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ABSTRACT

The objective of sampling in mineral processing is to estimate grades and contents of sampling
units in an unbiased manner and with an acceptable and affordable degree of precision.
Sampling units are classified as dynamic and static stochastic systems. The paper examines the
most relevant topics of sampling practice and applied statistics such as how to test for bias, how
to estimate precision, how to quantify associative dependence between measured values in
ordered sets, how to select suitable sampling procedures and how to optimize sampling
protocols. Examples are given to illustrate the application of sampling theory in practice.
Extensive references to publications describing sampling procedures and guidelines for mineral
processing applications are provided.

INTRODUCTION

Sampling theory and practice play an important role in mining and metallurgy, The sampling of
materials in bulk is well-documented in the literature (Gy 1979; Merks 1985; Visman 1962) but
concise definitions, uniform symbols and common rules remain elusive targets. Various
Technical Committees (TCs) of the International Organization for Standardization (ISO) have
developed guidelines on the sampling of coal (TC27), iron ore (TC102), and copper, lead and
zinc concentrates (TC183). Detatled information can be found in several ISQ Draft International
Standards for copper, lead and zinc concentrates (sec References, 1SO/DIS), and in standard
methods developed by ISO/TC69-Applicarions of Statistical Methods.

Generally, sampling is the process of selecting a part of a whole such that a measured value
for the part is an unbiased estimate for the whole. In mineral processing, a whole is referred to
as a sampling unit such as a mass of mill feed, dewatered concentrate or bullion; or a volume of
cyclone overflow or tailings slurry, A sampling unit is classified as a dynamic stochastic system
when sampled during transfer, and as a static stochastic system when sampled while stationary.

The wet mass of mill feed can be estimated in an unbiased manner and with an acceptable
degree of precision (Merks and Merks 1992) but SAG mills, and gravity and flash concentrates,
have made it difficult to obtain precision estimates for metal grades and contents of mill feed.
The variances of metals contained in tailings, concentrates and thickener inventories can be used
to obtain reliable precision estimates for monthly mill feed grades. It is beyond the scope of this
paper to explain how Monte Carlo simulations can be applied to estimate confidence limits for
the metal grade of mill feed on the basis of its wet mass, and of the metal contents and variances
of tailings and concentrates (Merks 1991; 1999). The validity of this method depends critically
on how shurry flows in mineral processing plants are interrogated, and how the variances of
stochastic variables are estimated. On-stream data give valuable statistics that can be plotted in
sampling variograms to show where orderliness in the sample space of time dissipates into
randomness (Merks 1999).

Applied statistics provides scores of powerful techniques to test for bias, to estimate
precision, to optimize sampling protocols, and to determine the degree of associative
dependence between measured values in ordered sets (ASTM 1985; Mandel 1964; Merks 2000;
Volk 1980). The statistical analyses applied in this paper are based on comparing F- and t-
statistics with values tabulated as a function of degrees of freedom in the F-distributions at 5%
and 1% probability, and in the t-distribution (Handbook 1968; Volk 1980).
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A sampling protocol that is based on dividing a set of primary increments into odd- and
even-numbered subsets (see Appendix A), and preparing a test sample of each primary sample
(see Appendix B), gives an unbiased estimate for the variance of the entire measurement chain.
A pair of interleaving (or interpenetrating) primary samples is referred 10 as A- and B-samples
(ISO/DIS 12743). The symbols var(r) and var(spa) refer to the total variance of a measurement
procedure (the sum of the variances of the primary sample selection, preparation and analytical
stages). Interleaving sampling protocols are equally effective when applied to slumry flows in
mineral processing and bulk samples in mineral exploration,

Uncertainties in a measurement chain can be partitioned into randomly distributed
variations (random variations for simplicity) and biases. The sum of all random variations is
statistically identical to zero, and the sum of all biases is statistically different from zero. The
variance is the fondamental measure for random variations. Analysis of variance {ANOVA) can
be applied to optimize sampling protocols by partitioning the sum of the variance of the primary
sample selection stage, the variance of the sample preparation stage and the variance of the

analytical stage into its components. This application of Fisher's F-test, which is the essence of
ANQOVA, is examined in a separate section.

DEFINITIONS

Through the years, probability theory and applied statistics have developed a distinct jargon.
Since statistica] tests and techniques are applied in all scientific and engineering disciplines, it is
unsurprising that vastly different definitions and symbols abound. Elementary concepts such as
trueness, accuracy, bias and precision recelved a great deal of attention and scrutiny from
1SO/TC69 — Applications of Statistical Methods, and from technical committees that deal with
the sampling of concentrates, coals and various types of ores. In time, ambiguous terms such as
measurement ervor, margin of error, sampling error, sill value, semi-variogram, nugget effect,
and scores of others, will be replaced with concise definitions, and be assigned the proper
statistical symbols.

Accuracy

A generic 1erm that implies closeness of agreement between a single measured value or the
central value of a set (the arithmetic mean or a weighted average), and the unknown true value
of the stochastic variable.

This definition reflects that accuracy is an abstract concept. By contrast, a lack of accuracy can
be measured and quantified in terms of a bias or systematic error. Webster defines accuracy as
free from error. Thus, unbiased measurements are accurate by definition. The term unbiased
implies that a properly designed bias test was applied, and that a single measured value or the
central value of a set is indeed an unbiased estimate for the unknown true value of the stochastic
variable in the sampling unit or sample space under examination.

Bias
A statistically significant difference between a single measured value or the central value of a
set, and an unbiased estimate of the unknown rrue value of the stochastic variable.

Testing for the absence or presence of bias is an essential part of sampling in mineral
processing. Terms such as random error, or error without adjuncts or adjectives, will not be
used to avoid confusion with randomly distributed variations for which the variance is the
fundamental and unambiguous measure.

Testing for relative bias and estimating analytical precision are key elements of statistical
quality control (SQC) and statistical grade control (SGC). Testing for analytical bias demands
the use of Certified Reference Materials (CRMs). The presence of bias at the analytical stage is
easy to detect but sometimes difficult to eliminate at affordable cost. Some sources of bias at the
primary sample selection stage and the sample preparation stage are intrinsic to the applied
procedure, which makes a bias difficult to detect and impossible to eliminate.



Student’s t-test, the bias test par excellence, is described in a separate section. The t-test can be
applied to paired test results obtained by employing different analytical methods to replicate test
portions taken from each of a set of test samples. The test can also be applied to paired test
results obtained by employing different sampling procedures to the same sampling unit, or
different sample preparation procedures to the same primary or secondary sample.

The presence of analytical bias suggests that at least one of the procedures is suspect, and
the absence of analytical bias implies that both procedures are most probably unbiased (ASTM
1985; Davies and Goldsmith 1972; Mandel 1964; Merks 1985; Volk 1980). The t-test should
be routinely applied to assays determined at mineral processing plants and control assays
reported by commercial laboratories, and to exchange assays between mines and smelters
(Merks 1989).

One-way ANOVA is applied to test results determined in the same laboratory by
employing the same analytical method to replicate test portions taken from each of five up to
ten test samples prepared of the same sample mass under carefully controlled conditions. Tests
for homogeneity should precede crosscheck programs to ensure that each participating
laboratory receives a subset of test samples selected from a homogeneous set.

Two-way ANOVA is employed to test for analytical bias when three or more laboratories
participate in interlaboratory crosscheck programs by applying the same analytical technique to
duplicate test portions taken from each of a set of no fewer than five test samples. Logically,
the complete set should pass the test for homogeneity before subsets are submitted to the
participating laboratories.

Precision

A generic term that refers 1o the magnitude of randomly distributed variations (random
variations) in the measurement procedure applied 1o estimate the central value of the stochastic
variable of interest.

Precision, 100, is an abstract concept. For example, the precision is low or poor, or the degree
of precision is high or excellent, are valid but ambiguous, non-quantitative and vacuous just the
same. Quantitative measures for precision such as confidence intervals in absolute values or
relative percentages, and symmetric and asymmetric confidence ranges in absolute values,
derive from the variance of the central value for the stochastic variable of interest.

Sample
A part of a sampling unit or a sample space selected such that a measured value for the part is
an unbiased estimate for the sampling unit or the sample space.

A sample is often referred to as a representative part of a population or a whole but the concept
of representativeness is widely abused and misused in sampling practice (Huff 1954). In reality,
the measured value for a sample is an unbiased estimate for the sampling unit if, and only if,
each stage of the applied measurement procedure is unbiased.

Interleaving Test Samples
A pair of 1est samples obtained by dividing a set of primary increments into odd- and even-

numbered subsets (A- and B-primary samples), and preparing a test sample of each primary
sample (A- and B-test samples).

Selecting a pair of interleaving primary samples (see Appendices A & B) is the most effective
procedure to obtain an unbiased estimate for the variance of an entire measurement chain. Since
one pair gives only a single degree of freedom (see Degrees of Freedom), the estimate for
varit), the total variance of the measurement procedure, is extremely imprecise (see Table 3).
By contrast, 28—31 pairs of interleaving samples give 27—30 degrees of freedom so that the
monthly metallurgical balance is significantly more precise than single daily metallurgical
balances.



SAMPLING PROTOCOLS

Generally, sampling protocols can be divided into random sampling, stratified random sampling
and stratified systematic sampling. Random sampling and stratified random sampling are
routinely applied to consumer products. Stratified systematic sampling is most effective for all
types of materials in bulk and for slurry flows in mineral processing plants.

Stratified Systematic Sampling

This sampling protocol is commonly applied to bulk solids such as concentrates, coals and ores,
preferably during transfer with a conveying system (dynamic stochastic system) but often while
in storage (static stochastic system). Stratified systematic sampling is based on dividing the
sampling unit into a set of elementary units (dynamic strata or static cells), and selecting a
primary increment from each elementary unit. For example, dewatered or dried concentrate is
divided into dynamic strata during transfer with a conveying system by selecting a set of
primary increments at intervals of constant mass or time. Dewatered or dried concentrates
should not be sampled mechanically during transfer because significant moisture losses will
inevitably occur.

Concentrate in trucks or wagons is divided into static cells, and a primary increment is
selected from the center of each cell with a properly designed probe. Mechanical probe
sampling systems make it simple to select pairs of interleaving samples and implement effective
risk analysis and loss control at mines and smelters. Interleaving sampling protocols give
unbiased precision estimates at the lowest possible cost. It does so at no additional cost if the
wet mass of a sampling unit (a Jot) is increased by the factor 2.

Whenever the set of primary increments is combined into a single primary sample, the
variance of the primary sample selection stage and the vanance of the sample preparation stage
cannot be estimated. Only the analytical variance can be measured and monitored by assaying
replicate test portions of a test sample prepared of the primary sample.

On-stream analyzers interrogate slurry flows either continuously or intermittently. The
large set of on-stream data generated during a shift gives a high degree of precision for the
arithmetic mean. However, this central value is an unbiased estimate for the central value only
if the analyzer is in a proper state of calibration, Moreover, slurry densities and metal grades in
flotation circuits may exhibit associative dependence so that the density weighted average is a
more reliable estimate for the metal grade of a slurry than the arithmetic mean. A sampling
module, designed to take a pair of interleaving secondary samples from a primary sample flow
at constant time intervals during each shift, would make it possible to implement meaningful
metallurgical accounting procedures.

The degree of associative dependence between on-stream data in the sample space of time
(spatial dependence for simplicity) impacts the variances of ordered sets, and, thus, the
precision of central values. Slurry flows are usvally interrogated at constant time intervals
which simplifies the calculation of variances and central values (see Appendix D).

MEASURES OF CENTRAL TENDENCY

Measured values tend to cluster around a central value which is often referred to as the central
tendency of a set. The arithmetic mean is an unbiased estimate for the central value of a set of
measured values with equal weighting factors whereas the weighted average is a more reliable
(less bias prone) estimate for a set of measured values with variable weighting factors. Count,
density, distance, length, mass and volume weighted averages are important measures of central
tendency in mining and metallurgy.

Central values are measured with finite precision because each is merely an estimate (an
unbiased estimate one would hope) for that most elusive central value, the unknown true value
of the stochastic variable of interest in the sampling unit or sample space under examination.

The arithmetic mean is the central value of a set of measured values with equal weighting
factors. The equation for the arithmetic mean is elementary, and has its own function in
spreadsheet software. The weighted average is the central value of a set of measured values with
variable weighting factors:



x = T (wli*xi) {Eq 1}

where x = weighted average
xi = ith measured value
wii = first weighting factor for ith measured value

Given that wii=mi/¥ mi for the mass weighted average grade of x=0.0386*32.1+... +
0.2684%29.8=30.71% (see Table 2 and Appendix C), and Y, (1/n)=1 for the arithmetic mean
grade of 30.90% (see Appendix C), it follows that ¥ wii is also unity. The second weighting
factor of w2i= mi/ ¥, mi=mi/ifi is convenient in spreadsheet templates to obtain the variance of a
set of measured values (see Measures of Variability), and the variance of its central value (see
Variances of Central Values).

Weighted averages play a key role in a wide range of applications. Far example, the length
and density weighted average is the central value of a set of measured values for core samples of
variable length and density. Similarly, the distance weighted average is the central value of a set
of measured values with variable coordinates in a two- or three-dimensional sample space. In
geostatistics, the distance weighted average transmogrified into the ubiquitous kriged estimate.

Table 1 gives, in addition to the set of paired data (dry masses in tonnes and metal grades
in percent), wli, the first weighting factor, which is required to calculate this mass weighted
average grade of 30.71 %, and w2i, the second weighting factor, which simplifies the equations
for the variance of the set, and for the variance of its mass weighted average grade.

Table 1 Weighting factors

Unit mass in mt grade in % wii w2
1 12.1 32.1 0.0386 0.1929
2 54.5 30.3 0.1737 0.8687
3 72.6 30.5 0.2314 1.1572
4 90.3 31.8 0.2879 1.4393
5 84.2 29.3 0.2684 1.3420

The sum of the first set of weighting factors and the arithmetic mean of the second set are both
unity which implies that YT wii=w2=]. This relationship makes it simple to check the

correctness of both weighting factors in spreadsheet templates. The weighting factors in Table 1
are used in several calculations (see Appendix C).

MEASURES OF VARIABILITY

The variance is the fundamental measure of variability. Variances are amenable to mathematical
analysis. All measures of variability and precision derive from the variance. For example, the
standard deviation is the square root of the variance, and the coefficient of variation is the
standard deviation as a relative percentage. The properties of variances are the essence of
probability theory and applied statistics. The additive property of the variances of volume, mass
and content has scores of powerful applications in mining and metallurgy.

Since the occurrence of spatial dependence between measured values in ordered sets is of
critical importance in sampling theory and practice, this matter will be examined in a separate
section (see Testing for Spatial Dependence). Almost invariably, measured values are ordered
either in time (on-stream and production data) or in space (rounds in a drift or a trench; core
samples in a borehole; boreholes in a section}.

The question is then whether a set of measured values displays a statistically significant
degree of spatial dependence, or is randomly distributed within its sample space. For example,
the set of metal grades in Table 1 is ordered in time but it does not exhibit a significant degree
of spatial dependence. Therefore, the fundamental measure of variability is the variance of the



randomized set. Thus, the term “randomized” implies that these metal grades constitute a
randomly distributed set within this sample space of time.

By contrast, the set of on-stream data given in Appendix D exhibits a highly significant
degree of spatial dependence. As a result, the variance of the ordered set gives a significantly
higher degree of precision for its central value than the variance of the randomized set.

The example in Table 1 is more complicated in the sense that each metal grade represents a

different mass. In this case, the mass weighted average grade is 2 measure of central tendency,
the variance of the set is a measure of variability, and the variance of its central value is a
measure of precision (see Measures of Precision).
The sequence in which the various equations for variances are given in the following sections
reflects the fact that ordered sets occur more frequently than randomized sets. The terms
"ordered” and “randomized” are juxtaposed, and combined with “equal weighting factors™ or
"variable weighting faciors” 1o show how to calculate the corresponding measure of variability.

Ordered; Equal Weighting Factors
The variance of an ordered set of measured values with equal weighting factors (equidistant
point estimates) is:

L (xi+j—xi)? (Eq 2]

2(n—j)

varjfx) =

where varj(x) = jth variance term of ordered set
Xi+j = (i+jjth measured value
xi = ith measured value
J = jth spacing between measured values
n = number of measured values for jth variance term
2(n—j) = degrees of freedom for jth variance term

This variance has found many applications in science and engineering. For example, the first
variance term of the ordered set of metal grades with equal weighing factors (see Table I) is
vari(x)=[(30.3—32.1)%+... +(29.8—31.8)*}/{2%(5~1)]=1.1212%2. Given that degrees of
freedom for ordered sets of measured values are not universally embraced (Merks 1993, 1997),
it is necessary to explore this concept in a separate section (see Degrees of Freedom).

Ordered; Variable Weighting Factors

The variance terms of an ordered set of measured values with variable weighting factors are
computed as follows:

Llwzj* (xi+j—x)’} {Eq 3]

(2/ T wij)~2j

varjfs) =

where varj(x) = jth variance term of ordered set
xi+j = (i+j)th measured value
xi = ith measured value
J = jth spacing berween measured values
wlj = first weighting factor for jih variance term
w2j = second weighting factor for jth variance term
(2/ L wij2)—2 = degrees of freedom for jih variance term

Variance terms or ordered sets are useful in mineral processing, smelting and refining when
variables are measured at different intervals, and in msneral exploration and mining where

measured values for core samples of variable length and bulk samples of variable mass are
ordered in space.



Randomized; Equal Weighting Factors

The variance of a set of measured values with equal weighting factors is elementary, and has its
own function in spreadsheet software. The correct variance function in spreadshest software
should be selected to obtain the "sample variance”, the variance of a sample of a population
rather than the "population variance” itself. These functions are =VAR(xi..xj} in Excel, and
@VARS(xi..xj) in Lotus. The denominators in both functions are the degrees of freedom for the
set (see Degrees of Freedom). The variance of the randomized set of metal grades (see Table I)
is var(x)=[(32.1-30.90)2+... + (29.8—30.90)2]/(5— 1) =0.9950% (see Appendix C).

Randomized; Variable Weighting Factors
The variance of a randomized set of measured values with variable weighting factors wii and
w2i as defined in Measures of Central Tendency is:

Y fw2i * (X —xi)?)] (Eq 4]
var(x) =———————
(1/ L wiiz)—1

where x = weighted average
xi = ith measured value
wii = first weighting factor for ith measured value
w2i = second weighting facior for ith measured value
(1/Twiit)—1 = degrees of freedom

The weighted average must be calculated before the differences between x and x: can be squared
and multiplied with w2i, the corresponding weighting factors. Therefore, several columns in a
spreadsheet template are required to cbtain not only the central value and the variance of the set
but also the variance of the central value (see Appendix C).

Given that the order in which squared differences are added does not impact the numeric
values of variances, it does make sense to refer to randomized sets. Whenever a set of measured
values is ordered, either in space {core samples in a borehole; rounds of crushed ore taken from
a drift or trench) or in time (on-stream and production data), testing for spatial dependence
becomes an important element of statistical analysis (see Testing for Spatial Dependence).

Table 2 gives, in addition to the mass weighted average grade of 30.71 % for the data set in
Table 1, the most common measures of variability (see also Appendix C).

Table 2 Basic statistics

Statistic Symbol'!  Symbol? Value
Mass weighted average grade in %abs X xbar 30.71
Variance of randomized set 1n (%abs)?  var(x) var{x) 0.8143
Standard deviation in %abs sd(x) sd(x) 0.9024
Coefficient of variation in %rel Ccv cv 2.9

Yeext  ?template

Due to its squared dimension the variance is not a user-friendly measure for variability. By

contrast, the coefficient of variation (the standard deviation in relative percent) makes it simple
to check and compare different degrees of variability at a glance.

TESTING FOR SPATIAL DEPENDENCE

A statistically significant degree of spatial dependence gives a lower variance of the ordered set,
and, thus, a higher degree of precision for its central value. Testing for spatial dependence is
also an important element of statistical analysis when optimizing sampling protocols. Fisher’s
F-test is applied to assess whether two variances are statistically identical or differ significantly



Q.12 \7 ——“

~
® ca - varix)
a ®
1=
o 26% ACAL
% o — — -
[E——
. 28% AL il
£ AC -
S varjix) o —
—
—
-
em [~ —
——
—
—
Lo~
2 - i A 1 4 P T
I s [ o 3

Variance Terms

Figure 1 Sampling Variogram

by comparing the ratio between the highest variance and the lowest variance (the F-statistic or
calculated F-value) with values tabulated in the F-distributions at 5% and 1% probability with
the applicable degrees of freedom.

Applying the F-test to vari(x)=1.1212%>, the first variance term of the ordered set of
metal grades in Table 1, and var(x)=0.9950%?, and the variance of the randomized set, gives
F=1.1212/0.9950=1.13. Since this F-statistic is lower than F0.05;8;4=6.04 at 5%
probability, these variances are statistically identical. By implication, the ordered set of metal
grades does not exhibit a significant degree of spatial dependence. Thus, this set is classified as
"randomized” within its sample space.

The tabulated values in the F-distribution at 5% probability rank from F0.05;1;1=161 to
F0.05;00;00 =1, and those in the F-distribution at 1% probability rank from F0.01;1;1=4,052
to F0.01;00;00=] (Handbook 1986). Therefore, the F-statistic is always the ratio between the
highest variance and the lowest variance (Volk 1980).

Sampling Variogram

The sampling variogram in Figure 1 is based on a set of 96 on-stream data obtained at 15 min
intervals during a 24-hour shift. The variance terms of the ordered set, the variance of the
randomized set, and the lower limits of the asymmetric confidence ranges at 95% and 9%
probability are given in Appendix D. Since the F-statistic of F=0.0790/0.0038=20.79 for
var(x)=0.0790, the variance of the randomized set, and var2(x)=0.0038, the second variance
term of the ordered set, is higher than the tabulated value of F0.01;95;188=1.33 at 1%
probability, the degree of spatial dependence at a spacing of 30 min is statistically significant.

By contrast, the F-statistic of F=0.0790/0.0618= 1.28 for the variance of the randomized
set, and var20(x)=0.0618, the 20th variance term of the ordered set, is lower than
F0.05:95;154= 1.34 at 5% probability. Evidently, the ordered set of on-stream data no longer
exhibits a significant degree of spatial dependence at a spacing of 5 hours.

When the variance of the randomized set (var(x)=0.0790%7), the lower limit of its
asymmetric 95% confidence range [95% ACRL=var(x}/F0.05,df o0 =0.0790/1.24=0.0581 %],
and the lower limit of its 99% confidence range [99% ACRL =var(x)/F0.01,df; 0o =0.0790/
1.36)=0.0637%7], are also plotted, the sampling variogram illustrates whether the degree of
spatial dependence is statistically significant and where orderliness dissipates into randommness.
In fact, a sampling variogram is a visual interpretation of Fisher's F-test when applied to check
the degree of spatial dependence in the sampling unit or sample space under examination.

Generally, the existence of spatial dependence at spacing j is verified by applying the F-
test to the variance of the randomized set and the jth variance term of the ordered set. If the



calculated F-value is higher than the tabulated F-value with the applicable degree of freedom,
either at 5% or at 1% probability, then the degree of spatial dependence at the jth spacing is
statistically significant at the corresponding probability level.

Although the first variance term determines the intrinsic variability of a dewatered sample
for a shift, it does not give a variance estimate. Only a pair of interleaving samples gives an
unbiased variance estimate that takes into account the second variance term of ordered
on-stream data. Whenever the variance of a randomized set and the first variance term of the
ordered set are statistically identical, the differences between comsecutive on-stream data
become random numbers that cannot be used for process control.

Higher variance terms have fewer degrees of freedom than lower terms because the last but
one datum is not used for the second term, the last but two for the third, and so on, Therefore,
F-statistics for small sets should be interpreted with caution. In addition, mathematical analysis
ought not to be applied to differences between statistically identical variances (Merks 1993).

DEGREES OF FREEDOM

The concept of degrees of freedom in applied statistics is the corollary of the fundamental
requirement of functional or mathematical independence in probability theory. The difference
between var(x), the variance of a sample, and 02, the population variance, explains why degrees
of freedom are finite in applied statistics but deemed infinite in probability theory.

The differences between # measured values and the arithmetic mean of the set are xJ —x,
veey Xi=X, ..., Xn—x so that the sum of n differences equals (xi+...+ xi+...+ xa}—nx. By
definition, the arithmetic mean of a set of n measured values is x=(xJ+... +xi+...+xn)/n.
Hence, (x7+... +xi+... +axn)—nx=0.

Logically, if n—1 differences are given, the missing one is determined because the sum of
n differences is zero. Because a set of n measured values has n—{ independent differences and 2
single dependent difference, a randomly distributed set of n measured values has n—1 degrees
of freedom.

By contrast, the first variance term of an ordered set has 2(n—1) or (2/Y wij?)—2 degrees
of freedom because all but the first and last datum are used twice which implies that each higher
term has two fewer degrees of freedom than the preceding term.

One measured value does not give any information on that elusive population variance
simply because T (x1—x)%/(n—1)=0/0, which is indeterminate as it ought to be. It can be
proved by induction that adding any number of functionally (or mathematically) dependent
values to a set of measured (or independent) values does not add a single degree of freedom.

Degrees of freedom are positive integers for sets of measured values with equal weighting
factors but become positive irrational numbers for sets of measured values with variable
weighting factors.

VARIANCES OF CENTRAL VALUES

The variances of central values are pivotal statistics in sampling theory and practice because
they play a critical role in bias testing of mechanical sampling systems, manual sampling
procedures, sample preparation techniques and analytical methods. The variances of central
values also underlie confidence intervals and ranges, bias detection limits as measures for the
power or sensitivity of Student’s t-test, and probable ranges as intuitive measures for the
probabilistic limits within which an observed bias is expected to fall.

Variance of Arithmetic Mean

The variance of the arithmetic mean of a set of n measured values with equal weighting factors
is elementary:

var(x) = Y (1/n)? * var(x) = var(x)/n [Eq 5]

where var{x) = variance of arithmetic mean

var{x} = variance of set
n = number of measured values in set



The intermediate term in Equation 5 reflects an important step in the derivation of this equation
from the variance of a general function as defined in probability theory (Volk 1980). This
simple relationship between the variance of a set of measured values with equal weighting
factors and the variance of its arithmetic mean is often referred to as the Central Limit Theorem,
Perhaps ironically because the variances of weighted averages are required in many applications
in mineral exploration, mining, processing, smelting and refining.

Variance of Weighted Average

The variance of a count, density, distance, length, mass or volume weighted average of a set of
measured values with variable weighting factors is:

var(.f) = Y wii? * varx} {Eq 6]

where var(x)=variance of weighted average
var(x) = variance of set
wli = first weighting factor for ith measured value

The variance of the weighted average of any set of measured values with variable weighting
factors converges on the variance of the arithmetic mean when all wii approach 1/n. When
formulated as the sum of two or more products of squared weighting factors and variances, the
central limit theorem proves that the variance of the central value of two or more sets of
primary samples, selected from multinomial, binomial or Poisson distributions, converges on
the normal (or Gaussian) distribution.

How to determine whether or not a set of measured values exhibits a Gaussian or normal
probability distribution is described in a draft standard under development by I1SO/TC69.
Whenever a set of measured values departs from normality, it can be partitioned into subsets
such that each subset approaches a straight line segment in a log-normal plot of a numerically
ordered set. The next step is to calculate the central value of the set and ils variance from the
arithmetic means and the variances of all subsets (Merks 1998).

VARIANCE OF CONTAINED METAL
The additive property of the variance of contained metal (the mass of contained metal or metal
content) underlies various applications in mineral exploration, mining, processing and smelting
(Merks 1985, 1988, 1991, 1999; Merks and Merks 1991). 1S0O/DIS 13543 describes how to
determine the variance of the mass of metal contained in a lot. This method is based on the
premise that pairs of interieaving primary samples are routinely taken from all lots. Pairs of
interleaving samples also give the variances of metal contained in tailings, concentrates and
thickener inventories, which can be used to calculate reliable precision estimates for metal
grades of mill feed.

The mass of metal contained in a quantity of crushed ore or mineral concentrate is a
function of its wet mass, moisture content and metal grade:

Me = Mw « MF » GF [Eq 7}

where Me = mass of contained metal in mi
Mw = wet mass in mi
MF = moisture factor : 1—[0.01 » %H20] (dimensionless)
%H20 = moisture content in percent
GF = grade factor : 0.01 «+ %Me (dimensionless)
%Me = metal grade in percent on dry basis

The variance of contained metal is obtained by substituting in the equation for variance of a

general function the squared partial derivatives for Equation 7 and the variances of these
stochastic variables :
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var(Me) = (MF*GF)? * var(Mw) + (Mw*GF)? « var(MF} +(Mw*MF)? » var(GF) [Eq 8}

where var{Me) = variance of contained metal in mt?
var(Mw) = variance of wet mass in mr?
var(MF) = variance of moisture facior (dimensionless)
var(GF) = variance of grade factor (dimensionless)

Multiplying the mass term in Equation 8 with Mw?/Mw?, the moisture term with MF?/MF?, and
the grade term with GF?/GF?, dividing each term by Me?, and multiplying the sum of all terms
with Me?, gives the following equation for the variance of contained metal:

var(Me)=Me? * [var(Mw}/Mw?+var(MF)/MF?+var(GF)/GF?] [Eq 9]

Extreme care should be exercised to ensure that variables and variances are correctly entered
into Equation 9. Changing from grades in percent (%Me) to grade factors (GF), from precious
metal grades in g/mt to contained metal in kg, and from moisture contents ( %H20) to moisture
factors (MF), demands close attention to derivatives, dimensions and decimal places. Scale
calibration data can often be used to obtain the variance of wet mass (Merks and Merks 1992).

The additive property of variances also makes it simple to determine the variance of the
mass of metal contained in an ore deposit, and to calculate confidence limits for its metal
content and grade as a measure for the risk associated with the least precise measurement
procedure in mining and metallurgy. The variances of dividing whole core samples into halves,
preparing test samples of selected halves, and taking and assaying test portions of test samples,
are extraneous to the sample space, and add to the variance of the stochastic variable within its
sample space. Extraneous variances may be subtracted from the variances of the randomized and
ordered sets before Fisher's F-test is applied and confidence limits for contents and grades of
ore deposits are computed (Merks and Merks 1991, Merks 2000).

VARIANCE OF GY’s SAMPLING CONSTANT
Gy’s sampling theory proposes that the primary sample mass required for a specified degree of
precision can be estimated a priori. In sampling practice, however, it can only be determined
experimentally because the degree of heterogeneity of a stochastic variable within a sampling
unit defies a priori estimation (Merks 1985, Visman 1962). The variance of the primary sample
selection stage is the sum of the composition variance (the variance between particles within
primary increments) and the distribution variance (the variance between primary increments
within a sampling unit). 1t is the latter variance that defies @ priori estimation in heterogeneous
sampling units, and that causes the ordered set of on-stream data to exhibit spatial dependence
(see Figure 1) and gives a higher degree of precision for the central value {see Appendix D).
Gy's sampling theory suggests that ¢*FE), his fundamental error, is a function of C, his
sampling constant, and d”, the cube of the top size of the particulate matter. Gy's sampling
constant C, in turn, is a function of four factors (Gy 1979). The variance of Gy’s sampling
constant, too, derives from the variance of a general function (Volk 1980):

var(C) = C? * [var(c)/c?+ var(1)/I* + var(f}/f* +var(g)/g?] {Eq 10]

where var(C) = variance of sampling constani
var(c) = variance of mineralogical composition factor
var(l) = variance of liberation factor
var(f) = variance of particle shape factor
var(g) = variance of size range factor

Logically, C is a constant only if each of these variances is infinitesimally small but, in the real
world, variances are finite. In fact, a single pair of interleaving primary samples gives an

imprecise estimate for var(spa), the sum of the variances of the primary sample selection,
preparation and analytical stages because it has but one degree of freedom. In sampling practice,
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the question is not so much whether Gy’s sampling constant is indeed a constant but how
imprecise a variance estimate with a single degree of freedom really is.

Fortuitously, applied statistics gives a relationship between degrees of freedom and
confidence limits for variances. Symmetric 95% confidence ranges for variances are computed
from values of the y*-distribution at different probability levels (Handbook 1968). Table 3
gives the tabulated x>-values at 2.5% and 97.5% probability, and the lower limits /95% CRL=
df * var(spa}/x?0.975:df] and upper limits [95% CRU=df* var(spa)/x?0.025;df] of the
symmetric 95% confidence ranges for var(spa}=0.10 when estimated with increasing degrees
of freedom (Volk 1980).

Table 3 Symmetric 95% confidence ranges for var(spa)=0.10

Degrees of freedom x*0.975 x20.025 95% CRL  95% CRU

1 5.02 0.001 0.020 101.8

5 12.8 0.831 0.039 0.602
10 20.5 3.25 0.049 0.308
25 40.5 13.1 0.062 0.191
o 0.10 0.10

Table 3 underscores the astounding precision of variances when degrees of freedom are infinite.
Given that Gy’s sampling constant is a function of four stochastic variables whose variances
have finite degrees of freedom, it is implausible that var(C), the variance of Gy's sampling
constant, is infinitesimally small, The more so because the variance of the cube of the topsize is
32=09 times larger than the variance of the topsize itself.

Neither is it plausible that o2FE), Gy’s fundamental error, gives a meaningful a priori
estimate for the primary sample mass required for a specified degree of precision for a
heterogeneous sampling unit. After all, the distribution component of the variance of the
primary sample selection stage, which is a measure for the degree of segregation or
heterogeneity in a sampling unit, can only be estimated from a sampling experiment based on
taking 20—30 pairs of small and large increments (ASTM D2234, Merks 1985, Visman 1962).

When this experiment is applied to a dynamic sampling unit, the distribution variance, the
very statistic to be estimated, is reduced. This is the corollary of Heisenberg’s uncertainty
principle in sampling practice where the measurement procedure impacts the outcome. The same
experiment does give an estimate of the composition variance but does so at high cost.

MEASURES OF PRECISION

The fundamental measure of precision is the variance of a central value but derived measures of
precision such as confidence intervals and ranges are more intuitive and transparent than
variances. For many applications, 95% confidence intervals (95% CI) and 95% confidence
ranges (95% CR) are acceptable, but if the risk associated with & wrong decision is high,
confidence intervals and ranges at 99% or 99.9% probability should be considered. Confidence
intervals are given in absolute values and relative percentages whereas confidence ranges are
given in absolute values only.

Confidence Interval

The calculation of a 95% confidence interval for the central value of a randomized set requires a
tabulated value of the t-distribution at 5% probability with df=n—1 or df=(1/Lwii®)-1
degrees of freedom. However, if the first variance term of the ordered set is significantly lower

than the variance of the randomized set, the t-values at df=2(n—1) or df=(2/Y wii?)—2 degrees
of freedom may be used.

Since t0.05;60=2.000 for 60 degrees of freedom, and t0.0500 =20.05=1.96 for infinite

degrees of freedom, the z-value of normal distribution is can be rounded to 2, the following
equation applies to all sets:
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95% Cl=sd(x) *10.05;df [Eq11]

where 95% Cl = 95% confidence interval (absolute value)
sd(x) = standard deviation of central value
10.05,;df = tabulated r-value at 5% probability
df = degrees of freedom

Table 4 gives the mass weighted average grade of 30.71% for the set of paired dry masses and
metal grades in Table 1, its 95% confidence interval of +1.37%abs (absolute percent), and its
95% confidence interval of 95% CI=1.37*100/30.71= +4.5%rel (relative percent).

Table 4 Confidence interval

Statistic Symbol!  Symbol? Value
Mass weighted average grade in %abs X xbar 30.71
95% Confidence interval in %abs 95% Cl  95% Cl +1.37
95% Confidence interval in %rel 95% CI 95% Cl +4.5

"text 2 templates

Appendix C also gives 95% Cls in absolute values (%abs in this case), and in relative percent
(%rel) but without + -symbols. Comparing the 95% Cl of 14.5%rel in Table 4 with
95% Cl=+1.05%rel for the randomized set of on-stream data (see Appendix D), and
95% Cl= +0.24%rel for the ordered set illustrates how a large data set and a significant degree
of spatial dependence impact the precision of the central value of 5.22%. Confidence intervals
at 99% and 99.9% are obtained by multiplying sd(x) with t0.01;df and t0.001;df respectively.

Symmetric Confidence Range

The lower and upper limits of a symmetric 95% confidence range are obtained as follows:
95% CRL=x—95% CI [Eq 12]
95% CRU=x+95% Ci [Eq 13]

where 95% CRL = lower limit of 95% confidence range

95% CRU = upper limit of 95% confidence range
x = central value of set
95% Cl = 95% confidence interval

Table 5 is based on the mass weighted average grade of 30.71 % for the set of paired wet masses
and metal grades in Table 1, and on the derived statistics in Appendix C.

Table 5 Confidence range

Statistic Symbol! Symbol?  Value
Mass weighted average grade in %abs X xbar 30.71
95% Confidence range 95% CR 95% CR
Lower limit in %abs 95% CRL  95% CRL 293
Upper limit in %abs 95% CRU 93% CRU  32.1

Ttext % template

Confidence ranges at 95% and 99% probability are convenient control and action limits in
statistical quality control {SQC) charts.
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Asymmetric Confidence Range
The lower limit of an asymmetric 95 % confidence range is the central value of the set minus its

90% confidence interval. Similarly, the upper limit of an asymmetric 95% confidence range is
the central value of the set plus its 90% confidence interval:

95% ACRL=x-90% CI [Eq 14]
95% ACRU=x+90% CI [Eq 15]

where 95% ACRL = lower limit of 95% confidence range
95% ACRU = upper limit of 95% confidence range
x = central value of set
90% Cl = 90% confidence interval

These lower limits and upper limits are mutually exclusive. In other words, either the lower

limit or the upper limit is valid. Together, however, the same limits give a symmetric 90%
confidence range. For large sets, the tabulated value of t0.10;df converges on z0.10=1.645.

STUDENT’s t-TEST

The t-test is applied to examine whether the difference between identifiably different paired test
results is due to random variations or caused by the presence of bias. Typical examples are test
results for reference increments and system samples, for different laboratories, for the same
laboratory but at different times or by different technicians, or for different analytical methods.
In every case, the question is whether two central values differ significantly, and, thus, whether
their difference indicates the presence of bias (reject null hypothesis). Alternatively, the
difference between central values is statistically identical to zero (accept null hypothesis), and
its pumeric value merely reflects the effect of random variations in measurement procedures.

An observed bias is either significantly higher than an accepted value such as a certified
value for a Certified Reference Material or the central value of a set of reference increments (a
positive bias), or significantly lower than the certified or reference value (a negative bias).
When a set of paired test results reported by two laboratories fails the bias test, the t-test does
not reveal which laboratory is suspect but only that the difference between their central values is
higher than random variations alone could explain.

Most textbooks on applied statistics give the t-distribution with tabulated values for
probabilities ranging from 90% to 0.1% for one degree of freedom to infinite degrees of
freedom. If the t-statistic is much lower than t0.90;df, it may reflect the too-good-to-be-true
effect, which could be indicative of tampering with test results.

Since the t-statistic (the calculated t-value) is the ratio between the difference between two
central values and the standard deviation of the difference, the following equations apply:

X1—x2 Ax [Eq 16]
4

- Vivar(Ax)/in]  sd(ax)

where t = t-statistic
xJ = central value of first ser
x2 = central value of second set
ax = difference between central values
var{Ax) = variance of differences
n = number of pairs
sd(ax) = standard deviation of difference

The central limit theorem also underlies the relation between sd(Ax), the standard deviation of
the difference between two central values, and sd(Ax), the standard deviation of the differences

between paired test results. Given that sd(Ax) =V [var(Ax)/n} = sd(Ax)/v'n, it follows that
three variables interact and determine the t-statistic and the power of the t-test.
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Appendix E gives the t-statistics for a test program designed to test for bias between
reference increments and final system samples. This bias test program is based on comparing 30
pairs of test results determined in reference increments removed from a stopped belt with the aid
of a sampling frame, and in final system samples obtained with a multistage mechanical
sampling system. Table 6 gives the basic t-statistics for the test program.

Table 6 Basic t-statistics

Statistic Symbol'  Symbol? Value
Central value in % : reference increments x(R) xbar(R) 8.10
Central value in % : final system samples x(s) xbar(s) 7.49
Difference in %abs Ax dxbar -0.61
Difference in %rel Ax dxbar -1.5
Calculated t-value t t 11.296
Significance solok

Ytext  ?iemplate *** significant at 0.1% probability

The calculated t-value of 11.296 exceeds the tabulated value of 10.001;29=3.674 at 0.1%
probability (Handbook 1968; Volk 1980) so that the difference of —0.61%abs or —7.5 %rel
implies the presence of bias. The spreadsheet template in Appendix E gives three asterisks to
indicate statistical significance at 0.1% probability, Two asterisks would have been printed for
statistical significance at 1%, and a single one at 5%. In addition, ns (not significant) would
have been printed in the same cell if the t-statistic were lower than t0.05;df at 5% probability.
The variance of differences is calculated from the differences between paired data. This
variance is the sum of the variances of all systems and procedures used to obtain the set. Given
that the variance of differences and the number of paired data determine the power of the t-test,
it is possible to prove that even a small and commercially insignificant difference is a bias if the
number of pairs is large enough. A preliminary bias test may be needed to estimate the number
of test results necessary to prove statistical significance at a specified probability level. The
t-test can also be applied to pairs of measured values with variable weighting factors such as
central values for on-stream data and test results for slurry samples for the same production

period, or to the exchange assays for lots of variable mass. It is beyond the scope of this paper
to present a numerical example.

Bias Detection Limits

Bias detection limits (BDLs) are intuitive measures for the power or sensitivity of the t-test to
detect & bias or systematic error between two central values. BDLs are defined for the Type 1
statistical risk only, and for the combined Type 1 and Type Il statistical risks. A simple analogy
exists between these statistical risks and the role of a fire alarm. The Type 1 statistical risk
refers to the event that a fire occurs but the fire alarm does not sound. The Type II statistical
risk refers to the event that the fire alarm sounds but no fire occurs. Finally, the combined Type
I and Type II statistical risks refer to a fire and the sound of a fire alarm.

The effect of the number of pairs on the power of the t-test becomes evident upon realizing
that these statistical risks are obtained by multiplying the standard deviation of the difference
either with the tabulated t-value at 5% probability, or with the sum of the tabulated t-values at
5% and 10% probability. A symmetric two-sided 5% probability for the Type I risk only, and
an asymmetric one-sided 5% probability for the Type Il risk, are widely accepted.

Several 1SO Standards on bias testing of mechanical sampling systems and manual
sampling procedures specify statistical risks in the same manner and at the same probability
levels. Based on this convention, the bias detection limits for the Type I risk only, and for the
combined Type I and Type 11 risks, are defined as follows:

BDL(1)=sd(Ax) * 10.05,df [Eq17]
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BDL(1&11)=sd(Ax) = {10,05,df +10.10,df] [Eq 18]

where BDL(I) = BDL for Type I risk only
BDL(1&11} = BDL for combined Type I and Type 1l risks
sd(Ax) = standard deviation of difference
10.05;df = tabulated t-value at 5% probability
10.10,df = tabulated t-value ar 10% probability
df = degrees of freedom

Table 7 gives the bias detection limits in absolute and relative percent on the basis of the
differences between the central values of 8.10% for reference increments and 7.49% for final
system samples (see also Table 6 and Appendix E).

Table 7 Bias detection limits

Statistic Symbol %abs Forel
Difference AX -0.61 -1.5
Bias detection limits BDLs
Type I risk only BDL(T) +0.11  +1.4
Type I and 11 risks BDL(1&ID) +0.20 +2.5

Bias detection limits are effective control and action limits for SQC charts in which precision
and bias of measurement systems and procedures are monitored as a function of time. A strong
case can be made that metal grades and contents of concentrate shipments should be measured
and monitored to ensure that biases are detected before losses become punitive.

Probable Ranges

Probable ranges (PRs) define the limits within which an observed bias is expected to fall.
Whenever a difference between two central values turns out to be statistically significant, and
exceeds either the bias detection limits for the Type 1 statistical risk only, or the combined Type

1 and Type II statistical risks, the following relationships give the lower and upper limits of the
corresponding probable ranges for the observed bias:

PRL(I) = Ax—BDL(I) (Eq 19]
PRU(I) = Ax+BDL(I) {Eq 20]
PRL(I&1]) = A% —BDL(I&1l) {Eq 21}
PRU(I&I]) = Ax+BDL(I&I) {Eq 22]

where PRL(I} = lower limit of probable range for Type I risk only
PBU(I) = upper limit of probable range for Type I risk only
PRL(1&11) = lower limit of probable range for combined Type I and I risks
PBU(1&11) = upper limit of probable range for combined Type | and 1l risks
Ax = observed bias
BDL(l) = bias detection limit for Type I risk only
BDL(1&11} = bias detection limit for Type I and Type J1 risks

Reporting probable ranges for an observed bias makes sense only if the difference between two
central values is indeed indicative of the presence of bias, and the null hypothesis is rejected. If
a difference exceeds the bias detection limit for the Type I risk, the lower and upper limits of
the corresponding probable range are reported. For example, the difference of —0.61%abs
between 8.10% for reference increments and 7.49% for system samples is lower than BDL()=
—0.11% and BDL(I&II)= —0.20% (see Table 7). Therefore, the lower and upper limits of the
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probable ranges are defined not only for the Type 1 risk but also for the combined Type I and
Type 11 risks.

Logically, the difference of —7.5 %rel between reference increments and system samples is
also lower than BDL(D)= —1.4 %rel and BDL(I&I)= —2.5 %rel (see Table 7) which implies that
the probable bias ranges are defined for the Type I risk only and for the combined Type I and
Type 11 risks. Table 8 gives the probable ranges for the observed bias.

Table 8 Probable ranges

Statistic Symbol %abs %orel
Difference Ax -0.61 -7.5
Probable range PRs
Type 1 risk only PR(D)
Lower limit PRL(D) -0.72 —8.9
Upper limit PRU(D) -0.50 —6.1
Type 1 and TI risks PR(I&ID)
Lower limit PRL{&ID) —0.81 -10.0
Upper limit PRU(I&1I) —0.41 -5.0

If a difference between two central values is statistically identical to zero, and the lower and
upper limits of the probable range for the Type I risk are not defined, the abbreviation na (not
applicable) may be printed in the appropriate cells of the spreadsheet template (see Appendix E).
Whenever an observed bias in moisture content or metal grade impacts the cumulative mass of

metal contained in concentrate production, it would make sense to convert probable ranges into
monpetary units,

FISHER’s F-TEST

Fisher’s F-test is applied to determine whether two variances are statistically identical or differ
significantly. The F-test is based on comparing the ratio between the highest variance and the
lowest variance with tabulated values from the F-distributions at 5% and 1% probability and
with the applicable degrees of freedom for each variance (Handbook 1968; Volk 1980). If the
calculated F-value is lower than the tabulated value of F0.05,df1,df? at 5% probability, then the
variances are statistically identical. The probability that this statistical inference is true exceeds
95 %. Conversely, the probability that this inference is false is less than 5%.

Alternatively, if the F-statistic is higher than F0.05;dfI;df? at 5% probability, the
variances differ significantly, and the probability is less than 5% that this inference is false.
Similarly, if the F-statistic is higher than FO0.01;dfi;df2 at 1% probability, the variances differ
significantly but in this case, the probability is less than 1% that the inference is false.

Tabulated F-values, too, reflect that df? and df2 are the degrees of freedom for the
pumerator and denominator in the F-test. The fact that F0.05;00;00=F0.01;00;00=1 explains
why the concept of degrees of freedom is of critical importance when analysis of variance is
applied to test for spatial dependence and to optimize sampling protocols.

Optimizing Sampling Protocols
Suppose that a sampling experiment gives var(spa)=0.075 for the sum of the variances of the
primary sample selection, preparation and analytical stages, and var(a}=0.050 for the variance
of taking and assaying a test portion of a test sample. The question of whether these variance
estimates are statistically identical or differ significantly can only be solved if the applied
sampling protocol and the degrees of freedom for var(spa) and varfa) are taken into account.
For example, a pair of interleaving primary samples gives a single degree of freedom for
var(spa)=0.0750, and duplicate test portions taken from each of a pair of test samples give two
degrees of freedom for var(a)/2=0.050/2=0.025, the analytical variance of the arithmetic
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mean of duplicate test resuits. This is the reason why the analytical variance (the variance of
taking and assaying a single test portion of a test sample) is divided by the factor 2. Since
F=0.075/0.025=3.00 is lower than F0.05;1;2=18.51 at 5% probability, the difference of
0.075—0.025=0.050 between var(spa) and var(a)/2 is not a valid estimate for var(sp), the sum
of the variances of the primary sample selection and preparation stages. Therefore, no statistical
significance should be attached to this difference of 0.050, nor should mathematical analysis be
applied to such differences (Merks 1993).

By contrast, 20 pairs of interleaving primary samples would give 20 degrees of freedom
for var(spaj=0.075 whereas duplicate test portions taken from each of 40 test samples would
give 40 degrees of freedom for var(a)/2=0.050/2=0.025. In this cass, the F-statistic of
F=0.075/0,025=3.00 exceeds not only FO0.05;20;40=1.54 at 5% probability but also
F0.01;20:40=2.37 at 1% probability. Hence, the same difference of 0.075—(0.050/2)=0.050
is a valid estimate for var{sp}, the sum of the variances of the primary sample selection and
preparation stages. The probability that this statistical inference is false is less than 1 %.

The latter F-test shows that var(sp), the sum of var(s), the variance of the primary sample
selection stage, and var(p), the variance of the sample preparation stage, adds most to var(spa),
the variance of the entire measurement chain. The most effective method to reduce var(s) the
variance of the primary sample selection stage, is to increase the number of primary increments
(Gy 1979, Merks 1985, Visman 1962).

The variance of the sample preparation stage can be estimated by preparing duplicate test
samples of each of a pair of interleaving samples, and assaying duplicate test portions of each
test sample. For example, 10 pairs of interleaving primary samples would generate 20 pairs of
test samples and 40 pairs of test portions, and give 10 degrees of freedom for var(spa), the sum
of the variances of the primary sample selection, preparation and analytical stages, 20 for
var(pa), the sum of the variances of the sample preparation and analytical stages, and 40 for
varfa), the analytical variance (see Appendices A & B).

The variance of the sample preparation stage can be reduced to a minimum by
comminuting and homogenizing dried sample masses prior to division. The key is always to
find a compromise between acceptability and expediency, a task that requires some
understanding of experiment design and statistical analysis of test results. Sample preparation
procedures are prone to bias due to cross contamination and loss of dust, moisture or native
metal while comminuting, homogenizing and dividing sample masses (Merks 1983, 1988,
1993).

SUMMARY

Sampling in mineral processing is based on scientifically sound elements of probability theory
and applied statistics. The properties of variances are the quintessence of sampling theory and
practice. The additive property of the variances of volume, mass and contained metal play a key
role in metallurgical accounting procedures.

Combining a set of primary increments into a single primary sample does not give a
vanance estimate. Dividing a set of primary increments into a pair of interleaving primary
samples is the most effective procedure to estimate the variance of the entire measurement
chain. Interleaving sampling protocols are equally effective for slurry flows in mineral
processing and bulk samples in mineral explorations. Sampling protocols can be optimized by
applying analysis of variance to partition the sum of the variances of the primary sample
selection, preparation and analytical stages into its components, and by examining which
variance component should be reduced to improve the precision of the measurement procedure.

On-stream data almost invariably exhibit a significant degree of spatial dependence. Metal
grades of contiguous sets of core samples within a borehole, or a set of adjoining rounds in a
drift or trench, may also display a significant degree of spatial dependence. When plotted in a
graph the variance terms of an ordered set display a sampling variogram. When the variance of
the randomized set and the Jower limits of its asymmetric 95% and 99% confidence ranges are
also plotted, the sampling variogram shows whether the degree of spatial dependence is
statistically significant and where orderliness in the sampling unit or sample space under
examination has dissipated into randomness.
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The computations discussed in this paper are carried out with spreadsheet software. Setting up
effective spreadsheet templates is an important element of sampling practice in mining and
metallurgy. A strong case can be made that sound elements of probability theory and applied
statistics be implemented in all the measurement procedures commonly applied in mineral
exploration, mining, processing, smelting and refining.
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APPENDIX A

Interleaving Sampling Protocol

Primary sample selection stage

[ Sampling unit ]

Divide sampling unit
into elementary units

[ Selection stage |

[ Set of primary increments |
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APPENDIX B

Interleaving Sampling Protocol

Sample preparation stage

A-sample B-sample
|
Iﬁomogenize ] | Homogenize T
Incremental Incremental
division division
Select 1 kg Select 1 kg
test portion test portion
Dry at 105 Dry at 105
centigrade . Symbol : var(MF) | centigrade
Mass loss on Measurement variance Mass loss on
drying in % of moisture factor drying in %
| _Pulverize | | Pulverize ]

| Test samples |

-var(GF) | | Test samples |

Test resulits Measurement variance Test results
for grade of grade factor for grade




APPENDIX C

Measures for Variability and Precision

Symbol |

Arithmetic mean in %
Variance in %*2

Standard deviation in %
Coefficient of variation in %rel

Number of measured values
Variance of mean in %*2
Standard deviation in %

95% Confdence interval in %abs #
95% Confdence interval in %rel
95% Confidence range
Lower limit in %abs
Upper limit in %abs

Degrees of freedom
Tabulated t-value at 5% probability

xbar
var(x)
sd(x)
Ccv

n
var{xbar)
sd(xbar)

95% ClI

95% ClI

95% CR
95% CRL
95% CRU

df
t0.05;df

30.90
0.9950
0.9975

3.2

0.1995
0.4467

1.24
4.0

29.7
32.1

2.776

ymbol

Mass weighted average in %
Variance in %*2

Standard deviation in %
Coefficient of variation in %rel

Sum of squared weighting factors
Variance of mean in %*2
Standard deviation in %

95% Confdence interval in %abs #
95% Confdence interval in %rel
95% Confidence range
Lower limit in %abs
Upper limit in %abs

Degrees of freedom
Tabulated t-value at 5% probability ##

xbar
var(x}
sd(x)
cv

sum(w1i*2)
var(xbar)
sd(xbar)

95% CI

95% ClI

95% CR
95% CRL
95% CRU

df
10.05;df

30.71
0.8143
0.9024

2.9

0.2401
0.1955
0.4422

# based on 95% Cl=sd{xbar)*t0.05;df
## Dby linear interpolation



APPENDIX D

Sampling Variogram for On-stream Data

1 1st
2nd
3rd
4th

5 5th
6th
7th
8th
9th

10 10th
11th
12th
13th
14th

15 15th
16th
17th
18th
19th

20 20th

var1(x)
var2({x)
var3{x}
var4(x)
var5{x)
var6{x)
var7(x)
var8{x)
var3(x)
var10{x)
vart 1(x)
var12(x)
var13(x)
var14(x)
var15x)
var16x)
var17({x)
var18x)
var19(x)
var20(x)

0.0038
0.0038
0.0070
0.0106
0.0140
0.0161
0.0205
0.0253
0.0313
0.0355
0.0385
0.0417
0.0440
0.0483
0.0511
0.0535
0.0548
0.0550
0.0587
0.0618

0.0790
0.0790
0.0790
0.0790
0.0790
0.0790
0.0790
0.0790
0.0790
0.0790
0.0790
0.0790
0.0790
0.0790
0.0790
0.0790
0.0790
0.0790
0.0790
0.0790

0.0637
0.0637
0.0637
0.0637
0.0637
0.0637
0.0637
0.08637
0.0637
0.0637
0.0637
0.0637
0.0637
0.0637
0.0637
0.0637
0.0637
0.0637
0.0637
0.0637

0.0581
0.0581
0.0581
0.0581
0.0581
0.0581
0.0581
0.0581
0.0581
0.0581
0.0581
0.0581
0.0581
0.0581
0.0581
0.0581
0.0581
0.0581
0.0581
0.0581

[Stati

Degrees of freedom for :
Randomized set
Ordered set

Tabulated F-value at :
5% Probability
1% Probability

df(r)
df{o)

F0.05;95;00
F0.01;95;00




APPENDIX E

Student’s t-test for Paired Test Results

Statistic

. Symbol.

Aritmetic mean in % : reference increments
Aritmetic mean in % : system samples
Difference in %abs

Difference in %rel

Variance of differences in %"2
Standard deviation in %
Coefficient of variation in %rel

Number of paired test results
Variance of difference
Standard deviation

Calculated t-value
Significance

Bias detection limits in %abs
Type | statistical risk only
Type | & 1l statistical risks

Bias detection limits in %rel
Type | statistical risk only
Type | & Il statistical risks

Probable bias range in %abs
Type | risk only : lower limit
Type | risk only : upper limit
Type | & 1l risks : lower limit
Type | & Il risks : upper limit

Degrees of freedom

Tabulated t-values at :
10% Probability
5% Probability
1% Probability
0.1% Probability

xbar(R)

xbar(s)
dx
dx

var(dx)
sd{dx)
Ccv

n
var{dxbar)
sd(dxbar)

t

BDLs
BDL(l)
BDL(I&lIl)

BDLs
BDL(l)
BDL(I&1I)

PBLI{I)
PBU(})
PBL(I&II)
PBU(I&II)

df

t0.10;df

t0.05;df

10.01;df
10.001;df

* % *

8.10
7.49
0.61

8.1

0.6728
0.7569
9.3

30
0.0191
0.1382

4.390

0.28

3.6
6.6

0.32
0.89
0.09
1.12

29

1.701
2.048
2.763
3.674

* %

significant at 0.1% probability





