 
Frother Too Strong for the Circuit 
 

The tail in a flotation circuit is high. The operator wants to increase the mass pull and increases the frother dosage 
to increase kinetics. The froth persistency and volume is increased significantly but the mass pull is not. The more 
persistent, voluminous froth causes grade to drop and there are operational problems with frothing downstream.  The 
frother may be too strong for this circuit. 
 

It is important to find the frother with the appropriate strength that will provide the optimum control in each 
flotation circuit across a useful range of dosages and ore conditions. Understanding flotation cell hydrodynamics, how 
they can be affected by frothers and other operating parameters, and what hydrodynamic conditions exist in the circuit can 
assist greatly in making adjustments to improve metallurgical performance (8,9,10,11,12).  
 

DISCUSSION: IMPLICATIONS OF REAGENT EFFECTS ON CELL HYDRODYNAMICS 
AND FLOTATION CIRCUIT PERFORMANCE 

 
Frother Addition Rates and Concentration in the Flotation Pulp 
 

It has been established (4) that bubble size (nominally Db, or the Sauter mean size, D32) in the pulp phase is 
directly related to the ppm concentration of frother in the aqueous phase of the pulp (Figure 4a) and that the CCC for a 
given frother will increase with air rate Jg as modeled by Nesset (13). Knowledge of the CCC (critical coalescence 
concentration) for a particular frother establishes what concentration is required to give minimum bubble size  (1, 3) and 
hence maximum Sb.  We also know that the shape of the curve that defines the relationship between froth creation and 
bubble size reduction at various concentrations is unique for each frother type (7).   
 

Realizing that frother functions in the aqueous phase means that addition to the circuit should be controlled by the 
ppm concentration in the water phase as opposed to the g/t of ore or metal value in the circuit feed.  It is understood that 
g/t (ore or metal basis) of frother is related to the ppm by the % water of the pulp, and hence the actual ppm in solution is 
an a posteriori calculation rather than a desired set point, since the tonnage and ratio of solids-to-water may fluctuate. 
Conceptually, adding sufficient frother to minimize the bubble size at a given air rate provides maximum bubble surface 
area flux (Sb) and, hence, flotation kinetics.  Unless there is an expressed reason for not wanting the minimum bubble size, 
the frother concentration in the pulp should be kept close to the CCC of the frother (Figure 4b) (13). This optimum frother 
concentration will increase with air rate as illustrated in Figure 4b (for Dowfroth 250), an important consideration for 
circuits where Jg may vary down a bank of cells. Since frother may deplete in the pulp going down a bank, due either to 
concentrating into the froth phase or volatizing with air from the cell, stage addition may be required to maintain the 
frother at the required CCC level.  Volatile frothers such as alcohols (MIBC) are more susceptible to depletion than glycol 
based products. Failure to maintain the frother concentration will result in increased bubble size, loss of flotation kinetics 
and decreased mineral recovery, often at the point in the circuit where the more difficult mineral components (fines, 



coarse, composites) are being recovered. Some plants counter this problem by adding weak frothers at levels exceeding 
the CCC to avoid falling below the CCC when downstream conditions change. The detrimental impact to operating cost, 
froth quality and downstream circuits is obvious. Table 1 lists the CCC95 values (the frother concentration for which D32 
has decreased by 95% of the full amount possible) (4) for 5 different frother types at two levels of Jg. 
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Figure 4 – a) Bubble size (D32) reduction with increasing frother dosage showing how CCC increases with Jg
                 b) Effect of frother dosage on bubble surface area flux (Sb) showing optimum dosage increasing with Jg 
 

Table 1 – CCC95 Values for Various Frothers at Two Values of Jg
 
 

Frother CCC95 (ppm)
Jg=0.5 Jg=1 Average

Pentanol 25.59 34.03 29.81 
MIBC 10.45 12.47 11.46 
D-250 8.35 13.86 11.11 
F-140 7.66 11.48 9.57 
F-150 3.74 5.26 4.50 

 

 
 
 
 
 
 
 
 
 
Choice of Frother to Use in a Circuit 
 

As discussed, the optimum frother provides a balance between kinetics and froth stability over the control range 
of addition.  Usually, one frother is used to achieve this.  But using one frother gives only one unique hydrodynamic 
relationship. Ideally, it would be desirable to have independent control of bubble size and froth stability.  Unfortunately, 
this cannot yet be achieved because changing the concentration of the frother changes both variables. 
 

An alternative strategy for gaining more independent control over froth characteristics and bubble size would be 
to use a dual frother system, likely a strong and weak frother added independently.  Such a system would give an 
additional degree of freedom in that changing the ratio of the two frothers would shift the resulting hydrodynamic curve 
and, hence, the response of the circuit.  This would provide more independent control of Db, εg, Sb and froth stability. 
 

The advantage of using a single frother is simplicity in an already complex system.  If the circuit has somewhat 
low variability and non-complex flotation, the use of a single frother would be recommended. The advantage of a dual 
frother system is more flexibility in highly variable and complex circuits. For example, changing the frother ratio 
(weak/strong, added independently) down the flotation bank. The use of more weak/less strong frother early, followed by 
stronger frother later in the bank would increases optimization possibilities for recovering fines, intermediates and 
minimizing entrainment of gangue. A dual frother system could be more cost effective since strong frothers normally 
function at lower dosages.   
 
 



Collector (and other reagent) Effects on Cell Hydrodynamics 
 

Collectors, like frothers, are surface-active agents and therefore are likely to exhibit hydrodynamic characteristics.   
Collectors are termed to be ‘frothy’ (froth positive), neutral or froth negative. It is not desirable that collectors have a 
strong froth characteristic because independent control of hydrophobicity and hydrodynamics is preferable.  As an 
example, the amount of froth-positive collector added may need to be limited to less than optimum because it creates 
excess froth. To date, there has not been much research on the hydrodynamic characterization of collectors or 
collector/frother systems.  It is not well understood whether collectors that exhibit froth characteristics are also effective 
bubble size reducers.  If collectors have minimal effect on Db, the implications would be very significant for flotation 
systems where the froth creation comes primarily (or completely) from the collector, such as fatty acid or amine flotation. 
 

Figure 5 shows the hydrodynamic response of a collector, DPG 25, (as well as several frothers for reference) 
which is used alone in a flotation circuit without a frother, at dosage levels typical of operation.  The figure clearly shows 
that the collector provides small froth height but does not reduce bubble size (since gas hold-up remains unchanged).  In 
fact, it is also poor at stabilizing the froth, possibly due to low water recovery into the froth.  These results illustrate the 
point that this circuit could benefit from the use of a frother that would stabilize the froth, lower the usage of collector, 
and provide metallurgical benefit by reducing bubble size.  Plant tests did confirm that when frother was added, collector 
levels decreased significantly and metallurgical improvements were indicated. 
 

The implications of these findings are that in circuits, such as industrial minerals, where collectors currently 
provide the froth, the added use of a frother to specifically control bubble size may be beneficial.  Weaker frothers may be 
called for so that the froth is not excessively stabilized if it is already strongly so by solids or other considerations such as 
as high salt content (14,15).  The call is for further work to determine the hydrodynamic characteristics of collectors and, 
indeed, entire reagents systems, not just frothers, since what is of interest in a cell is the total of all reagent interactions.  

0

5

10

15

0 5 10 15 20

GAS HOLDUP (%)

FR
O

TH
 H

E
IG

H
T 

(c
m

)

MIBC DF250

F150 DPG25

 
Figure 5 - Gas hold-up versus froth height for 3 typical frothers and one collector, DPG 25, which was used without 

frother in the flotation circuit 
 
 
Controlling Bubble Size Distribution (Population) in a Circuit 
 

The bubble size distribution (BSD), or population of bubbles in a cell, is dependent on the frother type and 
concentration, Jg, bubble generation system (e.g. mechanical agitator, jetting sparger, in-line mixer), viscosity and other 
factors (4). The effect of frother concentration alone (4) is illustrated in Figure 6 showing that increasing frother dosage 
not only decreases the bubble size parameter, D32, but also dramatically alters the shape of the BSD, which becomes 
narrower and less bi-modal as dosage is increased.  By manipulating key variables, we have some control over the BSD in 
a cell and, in theory, the optimum match between the BSD and the particle size distribution can be produced. In essence, 



smaller particles will be more efficiently collected by smaller bubbles and coarser particles by larger bubbles. This is a 
large oversimplification but serves the purpose of this discussion. A good review is provided by Jameson, Nguyen and 
Ata (16). Nesset et al (11) and Hernandez et al (8) showed that lack of minus 1mm bubbles in a rougher/scavenger bank 
resulted in poor recovery of minus 10-micron Pd particles at a plant using a weak frother (MIBC) below the CCC. Adding 
a strong (poly-glycol) frother in the final cells of the bank resulted in a marked shift of the BSD to below 1 mm, and a 
dramatic increase in minus 10-micron particle recovery.  
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Figure 6 – How the bubble size distribution changes as frother concentration is increased (Dowfroth 250) 

 
To manipulate bubble size, the two most practical variables are frother concentration and air rate. Nesset et al (4) 

have shown that D32 increases as the square root of Jg so, although effective, the manipulation of bubble size by frother is 
more responsive. Figure 7 illustrates the trade-off between frother concentration and Jg for D32 and Sb (the example is for 
Dowfroth 250). This “road-map” shows that most plants tested to date (4) do not operate at their CCC levels indicating 
considerable room for manipulation of bubble size as an optimization strategy. A standard approach to analyzing circuit 
performance is to look at the losses of valuable minerals by particle size in the tails, and establishing if they predominate 
in the coarser or in the finer fractions. A portion of the circuit can then be set-up to improve recovery of the lost fractions. 
As in the example cited above, increasing frother concentration down a bank would produce smaller bubbles (until the 
CCC is reached) for a given air rate, and favour recovery of the finer fractions. Leaving the frother concentration the same 
and increasing air rate down the bank would serve to increase bubble size favouring recovery of coarser material. 
Understanding the relationships between bubble size, frother and air rate also opens other possible scenarios for matching 
the BSD to specific particle size recovery, viz: to increase bubble size 
 

a) Dilute the circuit (or portion) with water resulting in a lower frother concentration 
b) Use a frother that is more readily stripped (volatile) from the pulp  
c) Rather than a), add water only to the bubble formation zone in the target cell(s) 
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Figure 7 – Relationships between air rate (Jg) and bubble size (D32) on left, and air rate and bubble surface area flux (Sb) 

on right. The frother concentration curves are for Dowfroth-250. The indicated minimum (0 ppm) and maximum (far 
exceeding the CCC) are the same for all frothers. These ‘road maps’ serve to indicate the potential for improvement 

 
Froth Stability, Water Recovery and Mass Flux (flotation kinetics) 
 

Flotation recovery may be described as a first order rate equation where Recovery (R) at any given time is related 
to the ultimate Recovery (R∞) and the rate constant (k) that describes the speed (kinetics) of material removal. This R∞/k 
trade-off has been described in articles by Klimpel (17). Figure 8 shows several possible time-recovery plots that can 
result from changing the rate (k) at which the mass is recovered (mass flux) as well as R∞.  Understanding the 
hydrodynamics of the system may aid in interpreting what is happening. Water recovery is a key feature of frothers 
related to their hydrodynamic characterization.  Each frother type tends to give different water recovery rates (7). Recent 
work by Zhang et al (18) describes a method for determining an equivalent water thickness associated with the Sb exiting 
via the froth overflow. This equivalent thickness is a quantitative method for characterizing the frother types, giving 
similar rankings to the hydrodynamic characterization method described here. The mechanism is not clearly understood 
but as an aid to discussion frothers can be considered to function by creating a film of water around the bubble.  A 
stronger frother creates a thicker film and weaker frothers create a thinner film.  As the film thickness changes, so does the 
water recovery to the froth.  In this way a frother will create a foam stabilized by the presence of water; in flotation 
particles take on some of this role to create a stabilized froth (15).  As mass flux to the froth decreases down a bank of 
cells, it is often more difficult to create a stable froth. The less stable the froth, the harder it is to get recovery.  Adding 
more frother may create more froth and water recovery,but may not create more true flotation recovery due to insufficient 
mass required to create a stabilized froth.   
 

The notion of a water film on the bubble introduces the hypothesis that the thickness of the film can also affect the 
flotation of coarse versus fine particles. A particle must penetrate the water film layer in order to attach to the bubble.  The 
induction time is the time required for that attachment.  If the contact time of the particle is greater than the induction 
time, the particle will attach.  If the water film is thick, a fine particle may not have the momentum to penetrate the layer 
and attach (16).  If the water layer is thin, there may be too much turbulence near the interface to keep a coarse particle 
attached.  Therefore high water recovery tends to favor coarse particles and low water recovery tends to favor fine 
particles.  This may be why weak frothers are often referred to as selective (favor grade by rejecting coarse intermediates 
and having low entrainment) and strong frothers as persistent (favor recovery as they float more coarse and have higher 
entrainment). 
 

Through better understanding of the impact of frother selection on hydrodynamics, it is possible to suggest 
different strategies for improving circuit performance.  For example, what can be done in a circuit that has poor recovery 
yet the last cell or cells in the rougher/scavenger circuit have little to no recovery?  In this case, due to very low mass flux 
in these final cells, there is no stable froth to recover.  In order to stabilize the froth at the back end of the circuit, the front 
end could be slowed down and mass recovery moved further down to produce a stable recoverable froth. This would 
mean deliberately lowering the k value to get an improved R∞. The second scenario in Figure 8 illustrates this. If recovery 
losses were largely confined to either the fine or coarse fractions, the use of specific frothers may be warranted.  To 
improve fine particle recovery, the use of a high concentration (at the CCC) of a weak frother added to the final cells 
would ensure that the bubble size is at a minimum which would give you the best hydrodynamic conditions for fine 



particle recovery.  To improve coarse particle recovery, the addition of a strong frother at the end of the circuit would 
improve water recovery and favor coarse particle flotation. The 3rd scenario in Figure 8 illustrates this situation. 
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Figure 8 – Time- recovery curves for 3 flotation systems having different R∞/k values.  In the first system, B has lower k 

and R∞ (may have different hydrodynamic conditions).  In the second system, A has a higher k value but lower overall R∞ 
than B.  System 3 has different k values but the same final R∞

 
On-line Gas Hold-up Measurement 
 

Much of the research and development work done to date on understanding flotation cell hydrodynamics and gas 
dispersion parameters in a plant has involved the use of portable gas hold-up (εg), bubble size (Db) and air velocity (Jg) 
sensors (19).  These sensors are put in place to gather data over short periods of time and have provided excellent 
information on where a plant operates relative to these parameters (Figure 7).  The sensors have also provided the data 
that has been required to better understand the relationships between the reagent chemistry and the operating parameters.  
 

The next logical step would be to determine if on-line real time measurement of gas dispersion parameters would 
provide better flotation circuit control. Bartolacci et al (20) have reported some initial success with column control.  As an 
example, gas hold-up may be a practical substitute for bubble surface area flux and hence a fundamental driver of 
performance. Gas hold-up reflects the sum total of the operating conditions of the cell and will depend on the bubble size, 
the air rate, the condition and geometry of the equipment, the rheology and chemistry of the pulp, and the type and 
amount of reagents added.  Some of these factors are fixed, some change gradually over time while others will result in 
immediate changes in the performance in the circuit.  Much of the work done to date suggests that there may be a discrete 
point or narrow range of gas hold-up that will result in the optimum performance of a cell.  This has not been firmly 
established because, up to this point, reliable on-line measurement of gas hold-up has not been available. Today, there are 
newer technologies that make on-line gas hold-up measurement possible (19,21).  Research is required to determine if and 
how gas hold-up could be linked as a control strategy to hydrodynamics and flotation circuit optimization. 
 

CONCLUDING REMARKS 
 

We have presented a discussion paper and introduced a method of characterizing the hydrodynamic properties of 
frothers using froth height (as a measure of froth stability) versus gas hold-up (as a combined measure of bubble size in 
the pulp and water film thickness on the bubble). Frother types exhibit different hydrodynamic characteristics and this 
helps distinguish frothers considered ‘weak’ from those considered ‘strong’.  Frother addition should be controlled by 
considering the concentration in the aqueous phase as opposed to the feed rate of ore or metal. The critical coalescence 
concentration (CCC) concept is a useful one for assessing circuit performance and the potential for improved recovery. 
Blended frothers may offer some independence over the froth and bubble size control functions. In addition to frothers, 
other reagents, such as collectors, may also possess hydrodynamic properties and the combined characteristics of all 
reagents added needs to be considered. An appreciation of the difference in water-carrying rate between weak and strong 
frothers will permit the metallurgist to better select a frother-addition optimization strategy for recovery of fine and coarse 
particles that would otherwise be lost to tails. It is also suggested that on-line measurement of gas hold-up could be useful 
for optimizing mass flux. Frothers clearly have the potential to be one of the most useful variables for exploitation in a 
flotation circuit. It is hoped that this communication will aid in this regard. 
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