

INTRODUCTION TO SAMPLING FOR MINERAL PROCESSING

Part 7 in a series "Effects on Recovery and NSR"

SERIES CONTENTS

- 1 Introduction to course and sampling
 - Course objectives
 - Course introduction
 - Objectives for sampling
- <u>2 Sampling Basics</u>
 - Some definitions
 - 3D/2D/1D Sampling
 - Delimitations / Extraction
 - Rebounding / Cutter Speed and geometry
- <u>3 Sampling Errors</u>
 - Delimitations / Extraction
 - Bridging / Cutter issues / Multiple cutters
 - Back pressure
- 4 Metallurgical Samplers
 - Belt Samplers / Crushers
 - Linear Samplers and enclosures
 - Rotary Vezin / Arcual Samplers
 - Secondary / Tertiary Samplers

5 - Process Control Samplers

- Launder / Pressure / Poppet sampler
- Analyzers (XRF or particle)

6 - Effects on Mass Balancing

- Some aspect of the AMIRA code
- Detrimental effects and metallurgist responsibility
- Sampling errors in launder / pressure sampler
- Mass balance effects

7- Effects on Recovery and NSR

- OSA and sampler errors
- Grade and Recovery targets
- Recovery Error propagation
- Net Smelter Return Error propagation (loss of revenues)

Detrimental effects to operations

The assays from samples are used for control and accounting purposes:

- Planning
 - Production targets
 - Plant need to make a certain amount of money to pay its bills and make a profit. This effects how much tonnage to push through a mill.
- Plant control
 - Grade / Recoveries
 - Target values for these are set and accurate, non-biased, assays are required to achieve this.
- Metallurgical Accounting
 - Unbalanced results (poor sampling, assaying or weighing of stream)
 - Unaccounted loss (lack of measurement accuracy)

Problem with samplers which do not adhere to sampling theory:

- Launder and pressure samplers contain a bias, or errors, which can be constant (biased) or fluctuating (random). The ratio of fines:coarse, or light:heavy, particles entering the fixed cutter or nozzle will vary even without fluctuations in the process.
- Segregation by particle size, density, etc. is always present as there can be no guarantee that the slurry to be sampled is homogenous
- Segregation caused by pipe bends or intersections, etc.
- Unfortunately these errors change over time due to fluctuations in feed tonnages, particle size, densities, flow rates, pressure, etc. which can cause precision errors

OSA and Sampler Errors (On-line Assays)

- On-Stream Analyzers (OSA) only analyze the samples it is presented
- Normal OSA accuracies, as 1-SD (depends on application)
 -Feed ~ 4-6% (Aver 5%), Conc ~ 2-4% (Aver 3%), Tails ~ 7-9% (Aver 8%)
- Measurement result error (1-SD):

:
$$s^2_{meas} = s^2_{sampling} + s^2_{analytical}$$

$$s_{meas} = \sqrt{s^2}_{sampling} + s^2_{analytical}$$

 If the sample feed to the OSA is biased, the results are biased

7UCI	Se Error Pro			ropagat				
	File Help.				CASET			
		Value	Error	Equation:	Feed%	Conc%	Tail%	Rec%
	A	1.75	0.09135	100*B/A*(A-C)/(B-C)	1.75	13.50	0.25	87.33
HEATH & SHERWOOD	B	13.5	0.45280			10.00	0.20	01.00
	D	.23	0.02055		E	0	004	ADOTATAL
	E				Errors % (1-SD)		OSA	ABSTotal
	G			Operators:	Feed	1.50	5	0.09135
	H			Log() In() e^() 10^() SqRt() EE()	Conc	1.50	3	0.45280
	J			exp() Sin() Cos() Tan() Log(X,B) X^(2)	Tails	1.50	8	0.02035
	L							
	M N			abs() aSin() aCos() aTan() Pi e	Recovery error	1 2978		
	0			Compute		1.2010		
	Р О	-						
	R			Computed Value:				
	S T			87.33153638814017				
	U V			Computed Error:				
	w							
A is Feed	X			1.297780317295496				
B is Conc	SS Error Pro				CASE2			
C is Tail	File Help							
e is iaii		Value	Error	Equation:	Feed%	Conc%	Tail%	Rec%
	A B	1.75	0.08923 0.42691	100*B/A*(A-C)/(B-C)	1.75	13.50	0.25	87.33
	C D	.25	0.02016					
	E				Errors % (1-SD)	Case2	OSA	ABSTotal
	F			- Country	Feed	1.00	5	0.08923
	н			Operators:				
	I			Log() h() e^() 10^() SqRt() EE()	Conc	1.00	3	0.42691
	K			exp() Sin() Cos() Tan() Log(X,B) X^(2)	Tails	1.00	8	0.02016
	M			abs() aSin() aCos() aTan() Pi e				
	N				Recovery error	1.2794		
	P			Compute				

Computed Value:

Computed Error:

87.33153638814017

1.279411606606388

Q

R

5

т U

v w

х

γ z

Recovery Error Difference 0.0184 (1-SD)

http://www.paulnobrega.net/

• This statement can be found in the Will's Mineral Processing Technology book:

"The aim (of a flotation control system) should be to improve the metallurgical efficiency, i.e. to produce the best possible grade-recovery curve, and to stabilize the process at the concentrate grade which will produce the most economic return from the throughput."

This statement has a few key points:

- A concentrate grade is decided upon (could be by planer, metallurgist, control system or other and depends on feed grade)
- Keep the process stable (upsets are not good)
- Increase the recovery as close as possible, to the best grade-recovery curve, without de-stabilizing (upsetting) the circuit
- Maximize recovery at a target grade

Assay errors and Grade/Recovery curve

86.5

12.95

13.15

13.35

13.55

13.75

13.95

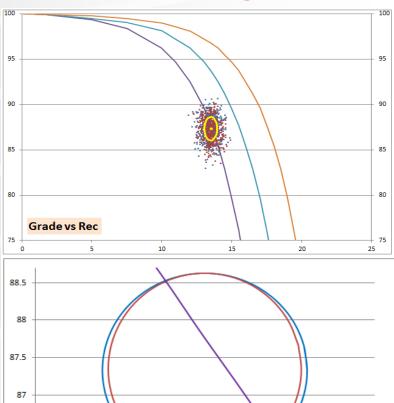
14.15

HEATH & SHERWOOD

Feed %1.75, Conc. %13.5 Tail %0.25, Rec. %87.33

 Case 1(1.5%)
 Case 2(1.0%)

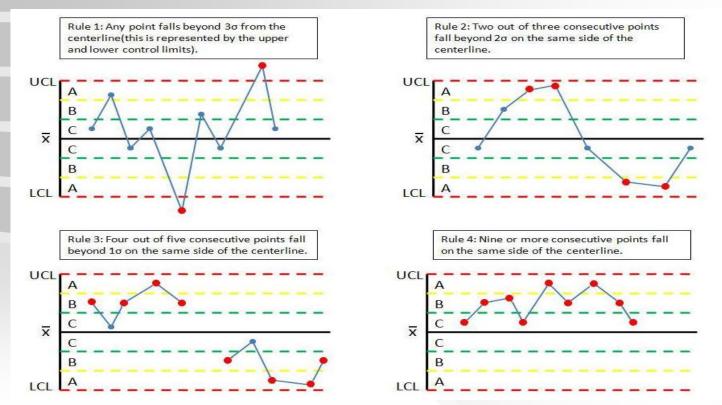
 Recovery error
 1.2978
 1.2794


 Recovery Error Difference 0.0184 (1-SD)

Uncertainty Ellipse Area

%Grade x %Rec 1.85 1.72 Control Area Improvement % 7.06

COMMENTS


- With the slightly better samplers in Case 2, the recovery target can be moved upwards the 0.0184% (or 0.0368% with 2-SD) error difference with the same probability of detecting an upset in the circuit as in Case1
- As the target for grade / recovery changes, due to feed changes, the error difference changes only slightly (~10%).

Introduction to SPC

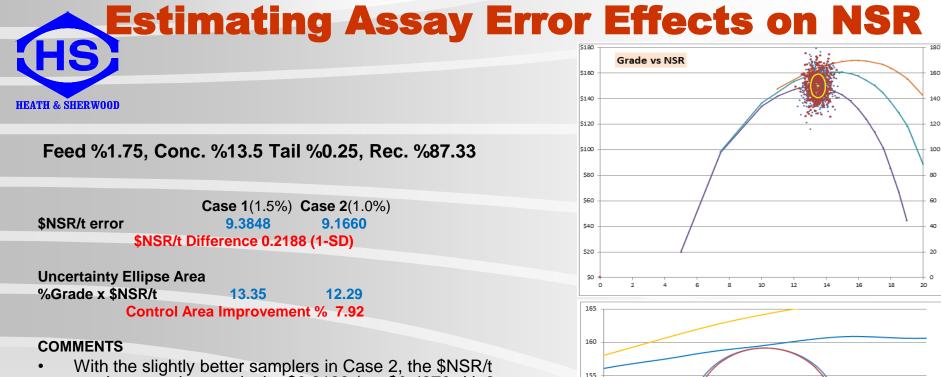
"All control starts with measurement and the quality of control can be no better than the quality of the measurement input." (Connell [1988])

https://controls.engin.umich.edu/wiki/index.php/SPC:_Basic_control_charts:_theory_and_construction,_sample_size,_x-bar,_r_charts,_s_charts

Introduction to SPC

- HEATH & SHERWOOD
- Control limits for grade / recovery depend upon the accuracy of the analyzer / samplers Example chart of recovery control, target shifted up 1-SD difference, 0.0184%

Error Propagation - \$NSR/t


- Feed %1.75, Conc. %13.5 Tail %0.25
- \$NSR/t \$149.78

	Case 1(1.5%)	Case 2(1.0%)
\$NSR/t error	9.3848	9.1660

\$NSR/t Error Difference 0.2188 (1-SD)

Uncertainties: a Python package for calculations with uncertainties, Eric O. LEBIGOT, http://pythonhosted.org/uncertainties/

🖉 Estimate NSR In	nprovements v2.0							l	_ 0	х
File Help										
Assays%		S1 Error		S2 Error		OSA Error		T1 Error	T2 Error	
1.75	Feed in %	1.5	%	1	%	5	%	0.0914	0.0892	
13.5	Conc in %	1.5	%	1	%	3	%	0.4528	0.4269	
0.25	Tail in %	1.5	%	1	%	8	%	0.0203	0.0202	
NSR Par's										
14330	Metal Price \$/t									
87	Smelter Payment %									
350	Treatment \$/t									
10	Transport \$/t									
2.102400	Tons Processed Mt									
	Update Calculations									
RESULTS		S1 SD	S2 SD	SD Diff						
87.33	Recovery %	1.2977	1.2792	0.0185						
149.78	NSR \$/t	9.3848	9.1660	0.2188						
314.9	M\$/(mo,yr)									
IMPROVEMENTS										
7.06	%grade/%rec									
7.92	%grade/\$NSR									
0.460	M\$/(mo,yr)									

150

145

140

12.7

12.9

13.1

13.3

13.5

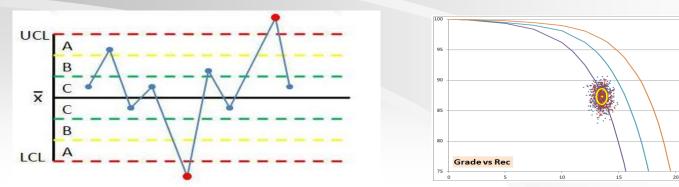
13.7

13.9

14.1

14.3

14.5


- With the slightly better samplers in Case 2, the \$NSR/t can be moved upwards the \$0.2188 (*or \$0.4376with 2-SD*) error difference with the same likelihood of detecting an upset circuit as in Case1. This is done by the recovery control.
- At 2,102,400 t/year this is:
 - \$459,786.00 @ 1-SD Error Diff
 - \$919,572.00 @ 2-SD Error Diff

Estimating where your process operates

25

- The probability of process upset as a result of analysis errors at the UCL's are, 1-SD is 16%, 2-SD is 2.25%, 3-SD is 0.15%. An upset occurs where your process crosses the grade / recovery curve.
- Your OSA has about 100 cycles a day , roughly a 15 minute cycle time (4/hr x 24hr ~ 100)
- How often a day does you process get upset?
 - At 8/shift (16/day) your SD is about 1 (x)
 - At 2-3/shift (5-6/day) your SD is somewhere around 1.5 (x)
 - At 1-2/shift (2-4/day) your SD is somewhere around 2 (x)
 - Once every several days, your SD is somewhere around 3
- This gives you an idea of how much you can increase your recovery / NSR target (x * 1-SDdiff)

Low grade Cu mine with large tonnages (140,000t/day)

- Comparing 2% and 1% sampler errors
- \$0.045/t estimated improvement
- \$2.19M/yr estimated improvement
- Control improvements
 15.06% and 16.93%

Ø Estimate NSR In	nprovements v2.0							l		х
File Help										
Assays%		S1 Error		S2 Error		OSA Error		T1 Error	T2 Error	
0.28	Feed in %	2	%	1	%	5	%	0.0151	0.0143	
41	Conc in %	2	%	1	%	3	%	1.4783	1.2965	
0.022	Tail in %	2	%	1	%	8	%	0.0018	0.0018	
NSR Par's										
6614	Metal Price \$/t									
92	Smelter Payment %									
125	Treatment \$/t									
70	Transport \$/t									
48.545	Tons Processed Mt									
	Update Calculations									
RESULTS		S1 SD	S2 SD	SD Diff						
92.19	Recovery %	0.7708	0.7466	0.0243						
14.48	NSR \$/t	0.8534	0.8083	0.0451	+					
702.9	M\$/(mo,yr)									
IMPROVEMENTS										
15.06	%grade/%rec									
16.93	%grade/\$NSR									
2.191	M\$/(mo,yr)									

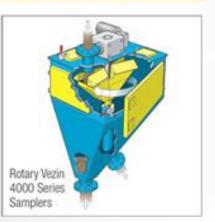
Another example (1/2)

Another example (2/2)

Low grade Cu mine with large tonnages (140,000t/day)

- Comparing 3% and 1% sampler errors
- \$0.115/t estimated improvement
- \$5.60M/yr estimated improvement
- Control improvements 31.28% and 34.78%

🖉 Estimate NSR In	nprovements v2.0							l	_ 0	х
File Help										
Assays%		S1 Error		S2 Error		OSA Error		T1 Error	T2 Error	
0.28	Feed in %	3	%	1	%	5	%	0.0163	0.0143	
41	Conc in %	3	%	1	%	3	%	1.7395	1.2965	
0.022	Tail in %	3	%	1	%	8	%	0.0019	0.0018	
NSR Par's										
6614	Metal Price \$/t									
92	Smelter Payment %									
125	Treatment \$/t									
70	Transport \$/t									
48.545	Tons Processed Mt									
	Update Calculations									
RESULTS		S1 SD	S2 SD	SD Diff						
92.19	Recovery %	0.8097	0.7466	0.0631						
14.48	NSR \$/t	0.9237	0.8083	0.1154	+					
702.9	M\$/(mo,yr)									
IMPROVEMENTS										
31.28	%grade/%rec									
34.78	%grade/\$NSR									
5.604	M\$/(mo,yr)									



For more information you can always contact us at: www.heathandsherwood64.com

PROVEN METALLURGICAL SAMPLING SOLUTIONS

